High-order well-balanced schemes

High-order Well-balanced Schemes
Sebastian Noelle, Yulong Xing, Chi-Wang Shu
Contents
!"#%$&('()*!+,-.$/$&0-12-!'-%$&34
6571("#!'8,%$&'-(0:9;! <,%$&.$&(!>=% -2 ?@(!!/AB!-$C
'DFE
G 6571("#!'8,%$&'-(0:9;! <,%$&.$&(!:+%$&
$C->
4HI"#(($&JK$&"#A!'8LM;
12'
1%$&(9N98$C-(O!+$C
'PFQ7
R6ST!'
FR7
"!#$%&'!(*)+,$-'&.!#)/)012134)5761'!$'898:34;589-'<6
*-7+,=?>@- 575-''A-CBD<
E1F)BG&HI';)89-AHIA+,J)BG;895-F8K!L
1M N1A1-O)B)13P*%&K58?<QRE8;1E+S*)89EI)TJ!L M1M UV-'
)B$-)&%W- 9%FXEINIY6Z*)E1-C +,?-<1-8"<-7[)5'<=F\]88:34;58K5-6
*-7+,G5AB^H_`6I9*- 'a5589)2E1?)BVG;895-a6,
b1''BD)5a5;8
)+cR7_c<QRE8;1E+dA75=.\[a6I*-E*#e!$)`-89**'f)Bg*- 1+,T&)1
;5*<6Z)Z12134)5761'`5--EI75Tg)134)*-8895)5*HZh:C6I:UV'-'0)'7
)
!L-70
G!$'898:34;589-'<6FBD)5"J2 78I-89*.)B<QRE8;19ITW6YG)1'.)1
;5*<6,)0!#8834;891-<6cQRE6&75EIT!L19-7,-<5c3g,1-'918L3;J1896
)i588"Q&E189;IK&=,>J8-<
9)Y-'89E61F<QRE89;I9ij&kLl mnk*Tg!L1'CX)<!
%W8)R-:eHO%5*To56p589*)_`+,)-788122_q_rstuIvwrxy<QRE8;19I=
zaE1+,'-<8o'NI'+,Rf*)<!{'NI-88RL*)8E1)p)BE1'*E1;6|L!$'898
J*82R8:H|'*EI;<6Q&E189;IK&=
}~€._‚gƒR„G…1†y‡7ˆo‰IŠKŠ^‹RŒŒ?‰RŽ'5i‘’o‰&Ž “^‹I”o‡•L–P’o”o—V‰&˜i”1މ&ŠY‘1’o“KŠ^“K™o “D‰V•aˆV“^šIˆ›A‹I—5
’VœŒY“K”o—Zo”o“9Ž',žI‹IŠ^’V˜i,‡ Ÿˆo5˜i‡•ŒbŠKŠK›A™o‰&ŠD‰&”oŸ5—Z‡ ŸˆV˜i‡
1. Introduction
*”[˜p‰&”¡O‰&œoœVŠK“DŸ5‰&Ž “^‹I”o‡bŒaF‹I–¢Ž 5”[5”gŸ
‹I’o”1Ž'5aˆ¡œ5'™‹IŠ^“^ŸF™o‰&ŠD‰&”gŸ
ŠD‰WŒ`‡•ŒYˆo“^ŸˆZ“K”
‹I”V,—“^˜i5”o‡ “K‹1”[‰I 0“^”[Ž ˆV0–P‹1 ˜
£¤I¥^¤¦
U + f (U, x) = s(U, x)
t
x
ŒYˆV5' U “^‡GŽ'ˆVY‡7‹1ŠK’Ž'“K‹1”_ž1Ÿ<Ž'‹I• f (U, x) “D‡#Ž ˆoJ§o’V¨‰&”o— s(U, x) “^‡GŽ'ˆVY‡7‹1’V'Ÿ5LŽ'5'˜ ¥
©?ˆV,‡7‹1’V'Ÿ5`Ž'5'˜ª˜p‰W¡OŸ
‹I˜iC–P'‹I˜«šI‹I˜i
Ž' “DŸ5‰IŠe•'‰1Ÿ<Ž “^žIF‹I?‹&Ž'ˆV5`Ÿ5‹I”o‡ “D—5‰RŽ'“K‹1”o‡ ¥
¬f¨V‰&˜iœVŠ^‡f‹I–­ˆ¡œ5'™g‹1ŠK“DŸa™o‰&ŠD‰&”oŸ5YŠ^‰WŒ`‡$“^”oŸ5ŠK’o—VYŽ ˆVF‡7ˆo‰IŠKŠ^‹RŒ®Œ?‰RŽ'5f‘1’g‰RŽ “^‹I”iŒY“KŽ ˆO‰
”V‹I”›§g‰&Ž`™g‹IŽ7Ž ‹1˜Ž'‹Iœ‹IŠ^‹Iš1¡I•VŠ^‰1‡Ž'“^Ÿ,Œ?‰WžI0‘1’g‰RŽ “^‹I”y¯:°W±A•gŸˆV˜i‹1‡ 5”o‡ “9Ž'“Kž1,˜i‹RžI5˜i”1Ž
¯ ¤W² ±•o”V‹I³³5Š^F§g‹RŒ´¯ ¤ ±A•o‰&”g—OŽŒa‹iœVˆo‰I‡ C§o‹RŒ´¯:° ± ¥
µ ‹1˜iœo‰&'“K”ošŒY“9Ž'ˆ¶Ž ˆVZ‡Ž‰&”o—V‰I'—·ˆ¡œg ™‹IŠ^“DŸOŸ
‹1”o‡7 žR‰&Ž “^‹I”·Š^‰WŒ`‡•G”g‰&˜i5Š^¡ £7¤I¥^¤¦
ŒY“9Ž'ˆ s(U, x) = 0 •bŽ ˆo”’o˜| “DŸ5‰IŠ`‰&œVœo ‹W¨“^˜i‰&Ž “^‹I”®Ž ‹yŽ ˆo™o‰&ŠD‰&”oŸ5]Š^‰WŒ`‡ £7¤I¥^¤¦ “D‡
’o‡7’g‰&Š^ŠK¡¸”V‹&Ž,Ž'‹‹]˜’oŸˆy˜|‹1 O—V“9¹OŸ
’oŠ9ŽºcŒbO‡ “^˜|œoŠK¡¸”V5—·Ž ‹œV’Ž,Ž'ˆVOœ‹I“^”ŽcžW‰IŠK’o‡
£ –P‹ICo”o“9Ž'i—V“9»­5'5”oŸ5|‡'ŸˆV˜|‡ ¦ ‹IFŽ ˆoiŸ55Š^Šf‰WžI5‰&š1‡ £ –P‹ICo”o“9Ž'ž1‹IŠ^’V˜i|‡'ŸˆV5˜i‡ ¦
‹&–Ž'ˆVC‡ ‹I’o'Ÿ5YŽ  ˜ s(U, x) —“^ Ÿ<Ž'ŠK¡|Ž ‹Ž ˆoC—“D‡'Ÿ
'
Ž “^³‰&Ž “^‹I”O‹I–.Ž ˆV0‡ œo‰RŽ'“^‰IŠg‹1œg'‰&Ž ‹I ¥
©?ˆo5'J“D‡5•RˆV‹RŒa5ž15•5‹1”VJ”V‹IŽ “DŸ
‰&™VŠ^L
¨VŸ55œŽ'“K‹1” ¥ ©?ˆVb™o‰&ŠD‰&”gŸ
JŠD‰WŒ £¤1¥K¤W¦ ‹&–¢Ž'5”_‰1—˜i“9އ
‡7Ž ‰I—¡]‡7Ž'‰RŽ'_‡ ‹IŠ^’Ž “^‹I”o‡`“K” ŒYˆo“^Ÿˆ]Ž'ˆV_‡ ‹I’VŸ
0Ž'5'˜ s(U, x) “^‡
¨V‰IŸ
Ž Š^¡M™o‰IŠ^‰I”oŸ
—[™¡
Ž'ˆV§o’¨šI‰I—“^5”Ž f (U, x) ¥ ’oŸˆ(‡7Ž ‰1—¡]‡Ž‰RŽ |‡7‹1ŠK’VŽ “^‹I”o‡C‰&'c’o‡ ’o‰&Š^Š^¡Z”V‹1”›Ž '“Kž“D‰&Š
£ Ž ˆV¡{‰I [’o‡ ’o‰&Š^ŠK¡®”V‹&Žpœ‹IxŠ^¡”o‹I˜i“^‰IŠ^‡ ¦ ‰&”o—®Ž ˆV¡®‹I–¢Ž 5”@Ÿ5‰I '¡y“K˜iœ‹I Ž'‰I”1ŽpœVˆ¡‡ “^Ÿ‰&Š
˜i‰&”V“^”Vš £ –P‹1,
¨V‰&˜iœVŠ^I•.Ž'ˆVp‡Ž'“KŠ^ŠLŒ?‰RŽ'50‹I,‡7Ž ‰1—¡ ˜i‹Rž“K”ošZŒ?‰RŽ'5,‡7‹1ŠK’VŽ “^‹I”·‹&–JŽ'ˆV
‡ ˆo‰IŠKŠ^‹RŒ Œ?‰RŽ'5Y‘1’g‰RŽ “^‹I”"•VŽ ‹p™_‡7Ž ’o—V“K—“K”˜i‹1 ,—5Ž'‰&“^Š"ŠD‰RŽ'5`“^”]Ž ˆo“^‡œo‰&œ5 ¦<¥ ©?ˆV
‹1™Ÿ
Ž “^žI,‹I–$Œa5Š^ŠK›™o‰IŠ^‰I”oŸ
—]‡ ŸˆV˜i‡Y“D‡?Ž ‹MœV ‡7 ž10
¨V‰IŸ
Ž Š^¡Z‡ ‹I˜i,‹&–$Ž ˆo‡ _‡Ž'‰1—¡
‡7Ž'‰&Ž ?‡7‹1ŠK’VŽ “^‹I”o‡ ¥ ©?ˆVa˜i‹1‡7ŽG“^˜|œ‹I Ž'‰I”Ž#‰I—VžW‰I”Ž'‰&š1L‹&–VŒa5Š^ŠK›™o‰IŠ^‰I”oŸ
—,‡ Ÿˆo5˜i‡G“^‡"Ž ˆg‰RŽ
Ž'ˆV5¡Ÿ‰&”‰IŸŸ
’V‰RŽ'5Š^¡M'‡ ‹IŠ^žI,‡7˜p‰IŠKŠGœg7Ž'’V ™g‰RŽ “^‹I”g‡?Ž ‹M‡ ’oŸˆ ‡7Ž ‰I—¡[‡Ž‰RŽ ‡7‹1ŠK’Ž'“K‹1”o‡
ŒY“KŽ ˆ]'5ŠD‰RŽ'“Kž15Š^¡OŸ
‹1‰I'‡ ˜i‡7ˆV‡ ¥ *”]Ÿ
‹1˜|œg‰&'“^‡ ‹I”•‰”V‹I”V›Œa5Š^Š9›A™o‰IŠ^‰I”oŸ
—O‡ Ÿˆo5˜i0ŒY“KŠ^Š
“^”Ž '‹—’oŸ
?Ž' ’o”oŸ5‰&Ž “^‹I”|5' ‹1'‡"Ž ‹0Ž'ˆV`‡Ž'‰1—¡_‡7Ž'‰RŽ'Y‡7‹1ŠK’Ž'“K‹1”•&ˆV”oŸ
Y“KŽJŸ5‰I”V”V‹IŽ$'‡ ‹IŠ^žI
‡ ˜p‰&Š^Šoœ5 Ž ’V'™o‰&Ž “^‹I”o‡LŽ ‹_‡ ’oŸˆO‡7Ž ‰1—¡i‡Ž‰RŽ ‡L’V”oŠK‡ ‡LŽ ˆVŽ '’V”oŸ5‰&Ž “^‹I”p '‹If“D‡b‰IŠK'‰1—¡
‡ ˜p‰&Š^ŠK$Ž ˆo‰I”p‡7’oŸˆ|œ5 Ž ’V'™o‰RŽ'“K‹1”o‡•RŽ ˆ’o‡$'‘’V“^ “^”Vš0‰0 5o”V—_˜i‡ ˆ ¥ *” Ÿ
Ž “^‹I” ² Œb
ŒY“^Š^Šœo ‹Rž“D—J‡ ’oŸˆc
¨V‰I˜|œoŠK‡ ¥ ‹RŒbžI•“9Ž#“^‡$‘’V“KŽ a—“9¹OŸ5’VŠ9Ž#Ž ‹C—‡ “^šI”cŒa5Š^Š9›A™o‰IŠ^‰I”oŸ
—
‡'ŸˆV˜|‡0ŒYˆV“DŸˆ·‰I |ˆV“^šIˆ›A‹I—50‰IŸŸ
’V‰RŽ'|‰I”o—¸”V‹I”›A‹1‡'Ÿ
“^Š^Š^‰&Ž ‹I'¡]“K”¸Ž ˆopœV ‡7”oŸ
|‹&–
—V“^‡'Ÿ
‹1”1Ž'“K”’V“KŽ “^‡?“^”[Ž ˆVc‡ ‹IŠ^’Ž'“K‹1” ¥
*”ZŽ ˆo“^‡?œo‰Iœg?ŒbC’o‡ Ž'ˆV,‡7ˆo‰IŠKŠ^‹RŒ Œ?‰RŽ'5a‘’o‰RŽ'“K‹1”Z‰1‡a‰œV'‹&Ž'‹&Ž¡œgFŽ ‹i‡ ’V ž15¡O‰
–PŒd'Ÿ55”Ž Š^¡O—5ž15Š^‹Iœ—MŒbŠKŠK›™g‰&ŠD‰&”oŸ5—Oˆo“Kš1ˆ›‹1'—V5bo”V“KŽ ,—“K» ”oŸ
1•o”V“KŽ 0žI‹1ŠK’V˜i
‰I”o—@—“D‡ Ÿ5‹I”Ž “^”’V‹I’o‡0‰IŠK
“^” o”V“KŽ ŠK˜i5”Žp˜|5Ž ˆV‹—V‡ ¥ ]‰&Ž7Ž'5˜iœŽpŽ ‹¶5¨œVŠ^‰I“K”
Ž'ˆVM˜p‰I“K”¶“^”VšI'—V“K”1އc“^”¶Ž ˆo‡ M‰&Š^šI‹1 “KŽ ˆV˜p‡,ŒYˆo“^Ÿˆ ‰IŠKŠ^‹RŒ ’g‡cŽ'‹(‰IŸˆV“^5ž1iŽ ˆVZŒbŠKŠK›
™g‰&ŠD‰&”oŸ5—[œV'‹Iœ5 Ž¡MŒY“KŽ ˆV‹1’ŽŠ^‹1‡ “K”Vši‹IŽ ˆV`”V“DŸ
cœV'‹Iœ5 Ž “^‡?‹I–$Ž ˆVc‹1 “^šI“^”o‰IЇ ŸˆV˜iI•
‡ ’oŸˆO‰1‡fˆV“^šIˆ›A‹I—5L‰1Ÿ5Ÿ5’V'‰1Ÿ
¡_‰I”o—i”V‹1”›‹‡ Ÿ5“KŠ^ŠD‰RŽ ‹1 ¡,œ5 –P‹I'˜p‰&”oŸ5Y“K”iŽ'ˆV`œV'‡ 5”gŸ
Y‹&–
‡ ‹IŠ^’Ž'“K‹1”[—“D‡'Ÿ
‹I”Ž'“K”’V“KŽ “^‡ ¥
©?ˆoœo‰Iœgb“D‡J‹1 š‰&”V“^³5—p‰I‡L–P‹IŠ^ŠK‹RŒ`‡ ¥ *” Ÿ
Ž “^‹I”Z°cŒbo‡Ž?—“^‡'Ÿ
’g‡ ‡b‰c”’V˜_™5a‹&–
“^”Ž  ‡Ž'“K”Vš[‘’V“^Š^“K™V'“^’V˜ ‡7Ž'‰RŽ'‡ ¥ ©?ˆo5”·Œb|“K”Ž' ‹—’oŸ5_Ž'ˆVp'‡ “^—’g‰&Š$ŒYˆV“DŸˆ(”V—(Ž ‹
™,Œa5Š^Š9›A™o‰&ŠD‰&”gŸ
—Z”V‰&Y‡Ž‰RŽ'“K‹1”o‰&'¡O‡Ž‰RŽ'‡ ¥
ŽYŽ'ˆV“D‡Yœg‹1“K”ŽYŽ'ˆVcœo‰Iœg`‡7œVŠ^“KŽ'‡Y“^”Ž ‹iŽŒa‹i‰IœVœV'‹1‰1ŸˆV‡º#©?ˆo0o'‡7Ž`‰&œVœo ‹‰IŸˆ•V‡ 5
Ÿ<Ž'“K‹1” •‰IœVœVŠ^“K‡LŽ'‹co”V“KŽ 0—“K» ”oŸ
1•Ig”V“9Ž'Fž1‹IŠ^’V˜iF‰I”o—O—“D‡ Ÿ5‹I”Ž “^”’V‹I’g‡0‰&Š^5“K”
‡'ŸˆV˜|‡ ¥ AŽpŽ' ‰Rއi‘’V“^ŠK“^™V'“^‰¸–P‹IpŒYˆo“^Ÿˆ{Ž ˆV ‡ ‹I’o'Ÿ5ZŽ'5'˜ Ÿ5‰I”@™g —Ÿ
‹1˜|œ‹1‡ —
“^”Ž ‹(‡ ’V˜p‡,‹I–?œo ‹—’oŸ
Ž'‡_‹&–aŽ ˆVp–P‹1 ˜ £ ¥ ¦¥ ©?ˆVMŸˆo‰IŠKŠ^5”ošIi“^‡cŽ ‹ Ÿ5‹I”o‡7Ž '’oŸ<Ž_o”V“KŽ 
—V“9»­5'5”oŸ5_‹1œg'‰&Ž ‹I‡YŒYˆV“DŸˆ(‰I cˆo“Kš1ˆ›‹1'—V5‰1Ÿ5Ÿ
’o'‰&Ž c‰&”g—”V‹I”V›‹‡ Ÿ5“KŠ^Š^‰&Ž ‹1 ¡p–P‹1Ž'ˆV
Ÿ5‹I”o‡ 5'žR‰RŽ'“Kž1c§o’¨(—V“9»­5'5”oŸ5‰I”o—Ž'ˆVp‡7‹1’V'Ÿ5,Ž  ˜]•‰I”o— ŒYˆV“DŸˆ¸Ÿ5‹I“^”oŸ
“D—_–P‹I0™g‹IŽ ˆ
Ž'5'˜p‡Y“K”ZŽ ˆocŸ5‰I‡ 0‹&–$‘’V“^ŠK“^™V'“K’o˜‡7‹1ŠK’VŽ “^‹I”o‡ ¥
²
©?ˆo ‡7Ÿ
‹I”g— ‰IœVœV'‹1‰1Ÿˆ•C—V‡ “Kš1”V—d–P‹Iš15”V'‰IŠ,‘’V“^ŠK“^™V'“^‰@‰&”g—dg”V“9Ž'¶žI‹1ŠK’V˜i
‡ ŸˆV˜i‡•“D‡?Ÿ
‹Rž15'—i“^” Ÿ<Ž “^‹I” ¥ ©?ˆV I¡iŽ'‰I‡
i“^‡bŽ'‹_o”g—MŒa5Š^Š9›A™o‰IŠ^‰I”oŸ
—p‘1’g‰I—‰R›
Ž ’V'‡G–P‹I$Ž'ˆV?“K”Ž'5šI‰&Š‹I–oŽ ˆoa'‡ “D—’o‰&Š•&‡ 5?‘’o‰&Ž “^‹I” £ ¥^¤¦
¥ ’o™o‡7Ÿ<Ž'“K‹1” ¥ °œV'‡ 5”Ž'‡
‰ šI”V5‰&ŠJ–P'‰I˜i5Œa‹I Ž ‹·—Ÿ5‹I˜iœ‹1‡ pŽ ˆV“D‡|“K”Ž'5šI‰&Šb“K”Ž'‹¸‡ ’V“9މ&™VŠ^Mœg‰& Ž'‡ ¥ ’V™g‡7Ÿ<›
Ž “^‹I” ¥  ‰&Š^“K³‡,Ž'ˆV“D‡‰IœVœV'‹1‰IŸˆy–P‹1˜i‹Rž“^”Vš Œ?‰RŽ _‘1’o“KŠ^“K™o “D‰–P‹1|‡ ˆo‰&Š^Š^‹RŒ Œ?‰RŽ'5
§o‹RŒ`‡ ¥
*” Ÿ<Ž'“K‹1” ² ŒaiœV'‡ 5”Ž,”’o˜| “DŸ5‰IŠf ‡7’oŠ9އc‡7ˆo‹RŒY“K”VšZŽ ˆoM‰IŸŸ
’V‰IŸ5¡ ‰&”o—¸ŒbŠKŠK›
™o‰&ŠD‰&”oŸ5—0œV'‹Iœ5 Ž “^‡"‹&–V™‹&Ž'ˆ_Ÿ
ŠD‰I‡'‡7‡.‹&–o‡'ŸˆV˜|‡.–P‹1G‰`”’V˜™g"‹I–oŸˆo‰&Š^ŠK”VšI“^”VšY§g‹RŒ`‡ ¥
Ÿ
Ž “^‹I” Ÿ
‹I”މ&“^”o‡?‡7‹1˜|,Ÿ5‹I”oŸ5ŠK’o—V“K”Vši'5˜p‰&‡ ¥
2. Preliminaries: equilibria and the residual
* ” Ž ˆV“D‡_‡ Ÿ
Ž “^‹I”¶ŒaO“K”Ž' ‹—’oŸ5
cŒYˆV“^Ÿˆ Ÿˆg‰&‰IŸ<Ž'5'“K³p‡Ž‰R›
Ž “^‹I”o‰I ¡¶‡7Ž'‰RŽ'‡•J‰&”g—®—“D‡ Ÿ5’o‡'‡cŽ'ˆV !
bŒYˆV“DŸˆ®˜i‹1”V“9Ž'‹I‡cŽ'ˆV—5ž“D‰RŽ'“K‹1” ‹&–`Ž'ˆV
‡7¡‡7Ž 5˜ –P'‹I˜ª‡7Ž'‰&Ž “^‹I”o‰I ¡p‡7Ž'‰&Ž ‡ ¥ *”Zœg‰& Ž “DŸ
’VŠD‰&•ŽŒb‹_–P‹I'˜i‡a‹I–"Ž ˆoC'‡ “D—’o‰&Š­‰&'0‡7“^”›
šIŠ^—Z‹I’Ž`ŒYˆV“DŸˆ]‰&'Ž'ˆV,™o‰I‡ ‡?‹I–"Ž'ˆV0o”V“KŽ c—“K»­5'5”oŸ5c‰&Š^šI‹I'“KŽ ˆV˜p‡a“K” Ÿ<Ž “^‹I” ‹I”
‹I”V0ˆo‰I”o—]‰&”o—MŽ ˆV0g”V“9Ž',žI‹1ŠK’V˜i,‰&Š^šI‹1 “KŽ ˆo˜«“K” Ÿ<Ž “^‹I” ‹I”ZŽ ˆo,‹&Ž ˆo5Yˆo‰I”o— ¥
"$#%&#('*)$+(,.-,/ ƒ ,0
1"
Ž_’g‡_‰&š‰&“^”¶Ÿ
‹I”g‡7“D—50Ž'ˆVM‡ ¡‡Ž'5˜ ‹&–?™o‰&ŠD‰&”oŸ5pŠ^‰WŒ`‡ £¤I¥^¤¦
¥2 ‹Ic5¨V‰&˜iœVŠ^I•G–P‹I
Ž ˆVc‡ ˆo‰&Š^Š^‹RŒ Œa‰&Ž Y‘’o‰RŽ'“K‹1”o‡
£ ° ¥^¤¦ U = (h, m)T , f (U ) = (m, m2/h + gh2/2)T , s(U, x) = −ghb (x),
x
ŒYˆV5' h “^‡#Ž'ˆVYŒa‰&Ž fˆV5“^šIˆŽ• m “^‡$Ž'ˆV?˜i‹I˜i5”Ž ’o˜ £ —V“^‡'Ÿˆo‰&'šIa“^”ˆ¡—‰&’VŠ^“^Ÿ‡ ¦ • b(x)
“^‡FŽ ˆoœV'‡'Ÿ
'“^™g— ™‹&Ž7Ž'‹I˜ Ž'‹Iœ‹IšI‰&œoˆ¡]‰&™‹RžI|‰Mš1“Kž15” '
–P ”oŸ
ˆV5“^šIˆŽ•‰&”o— g “D‡
Ž ˆV,š1'‰Wž“KŽ'‰RŽ'“K‹1”o‰&Š­‰IŸŸ
ŠK'‰&Ž “^‹I” ¥
3(‰&”¡M‡ ’oŸˆ‡7¡‡7Ž 5˜p‡YŸ‰&”[™g,'5ŒY'“9Ž Ž ”Z“^”[Ž ˆV0–P‹1 ˜
£ ° ¥° ¦
Vt + c(V, x)Vx = 0
–P‹I`‡ ‹I˜i0žW‰I “D‰&™oŠK
£° ¥ ¦
V = V (U, x),
ŒYˆo“^Ÿˆ|ŒbaŒa‹I’VŠD—,Š^“ 1JŽ'‹0Ÿ‰&Š^ŠŽ ˆV 5•R‡ “K”gŸ
?Ÿ
‹I”g‡Ž‰&”Ž V “^˜|œoŠK“^‡f‰
‡7Ž'‰&Ž “^‹I”o‰I ¡c‡7Ž'‰&Ž  ¥ ‹&Ž aŽ'ˆo‰RŽJŸ5‹I”o‡7Ž'‰I”1Ž V —‹‡$”o‹&Žf“K˜iœVŠ^¡cŽ'ˆo‰RŽ U “^‡JŸ
‹I”g‡Ž‰&”Ž•&‡ “K”gŸ

—5œ5”o—o‡_‰&ŠD‡ ‹‹I” x Ž ˆo ‹1’VšIˆ·Ž ˆoOžR‰&'“^‰I™VŠK|–P’V”gŸ<Ž “^‹I” b ¥ ©?ˆV 5–P‹I'I•G‹I”VO‡ ˆV‹I’oŠ^—
V
5¨œgŸ<Ž`”V‹1”›eŽ' “^ž“^‰IŠ.‘’V“^ŠK“^™V'“^‰ ¥
2 ‹Ic‡ ˆo‰&Š^Š^‹RŒ´Œ?‰RŽ •Ž ˆVp‘1’o“KŠ^“K™o “^’V˜ žR‰I “D‰&™VŠ^‡,‰I  V (U, x) = (m, E) •#ŒYˆV5'
Ž'ˆV,‘’V“^Š^“K™V'“^’V˜”V5'šI¡ E “D‡YšI“^žI”M™¡
£° ¥ ¦
m2
E(U, b) = 2 + g(h + b).
2h
*”iŽ'ˆVY–P‹1ŠKŠ^‹RŒY“K”oš,Œb`—‡ Ÿ5 “^™`žR‰&'“K‹1’o‡fŸ
ŠD‰I‡'‡7‡ E ‹&–.‘’V“^ŠK“^™V'“^‰o•I‹1L‡Ž‰RŽ “^‹I”g‰&'¡‡7Ž'‰RŽ'‡ ¥
¥
|› £7¤¦ ©?ˆVcŸ5Š^‰1‡ ‡?‹I–#‰&Š^Š.‘’V“^Š^“K™V'“D‰V•
Etot
£ ° ¦ ˜i‹‹&Ž'ˆ]‘’V“^ŠK“^™V'“^‰ E
¥
smooth
£ ¦ µ ‹I”o‡ 5'žR‰RŽ'“K‹1”Š^‰WŒ`‡º   s(U, b) ≡ 0 ‰I”o— f (U ) ≡ const ¥ Ž'‰RŽ'“K‹1”o‰&'¡‡Ž‰RŽ'‡
“^”oŸ5ŠK’o—V
Ÿ5‹I”o‡7Ž'‰I”1Ž`‡7Ž'‰&Ž ‡ ¥
• E0 Ž
Œa‹pŸ
‹I”g‡Ž‰&”Ž?‡7Ž'‰&Ž ‡`‡7œo‰&‰RŽ'—M™¡Z‰|‡7Ž'‰&Ž “^‹I”o‰I ¡O‡ ˆV‹Ÿ O‹1`Ÿ
‹I”މIŸ<Ž ¥
• E1 1
š
1
‰
‡"—¡”o‰I˜i“^Ÿ‡ŒY“KŽ ˆc³5'‹`žIŠK‹Ÿ
“KŽ¡I•WŸ
‹1”o‡7Ž'‰&”Ž"œo ‡ ‡ ’V'I•W‰&”o—c‰I”¡F™‹I’V”g——
• E2 ˜i‰1‡7’V‰&™oŠKF–P’V”oŸ
Ž “^‹I”[–P‹I?Ž'ˆVc—5”g‡7“KŽ¡ ¥
£ ¦ ¬J‘’V“^Š^“K™V'“D‰|–P‹I ¤ ‡'Ÿ5‰IŠ^‰I?™o‰&ŠD‰&”oŸ50Š^‰WŒ`‡ ¥
£²I¦C¤ ‡7ˆg‰&Š^ŠK‹RŒ Œ?‰RŽ'5?‘’o‰&Ž “^‹I”o‡º
©?ˆV,ŠD‰ 1C‰&Ž` ‡Ž E •ŒYˆV  m ≡ 0 ‰I”o—ZˆV5”oŸ5 E = g(h + b) ≡ const ¥
•
˜i‹‹&Ž'ˆ['“^žI5a§o‹RŒ`LaR
‡ E •VŒYˆV  m “D‡Y”V‹1”V³5 ‹ ¥
•
river
£ —“D‡ Ÿ5‹I”Ž “^”’V‹I’g‡? “^žIb§g‹RŒ`‡ ¦
R
‰
Ž

7

4
–
I
‰
K
Š
D
Š
‡
•
Ewaterf all
£ ¦ œo‰&‰&™oŠK0‡7‹1’VŸ
CŽ  ˜p‡Y‡7Ž ’o—“^—[“^”y¯ 1 ± ¥
£ &¦ C‹1‡7Ž '‹IœVˆo“^Ÿ 5Ž'‡
–P‹1C° ‡7ˆg‰&Š^ŠK‹RŒ Œa‰&Ž 5•VŒYˆV  (u, v) ≡ (u(y), 0) • g(h +
Ejet
‰&”g— f “^‡?Ž'ˆVcŸ
‹1 “^‹IŠ^“D‡J–P‹1'Ÿ50“K”ZŽ ˆV,’oœVœg`ˆV˜|“D‡ œVˆV5' ¥
b)y = f u
£ 1¦ 3’oŠ9Ž'“9›AŠ^‰W¡15Y‡ ˆo‰&Š^ŠK‹RŒdŒa‰&Ž 5
º CŸ
‰&”o‡Y‰&Ž?'‡7Ž`‰&”o—[˜i‹Rž“K”oš‹Ÿ
‰&”o‡ ¥
|› £¤W¦ ©?ˆV5',‰&'C˜p‰I”¡M˜|‹1 ,Ÿ5Š^‰1‡ ‡ ‡a‹&–#‘’V“^ŠK“^™V'“^‰o•‡ œgŸ
“D‰&Š^ŠK¡M“K” ° ¥
£ ° ¦ AŽ“D‡_“^˜iœg‹17މ&”ŽcŽ ‹¸”V‹&Ž'OŽ'ˆo‰RŽ|˜|‹‡ŽŒbŠKŠK›™g‰&ŠD‰&”oŸ5—y‡ Ÿˆo5˜i‡‰&'M—‡ “^šI”V—·Ž ‹
œo ‡7 ž1C‹1”VŠ^¡[‰pŸ55 Ž'‰&“^”‡7’o™Ÿ5Š^‰1‡ ‡Y‹I–f‘’V“^ŠK“^™V'“^‰i5¨‰1Ÿ<Ž'ŠK¡ ¥ Ž'ˆV5F‘’V“^ŠK“^™V'“^‰i˜p‰W¡M™
œo ‡7 ž1—M‰IœVœV'‹W¨“K˜p‰RŽ'5Š^¡pŒY“9Ž'ˆV“^”]‰iŸ55 Ž'‰&“^”[‹I—5?‹&–f‰IŸŸ
’V‰IŸ5¡ ¥
Ÿ<Ž'“K‹1” Ž '‰&Ž'‡F‘’V“^ŠK“^™V'“^‰O–P‹ICŒYˆV“^Ÿˆ(Ž ˆVi‡ ‹I’VŸ
_Ž 5'˜p‡F‰I |‡7œo‰&‰&™oŠKc“^” Ž'ˆV
‡7”o‡7J‹&– £ ¥ ¦<¥ ©?ˆo“^‡G“K”gŸ
Š^’o—‡Ž ˆVbŠ^‰ IJ‰&Ž"'‡7ŽG‰I‡G‰YœV'‹&Ž ‹IŽ¡œg ¥ ©?ˆVL˜p‰I“K”,Ž'‹‹IŠI“D‡.Ž'ˆV
Ÿ
‹I”g‡Ž' ’oŸ
Ž “^‹I”p‹I–"‰,ŒbŠKŠK›A™o‰&ŠD‰&”oŸ5—pŸ5Š^‰1‡ ‡J‹&–.o”V“KŽ C—“K» ”oŸ
F‹Iœ5‰RŽ ‹1'‡ ¥ *” Ÿ
Ž “^‹I”
Œb[‹I’Ž'ŠK“^”V]‰ Œa5Š^Š9›A™o‰IŠ^‰I”oŸ
—yo”V“KŽ ]žI‹1ŠK’o˜|[‰&œVœo ‹‰IŸˆ ¥ ˆV“^ŠK[Ž ˆoM–P‰&˜i5Œa‹I·“K”
’V™o‡ Ÿ
Ž “^‹I” ¥^¤ Ÿ5‹RžI'‡b“K”]œV'“^”oŸ
“^œVŠ^0‰IŠKŠ.‘’V“KŠ^“^™V “D‰V•Œa,Ÿ5‰I '¡i‹I’ŽYŽ'ˆV,‡7œŸ5“9gŸ,‡7Ž œo‡
–P‹IY˜i‹Rž“K”Vš|Œ?‰RŽ ?§o‹RŒ`‡?“^” ’o™o‡7Ÿ<Ž'“K‹1” ¥ ¥
"$#"$# ~ ƒW~… , „ + 0 1"
Ži’o‡i‰&š‰&“^”®Ÿ
‹1”o‡7“D—_Ž'ˆV[‡ ¡‡Ž'5˜ ‹I–™o‰&ŠD‰&”gŸ
MŠD‰WŒ`‡ £¤I¥^¤¦<¥ ‰&'Oœo‰I7Ž'“^Ÿ5’›
Š^‰I Š^¡M“^”Ž 5'‡7Ž —[“K”(‡ ‹IŠ^’Ž'“K‹1”o‡`Ÿ
Š^‹1‡ 0Ž ‹M‘’V“^ŠK“^™V'“K’V˜]•gŒYˆV5' U = 0 ¥ ©?ˆV 5–P‹I'I•VŒa
t
“K”Ž '‹—’oŸ5FŽ'ˆV,'‡ “^—’g‰&Š
£ ° ¥:²I¦
R := −f (U )x + s(U, x).
`‹&Ž'0Ž ˆo‰&Ž
£ ° ¥ ¦
Ut = R,
‰&”o—MŽ ˆVc‡ ‹IŠ^’Ž'“K‹1” U —ž“D‰RŽ'‡a–P'‹I˜‡7Ž ‰I—¡Z‡Ž‰RŽ 0“K–$‰I”o—[‹I”VŠ^¡O“K– R 6= 0 ¥
*” Ÿ
Ž “^‹I” ŒaOŒY“^ŠKŠ?‡7Ž ’o—¡¶‰ Ÿ5Š^‰1‡ ‡_‹&–`‡ 5œo‰I'‰I™VŠKp‘’V“KŠ^“^™V “D‰ ‡'‰RŽ'“^‡7–P¡“K”Vš £ ¥ ¦<¥
©?ˆV“^‡Y‰1‡ ‡ ’V˜iœŽ'“K‹1”Z“^˜iœVŠK“^‡YŽ ˆo‰&Ž
£ ° ¥ &¦
R = (−f (U ) + t(U, x))x
¥ ‡7“^”VšyŽ'ˆV“^‡
–P‹IM‡7Ž'‰&Ž “^‹I”o‰I ¡®‡ ‹IŠ^’Ž'“K‹1”o‡5•?ŒYˆV  t(U, x) “D‡O—
Ž'5'˜i“K”V—@™¡ s(U, x) ‡Ž' ’oŸ
Ž ’V'I•ŒaŸ
‹1”o‡7Ž '’oŸ<ŽCˆV“Kš1ˆ›A‹I—5‰1Ÿ5Ÿ5’V'‰&Ž cŒa5Š^ŠK›™o‰IŠ^‰I”oŸ
—Zo”V“KŽ i—“9»­5'5”gŸ
_‹1œ›
5‰RŽ ‹1'‡ ¥
*” Ÿ
Ž “^‹I” Œa –P‹Ÿ5’o‡M‹1”@o”V“KŽ ·žI‹1ŠK’V˜i(‡'ŸˆV˜|‡M‰I”o—@ˆV5”gŸ
¸Ÿ5‹I”o‡ “D—5[Ÿ
5Š^Š
‰WžI5‰&š1‡ R ‹&–.Ž'ˆVF'‡ “D—’o‰&Š ¥ ŠKŠK›A™o‰&ŠD‰&”oŸ5—O‘’o‰1—‰RŽ ’o ‡L‰&'FŸ5‹I”o‡7Ž '’oŸ<Ž'—i–P‹1JŽ'ˆV
 šI’VŠD‰&Y‰&”g—Zi ‡ “K”ošI’VŠD‰&?œo‰I7އ?‹&–#Ž ˆV‡70“^”1Ž'5š1'‰IŠ^‡ ¥
3. Schemes based on well-balanced finite difference operators
* ”OŽ ˆV“D‡b‡ Ÿ
Ž “^‹I”•1Œb`–P‹Ÿ5’o‡b‹I”O‰cŸ5Š^‰1‡ ‡f‹I–‘’V“^ŠK“^™V'“^‰C–P‹1JŒYˆV“DŸˆpŽ'ˆV‡ ‹I’VŸ
?Ž'5'˜ “D‡
‡7œo‰&‰&™VŠ^?“K”iŽ'ˆVF‡ 5”g‡7Y‹I– ‡ ‡ ’V˜iœŽ'“K‹1” ¥ ° ¥ —V5žIŠK‹1œiŒbŠKŠK›™g‰&ŠD‰&”oŸ5—|ˆV“^šIˆ›A‹I—5
‰1Ÿ5Ÿ5’V'‰&Ž ,g”V“9Ž'—“K»­5'5”oŸ5c‹Iœ5‰RŽ'‹I‡?–P‹IŽ ˆV ‡7“D—’o‰IŠ ¥ ‰I‡ —[‹1”Ž ˆV‡7—“9»­5'5”gŸ

1‹ œg'‰&Ž ‹1'‡•.Œbi— “^žIiŒa5Š^Š9›A™o‰&ŠD‰&”gŸ
—o”V“KŽ O—“K» ”oŸ
1•.o”V“KŽ pž1‹IŠ^’V˜i|‰I”o—·—“^‡'Ÿ
‹1”›
Ž'“K”’V‹1’o‡ 0‰IŠK
“^”Z‡'ŸˆV5˜i‡ ¥ ©?ˆV,‘’V“^Š^“K™V'“D‰’o”o—5`Ÿ5‹I”o‡ “D—5‰RŽ'“K‹1”M“^”oŸ
Š^’o—0Ž'ˆV,Š^‰ I
‰&Ž` ‡Ž?–P‹1?Ž ˆVc‡ ˆo‰&Š^Š^‹RŒ Œa‰&Ž Y‘’o‰RŽ'“K‹1”o‡ ¥
©?ˆo[‹1”V
›*—“^˜i5”o‡ “K‹1”o‰&Š?ˆ¡œg ™‹IŠ^“DŸ[‡ ¡‡Ž'5˜ ‹I–CŸ5‹I”o‡ 5'žR‰RŽ “^‹I”{Š^‰WŒ`‡iŒY“KŽ ˆ@‡ ‹I’VŸ

Ž'5'˜p‡$’V”o—LŸ
‹I”g‡7“D—5‰RŽ'“K‹1”c“D‡$šI“^žI5”™¡ £¤1¥K¤W¦<¥ `‡7Ž'‰& Ž#Ž ˆVY—“D‡ Ÿ5’o‡'‡7“^‹I”™¡_œV ‡7”Ž7›
“^”VšMŽ ˆVŒbŠKŠ#™o‰&ŠD‰&”gŸ
—[g”V“9Ž'—“K»­5'5”oŸ5‡'ŸˆV5˜i ¥ ©?ˆV_5¨Ž'5”o‡ “^‹I”Ž'‹po”V“KŽ |žI‹1ŠK’V˜i
‰I”o— «‡'ŸˆV5˜i‡`“D‡C‡ ˆV‹RŒY”“^” Ž'ˆV_–P‹1ŠKŠ^‹RŒY“^”VšM‡ ’V™o‡ Ÿ<Ž'“K‹1”o‡ ¥ C”V5‰&Š^“K³‰RŽ'“K‹1”ZŽ'‹MŽ'ˆV
˜’VŠKŽ “K›A—“^˜i5”o‡ “^‹I”o‰IŠŸ5‰I‡ 
£ ¥^¤¦
Ut + f1 (U, x, y)x + f2 (U, x, y)y = s(U, x, y)
Ÿ ‰&” ™(—‹1”V“K” ‡ ‹I˜i ‡ “9Ž'’o‰RŽ'“K‹1”o‡ ¥ 2 ‹1O
¨V‰I˜|œoŠK1•aŒa 5Ÿ ‰I”@‰I‡ “^ŠK¡{šI5”o5‰&Š^“K³ZŽ'ˆV
œo ‹1œg‹‡7—]Ž ŸˆV”V“D‘1’ocŽ ‹MŽ ˆV_ŽŒb‹I›A—V“K˜i5”g‡7“^‹I”o‰IŠG‡ ˆo‰&Š^Š^‹RŒ Œ?R‰ Ž'5F‘’o‰RŽ'“K‹1”o‡`ŒY“KŽ ˆ¸Š^‰ I
‰&Ž` ‡ŽY‘1’o“KŠ^“K™o “^’V˜ ¥
#.% # ,(, ~„ , ~1ƒR~ ~… ~ ~
po‡7Ž_Ÿ
‹I”g‡7“D—50Ž'ˆVMŸ‰I‡ Ž'ˆo‰RŽ £¤I¥^¤¦ “D‡c‰‡'Ÿ5‰IŠ^‰IC™g‰&ŠD‰&”oŸ5pŠ^‰WŒ ¥ ©?ˆoMŸ5‰1‡7i‹&–
‡ ¡‡Ž'5˜p‡YŒY“^ŠKŠ.™c5¨œoŠK‹1 —OŠD‰RŽ  ¥ c‰&'0“K”Ž'5'‡7Ž —Z“^”[œo ‡7 ž“^”Vš5¨V‰IŸ<Ž'ŠK¡ZŸ
5 Ž'‰I“K”
‡7Ž ‰I—¡Z‡Ž‰RŽ c‡ ‹IŠ^’Ž'“K‹1”o‡
U
‹I– £7¤I¥^¤¦ º
£ ¥° ¦
f (U )x = s(U, x).
,˜p‰ 1ŽŒa‹p‰I‡'‡7’V˜iœŽ'“K‹1”o‡a‹I”ZŽ ˆV,‘’o‰RŽ'“K‹1” £¤1¥K¤W¦ ‰&”o—MŽ ˆVc‡7Ž ‰I—¡Z‡Ž‰RŽ ,‡ ‹IŠ^’Ž “^‹I”
I‹ – £ ¥ ° ¦ Ž ˆo‰&ŽYŒbc‰I C“K”Ž'5'‡7Ž —MŽ ‹pœo ‡7 ž1
¨V‰1Ÿ<Ž Š^¡ ¥
…… + , ‚ #.% # * . U !#" $% '& () * U
. -, +
£ ¥ ¦
.
/0&12 354*.
V (U, x) = constant
V (U, x)
¯ ¤ • °• I ±?Ž ˆoM‘’V“^Š^“K™V'“^’V˜ žR‰&'“^‰I™VŠK‡,ˆo‰Wž1M™55”{—5”V‹IŽ —¶™¡
“K”o‡7Ž ‰I—[‹&– V (U, x) ¥
a(U, x)
‹&Ž'OŽ ˆg‰RŽi“K”
…… + ,‚ # " # 4 £ ¥ ¦
. 3 4*# $ 4
s(U, x)
X
si (V (U, x)) t0i (x)
s(U, x) =
si
ti
4 i
pŒY“^ŠKŠL—‡7“^šI”·‰M”’V˜i “DŸ5‰IŠ$‡'ŸˆV˜|iŒYˆV“DŸˆ¸Ÿ‰&”·œV'‡ 5'žI_5¨V‰IŸ<Ž'ŠK¡]Ž'ˆVp‡Ž'‰1—¡
‡Ž‰RŽ O‡ ‹IŠ^’Ž'“K‹1”o‡ U ŒYˆV“DŸˆ ‡ ‰&Ž “D‡–P¡ ‡'‡7’V˜iœŽ'“K‹1” ¥^¤ •–P‹1_‰™o‰IŠ^‰I”oŸ
iŠD‰WŒ £7¤I¥^¤¦ ŒY“KŽ ˆ
‰¸‡ ‹I’VŸ
ZŽ  ˜ ‡ ‰&Ž “D‡–P¡“^”Vš ‡ ‡ ’V˜iœŽ'“K‹1” ¥ ° ¥  ˜i‰I
yˆV ZŽ ˆg‰RŽpŽ ˆo]‡ ˆo‰IŠKŠ^‹RŒ
Œa‰&Ž 5C‡7¡‡7Ž ˜ ŒY“KŽ ˆ(‰MŠ^‰ I_‰&ސ'‡7ŽC‡7Ž ‰1—¡]‡Ž‰RŽ ‡ ‰&Ž “D‡o‡YŽ'ˆV‡ ‰1‡ ‡ ’V˜iœŽ “^‹I”g‡5•­‰&”o—
ŒY“KŠ^Š#Ÿ5‹I˜i˜i5”Ž‹1”Ž ˆV“D‡FŠ^‰&Ž 5F“K” Ž ˆV“D‡‡ ’V™o‡ Ÿ
Ž “^‹I” ¥ ©?ˆo I¡Z“D—‰iŽ ‹[‰IŸˆV“^5ž1c‰pŒbŠKŠK›
™o‰&ŠD‰&”oŸ5—i‡'ŸˆV5˜iI•“D‡fŽ ‹—Ÿ5‹I˜iœg‹‡7?Ž'ˆV‡ ‹I’VŸ
?Ž'5'˜ ‰1‡L“^” ‡'‡7’o˜|œVŽ “^‹I” ¥ °0‰I”o—|Ž ‹
o'‡7ŽL—‡ “^šI”‰CŠ^“K”o‰&f‡'ŸˆV5˜i?ŒY“KŽ ˆp‰&”“^—”Ž “DŸ5‰&Š”’V˜i “DŸ5‰IЉIœVœV'‹W¨“K˜p‰RŽ'“K‹1”c‹Iœ5‰RŽ'‹I
–P‹IŽ'ˆVf§o’V¨0— “^žR‰RŽ'“Kž1J‰&”o—CŽ'ˆVJ— “^žR‰RŽ'“Kž1‡.“^”,Ž ˆoJ—Ÿ5‹I˜iœ‹1‡ —,‡ ‹I’VŸ
$Ž'5'˜i‡•ŒYˆV5”
‰&œVœVŠ^“^—MŽ ‹iŽ ˆo,‘’V“^ŠK“^™V'“K’V˜ ‡7‹1ŠK’Ž'“K‹1”MŽ'ˆo‰RŽ`Œa0Œb‹1’VŠD—ZŠ^“ ICŽ ‹i™o‰IŠ^‰I”oŸ
 ¥
0—
o”oF‰cŠ^“^”V‰ILo”V“KŽ 0—“K» ”oŸ
F‹Iœ5‰RŽ'‹I D Ž ‹_™‹1”VF‡'‰RŽ'“^‡7–P¡“K”oš D(af +
–P‹I`Ÿ
‹1”o‡7Ž'‰&”އ a • b ‰I”o—]‰&'™V“9Ž''‰I ¡pš1 “D—M–P’V”oŸ<Ž'“K‹1”o‡ f ‰&1”o—
bf2 ) = aD(f1 ) + bD(f2 )
¥ ‡ Ÿˆo5˜i0–P‹I £7¤I¥^¤¦ ŒY“KŽ ˆ‰p‡ ‹I’VŸ
CŽ  ˜ šI“^žI”Z™¡ £ ¥ ¦ “D‡‡'‰&“D—MŽ ‹O™c‰iŠK1“^”V‰&
f2
‡ ŸˆV˜i`“9–"‰IŠKŠgŽ ˆoF‡ œo‰RŽ'“^‰IŠg— “^žR‰RŽ “^žI‡L‰&'‰IœVœV'‹W¨“^˜p‰RŽ'—|™¡|Š^“^”V‰ILo”V“KŽ C—“K» ”oŸ

‹Iœ5‰RŽ ‹1'‡ ¥ ’oŸˆ]‰Š^“^”V‰I`‡ ŸˆV˜iCŒa‹I’oŠ^—Zˆo‰WžI,‰Ž '’V”oŸ‰RŽ'“K‹1”Z '‹I
D0 (f (U )) −
X
si (V (U, x)) Di (ti (x)),
i
ŒYˆV5' D ‰I 0Š^“K”V‰&ao”V“KŽ c—V“9»­5'5”oŸ50‹Iœ5‰RŽ ‹1'‡b’o‡ —MŽ ‹p‰&œoœV ‹W¨“^˜p‰RŽ FŽ ˆo0‡ œo‰&Ž “D‰&Š
—5'“KžR‰&Ž “^žIi‡ ¥ 0–P’o7Ž'ˆV5Y'‡7Ž '“^Ÿ
ŽY‹I’V`‰&Ž7Ž ”Ž “^‹I”ZŽ ‹iŠK“^”V‰&`‡'ŸˆV5˜i‡?ŒYˆo“^Ÿˆ]‡ ‰&Ž “D‡–P¡
£ ¥:²I¦
D0 = D 1 = · · · = D
–P‹I0Ž ˆoO‡Ž'‰I—V¡ ‡Ž‰RŽ O‡ ‹IŠ^’Ž'“K‹1” ¥ `‹&Ž'“^Ÿ5|Ž ˆo‰&ŽcŒbi‹I”oŠK¡ '‘’V“^'_Ž'ˆo‰RŽ,Ž'ˆV|o”V“KŽ O—“K–¢›
–P5'5”oŸ5Z‹1œg'‰&Ž ‹I‡c™Ÿ5‹I˜i[“^—”Ž “DŸ5‰&Ša–P‹1Ž'ˆV]‡Ž'‰I—V¡ ‡Ž‰RŽ ]‡ ‹IŠ^’Ž “^‹I”¶Ž'ˆo‰RŽpŒa[‰I 
“K”Ž  ‡Ž'—Ž ‹,œo ‡7 ž1I•W–P‹IJšI5”o5‰&Ї7‹1ŠK’VŽ “^‹I”o‡$Ž'ˆV‡ ?o”V“KŽ F—“9»­5'5”gŸ
Y‹Iœ5‰RŽ'‹I‡$Ÿ5‰&”
™gc—“K»­5'5”Ž ¥ 2 ‹I`‡ ’oŸˆZŠ^“^”V‰I`‡ ŸˆV˜i‡?ŒaCˆg‰WžI
0ƒW‚ J‚… , , ‚ #.% # 3 4 & $ & 4 #" $ ( 4 & . " $ . * * . ( " " $
4 ** * .& 4*
¤
©?ˆo,œV ‹‹I–G‹&–GŽ ˆV“D‡Y'‡ ’VŠKŽ?“D‡Y‰RŽ'ˆV5Y‡7Ž ‰&“^šIˆŽ7–P‹1 Œ?‰&—O‰&”g—ZŸ‰&”[™g0–P‹1’V”o—[“K”y¯ °± ¥
Y”V‹RŒ ‰&Š^ ‰I—¡cˆg‰WžIaˆV“Kš1ˆ›A‹I—5$Œa5Š^Š9›A™o‰&ŠD‰&”gŸ
—|‡'ŸˆV5˜i‡#–P‹1$Ž ˆVY™g‰&ŠD‰&”oŸ5aŠD‰WŒ`‡
’o”o—5`Ÿ5‹I”o‡ “D—5‰RŽ'“K‹1” ¥ ‹RŒbžI•1Ž ˆV‡70‡'ŸˆV5˜i‡?‰I CŠK“^”V‰&•ˆo5”oŸ5Ž'ˆV5¡OŒY“^Š^Š.™g0‹1‡7›
Ÿ5“KŠ^ŠD‰RŽ ‹1 ¡_ŒYˆV5”|Ž ˆo‡7‹1ŠK’VŽ “^‹I”iŸ
‹I”މ&“^”o‡f—“D‡ Ÿ5‹I”Ž “^”’V“9Ž'“K‡ ¥ YŒb‹1’VŠ^—”V—Ž ‹cŸ5‹I”o‡ “^—V5
”o‹I”VŠ^“K”o‰&0‡'ŸˆV5˜i‡•”o‰&˜i5Š^¡ ‡'ŸˆV5˜i‡ŒYˆV“DŸˆ¸‰&'c”V‹1”VŠ^“K”V‰&C5ž15” “K–LŽ ˆo_§o’V¨ f (U )
‰I”o—®Ž ˆV ‡ ‹I’VŸ

“^” £7¤I¥^¤¦ ‰&'[™g‹IŽ ˆ@ŠK“^”V‰&|–P’V”oŸ
Ž “^‹I”o‡i‹I– •b–P‹Ip5¨‰I˜iœVŠK1•
ˆo“Kš1ˆ›‹1'—V5Fo”V“KŽ ps(U,
—“K»x) ”oŸ
 ¬«‡'ŸˆV5˜i‡|¯ • ¤ • ¤ ± ¥ 
¨Ž•UŒa|ŒY“KŠ^Šf’o‡ Ž'ˆV
o–¢Ž ˆy‹I—5Fo”V“KŽ p—“K»­5'5”oŸ5 ¬«‡'ŸˆV5˜ii‰I‡C‰&”¸
¨V‰&˜iœVŠ^_Ž'‹[—V5˜i‹I”o‡7Ž ‰RŽ'_Ž'ˆV
™g‰I‡ “^ŸF“^—V‰I‡ ¥ 0ŒY“^ŠKŠ­”V‹IŽaš1“Kž1`Ž ˆoC—5Ž'‰I“KŠD‡a‹&–.Ž ˆoC™g‰I‡  ¬ ‡'ŸˆV5˜i‡•‰&”o—M 5–P5
Ž'‹¯ ¤ •g° ±.–P‹I`‡ ’oŸˆ—
މ&“^Š^‡ ¥
©G‹|œV ‡7”ŽJŽ ˆoC™g‰I‡ “^Ÿ“^—‰I‡•ŒbFo‡Ž?Ÿ
‹I”g‡7“D—5bŽ ˆo0‡ “KŽ ’o‰&Ž “^‹I”MŒYˆo5”OŽ'ˆV ¬ ‡'ŸˆV˜|Z“^‡’o‡ —®ŒY“9Ž'ˆV‹I’Žp‰]§o’V¨®‡7œVŠ^“KŽ7Ž “^”Vš £  ¥ š ¥ Ž'ˆV ¬ › `‹]‡'ŸˆV5˜iZ‰1‡_—5›
‡'Ÿ
'“^™g—¸“^” ¯ ¤ ± ¦<¥ p”V‹IŽ “DŸ
iŽ'ˆo‰RŽcŽ'ˆV ¬ ‰IœVœV'‹W¨“K˜p‰RŽ'“K‹1” Ž'‹ d ŒYˆV  d =
x
Ÿ5‰I”Z™,5ž15”Ž ’o‰IŠKŠ^¡OŒY'“9Ž Ž ”Z‹1’މI‡
f (U )
£ ¥ ¦
dx |x=xj ≈
r
X
ak dk+j ≡ Dd (d)j
ŒYˆo5' r = 3 –P‹ICŽ'ˆV_o–¢Ž ˆ·‹I—5 ¬ ª‰&œVœo ‹W¨“^˜i‰&Ž “^‹I” ‰I”o—Ž'ˆVpŸ
‹
¹OŸ
“^5”އ a
—V5œ5”o—®”V‹I”VŠ^“^”V‰I Š^¡¸‹1”yŽ ˆV[‡7˜i‹‹&Ž'ˆV”V‡ ‡_“K”o—V“^Ÿ‰RŽ ‹1'‡_“K”ž1‹IŠ^ž“^”Vš]Ž'ˆVZš1 “D—·–P’V”oŸ
Ž “^‹I”k
¥ ©?ˆV I¡M“D—‰i”V‹RŒ “D‡?Ž ‹p’o‡ 0Ž ˆo,o”V“KŽ _—V“9»­5'5”oŸ5,‹Iœ5‰RŽ'‹I D ŒY“KŽ ˆ d = f (U )
d
, o•”o‰I˜|ŠK¡|Ž'‹’o‡ FŽ ˆV0‡ ‰I˜iCŸ5‹5¹OŸ
“^5”Ž'‡ a ‹I™VŽ'‰&“^”V—iŽ ˆV'‹I’ošIˆOdŽ'ˆV0‡7˜i‹‹&Ž'ˆV”V‡'‡
“^”o—“DŸ5‰&Ž ‹1p‹&– d •b‰I”o— ‰&œVœVŠ^¡ “KŽiŽ ‹¶‰&œVœo ‹W¨“^˜i‰&kŽ  t0 (x) “K” Ž'ˆV‡7‹1’V'Ÿ5MŽ'5'˜p‡ £ ¥ ¦
¥
i
©?ˆ’o‡
t0i (xj ) ≈
r
X
k=−r
ak ti (xk+j ) = Dd (ti (x))j .
µ Š^‰I Š^¡I•IŽ ˆV?g”V“9Ž'—“K» ”oŸ
‹Iœ5‰RŽ ‹1 D •1‹I™Ž‰&“^”V—–P'‹I˜ Ž'ˆV`ˆV“^šIˆV›‹1'— ¬ œo ‹Ÿ
—’V',‰&”o—[ŒYˆV” d = f (U ) “^‡YV¨—.•gd“^‡`‰|ˆV“^šIˆ]‹1'—`‰IŸŸ
’V‰RŽ' `‰&œVœV'‹W¨›
“^˜p‰RŽ'“K‹1”¶Ž ‹(Ž ˆVZo‡Ž—V5'“KžR‰RŽ'“Kž1p–P‹Ii‰&”¡·šI'“^—¶–P’V”oŸ<Ž'“K‹1” ¥ ©?ˆo5'
–P‹I'pŽ'ˆVM'‡ ’VŠKŽ‹&–
¥K¤ “^‡C‡Ž'“KŠ^Š$žR‰&Š^“^— ‰I”o—ŒaŸ5‹I”oŸ5ŠK’o—VcŽ ˆg‰RŽCŽ ˆVˆV“Kš1ˆ›A‹I—5o”V“KŽ —V“9»­5 ›
J ‹1œg‹‡7“KŽ “^‹I”
”oŸ
 ¬ «‡ ŸˆV˜i_‰I‡F‡Ž‰RŽ — ‰&™‹RžI1•oŒY“KŽ ˆV‹1’ŽŽ'ˆVc§g’¨ ‡7œVŠ^“KŽ7Ž “^”Všg•­‰I”o—]ŒY“KŽ ˆ Ž'ˆV
‡ œŸ
“D‰&ŠYˆg‰&”o—Š^“^”Vš¸‹I–`Ž ˆo]‡ ‹I’o'Ÿ5MŽ'5'˜i‡i—‡ Ÿ5 “^™—®‰I™g‹Rž1I•L˜p‰I“K”Ž'‰I“K”g‡5¨V‰IŸ<Ž'ŠK¡yŽ'ˆV
‡7Ž ‰I—¡Z‡Ž‰RŽ  ¥
‹RŒ,•IŒa`Ÿ
‹1”o‡7“D— ¬ ‡'ŸˆV5˜i‡LŒY“9Ž'ˆi‰ 1G‰R¨› 2 '“K— “DŸˆo‡G§o’¨p‡ œVŠK“KŽ7Ž'“K”ošo•‡7’oŸˆ
‰1‡0Ž ˆo ¬ › 1 2 ‰&”o— ¬ › 1 1 2 ‡ ŸˆV˜i‡,—‡ Ÿ5 “^™g—·“K”@¯ ¤ ± ¥ 5'iŽ ˆVi§o’V¨
k=−r
¤I¤
f (U )
£ ¥ &¦
“^‡`ŒY “KŽ7Ž'5”‰I‡Y‰i‡ ’V˜ª‹&–
f + (U )
‰&”o—
f ± (U ) =
f − (U )
•o—5o”V—Z™¡
1
[f (U ) ± αU ]
2
ŒYˆV5' α = max ∂f (U ) ŒY“KŽ ˆMŽ ˆVC˜p‰R¨“K˜’V˜«™5“^”Všcމ I”O‹RžIJ“9Ž'ˆV5?‰_Š^‹Ÿ5‰IŠo'
›
šI“^‹I” £ ¬ › 1 1U 2f¦ ∂U
‹I#‰YšIŠ^‹I™o‰IŠI'5š1“K‹1” £ ¬› 1 2$¦ •R‡7`¯ ¤ •R° ±–P‹I#˜i‹I'J—
މ&“^Š^‡ ¥
”V‹RŒ ˜i‰ I_‰O˜|‹—“KgŸ‰RŽ “^‹I” Ž ‹pŽ'ˆV“^‡§o’¨ ‡ œVŠ^“9Ž Ž “^”Všo•­™¡Z'5œoŠ^‰1Ÿ
“^”Vš ±αU “^” £ ¥ &¦
ŒY“9Ž'ˆ ±α sign ∂V (U,x) V (U, x) ¥ iŒa‹I’VŠD—”V— Ž ‹]‰I‡'‡7’V˜i|ˆV5'cŽ'ˆo‰RŽ ∂V (U,x)
—‹‡Y”V‹IŽFŸˆo‰I”VšIc‡∂U“Kš1” ¥ ©?ˆV_Ÿ5‹I”o‡7Ž'‰I”1Ž α ‡7ˆo‹I’VŠD—]™g‡7’V“KŽ'‰I™VŠ^¡[‰1— ’o‡7Ž —]™¡ZŽ ˆV∂U‡7“^³5
‹&– ∂V (U,x) “^”y‹I—50Ž'‹[˜p‰I“K”Ž'‰I“K”y”V‹I’Vš1ˆ·‰I7Ž'“9Ÿ
“D‰&Šfž“^‡'Ÿ
‹‡7“KŽ¡ ¥ ©?ˆViŽ'5'˜ V (U, x)
Ÿ5‰&”‰I∂U
Š^‡ ‹i™gc'5œoŠ^‰1Ÿ
—[™¡ p(V (U, x)) –P‹1‰&”¡M–P’V”oŸ<Ž'“K‹1” p •gŒYˆV‹1‡ ,ŸˆV‹I“DŸ
c‡ ˆV‹I’oŠ^—[™
‡7’oŸˆ]Ž'ˆo‰RŽ p(V (U, x)) “D‡‰1‡Ÿ
Š^‹1‡ ,Ž'‹ U ‰I‡Fœ‹1‡'‡7“^™VŠ^c“K”(‹I—5YŽ'‹M˜_’VŠD‰RŽ',Ž ˆV‹I'“KšI›
“K”o‰IŠ 1 2 §g’¨¸‡ œVŠK“KŽ7Ž'“K”oš[ŒY“KŽ ˆ ±αU ¥ ©?ˆo“^‡0˜i‹—“KgŸ5‰&Ž “^‹I”y—‹‡C”V‹&Žc‰&»Ÿ<Žc‰IŸŸ
’V‰IŸ5¡I•
ŒYˆV“^Ÿˆ® ŠK“^‡‹I”VŠ^¡y‹I”¶Ž'ˆVO–4‰1Ÿ<Ž f (U ) = f +(U ) + f −(U ) ¥ 2 ‹1cŽ'ˆV[‡7Ž ‰I—¡¶‡7Ž'‰&Ž 
‡7‹1ŠK’Ž'“K‹1”p‡ ‰&Ž “D‡–P¡“^”Vš £ ¥ ¦ •&Ž'ˆV‰& Ž “KgŸ5“^‰IŠž“D‡'Ÿ
‹1‡ “KŽ¡,Ž  ˜ ±α sign ∂V (U,x) V (U, x)
£ ‹I ±α sign ∂p(V (U,x)) p(V (U, x))¦ “^”dŽ'ˆV 1"‰&¨› 2  “^—'“DŸˆo‡O§g’¨ ∂U‡ œVŠK“KŽ7Ž'“K”oš ™g5›
Ÿ
‹I˜i‡_‰ Ÿ5‹I”o‡7Ž'‰I”1Ž∂U•f‰&”o—y™¡¸Ž ˆV[Ÿ
‹I”g‡7“D‡Ž'5”oŸ5¡¸‹I–YŽ ˆV ¬ ‰IœVœV'‹W¨“K˜p‰RŽ'“K‹1”•Ž'ˆV

»­Ÿ<Ž[‹&–cŽ'ˆV‡ (ž“D‡ Ÿ5‹1‡ “9Ž¡®Ž  ˜p‡MŽ ‹RŒ?‰&—V‡iŽ ˆo·‰IœVœV'‹W¨“^˜p‰RŽ'“K‹1” ‹I– f (U ) “D‡M³5'‹ ¥
©?ˆV¶§o’¨ ‡ œVŠK“KŽ7Ž'“K”oš ¬ ‰&œVœV'‹W¨“K˜p‰&Ž “^‹I” “K” Ž'ˆV“^‡·‡ “9Ž'’o‰RŽ'“K‹1” ™gŸ
‹I˜ix‡(‡ “K˜iœVŠ^¡
•ˆV”oŸ
(Ž ˆVy‡7Ž ‰1—¡@‡Ž‰RŽ y‡ ‹IŠ^’Ž “^‹I” “D‡[œV ‡7 ž1—@‰I‡Z™
–P‹I'I•“9–
f ± (U ) = 21 f (U )
Œb,‡ “K˜iœVŠ^¡Z‡ œVŠ^“9ŽYŽ'ˆVc—5'“^žW‰&Ž “^žI‡b“^”[Ž ˆVc‡ ‹I’o'Ÿ5Ž'5'˜ ‰I‡º
£ ¥ 1¦
t0i (x) =
1
1 0
t (x) + t0i (x),
2 i
2
‰&”o—p‰IœVœVŠ^¡_Ž'ˆVF‡'‰&˜iY§o’V¨p‡ œVŠ^“9Ž Ž “^”Vš ¬ œV'‹Ÿ
—V’V ?Ž'‹_‰&œoœV ‹W¨“^˜p‰RŽ ?Ž'ˆV5˜ ŒY“KŽ ˆ
Ž ˆVY”V‹1”VŠ^“K”V‰&fŸ
‹5¹pŸ5“K”Ž'‡ a Ÿ
‹I˜i“^”VšC–P ‹1˜ Ž ˆo ¬ d‰&œVœo ‹W¨“^˜i‰&Ž “^‹I”o‡"Ž ‹ f ±(U )
 ‡7œŸ
Ž “^žI5Š^¡ ¥ ©?ˆV“D‡?ŒY“^ŠKŠš1’o‰&k‰&”Ž'5 £ ¥:²I¦
¥ 0Ž'ˆ’g‡Y‹I™Ž‰&“^”
0ƒW‚ J‚… , , ‚ # " # % 3$
4 ) ! 4*5. * * # . " " $ 4 () ( 44 4 p”V‹RŒ —“^‡'Ÿ
’g‡ ‡CŽ'ˆVO‡7¡‡7Ž ˜ Ÿ5‰1‡7 ¥ ©?ˆV|–P'‰I˜|Œb‹1
—V‡'Ÿ
'“K™—(–P‹I0Ž'ˆVO‡ Ÿ‰&ŠD‰&
Ÿ5‰I‡ Ÿ‰&”O™C‰IœVœVŠ^“K—iŽ ‹|‡7¡‡7Ž ˜i‡JœV'‹Rž“D——|Ž ˆo‰&ŽaŒaˆo‰Wž1`Ÿ
7މ&“^” ”V‹RŒYŠK—šIF‰&™‹I’Ž
Ž ˆV,‡7Ž ‰1—¡p‡Ž‰RŽ'0‡ ‹IŠ^’Ž'“K‹1”o‡LŽ'‹™0œV'‡ 5'žI—O“K”MŽ ˆVC–P‹I'˜«‹&– £ ¥ ¦
¥ ©J¡œV“DŸ5‰IŠKŠ^¡I•–P‹IY‰
¤°
‡ ¡‡Ž'5˜«ŒY“KŽ ˆ ‘’o‰&Ž “^‹I”o‡• V “D‡?‰_ž1Ÿ<Ž'‹I•‰I”o—OŒaCŒb‹1’VŠ^—Mˆo‰WžI m  Š^‰&Ž “^‹I”o‡ ˆV“^œo‡b“K”
Ž'ˆV0–P‹I'˜‹I– £ m¥ ¦ º
£ ¥ ¦
V1 (U, x) = constant,
···
Vm (U, x) = constant
–P‹1LŽ'ˆVF‡7Ž ‰I—¡i‡Ž‰RŽ'F‡ ‹IŠ^’Ž “^‹I”o‡LŽ ˆo‰&ŽbŒa`Œa‹I’VŠD—iŠK“ I`Ž ‹_œo ‡7 ž1a5¨V‰IŸ<Ž'ŠK¡ ¥ FŒb‹1’VŠ^—
Ž'ˆV5”‡7Ž “^ŠKЉI“K˜ª–P‹I`—Ÿ
‹I˜iœ‹1‡ “K”oš‰IŸˆZŸ5‹I˜iœ‹I”V”1ŽY‹I–"Ž ˆoc‡7‹1’V'Ÿ5Ž'5'˜ª“^”MŽ'ˆV0–P‹I'˜
‹I– £ ¥ ¦ •"ŒYˆV  s Ÿ
‹1’VŠ^—·™O‰&'™V“KŽ ‰&'¡Z–P’o”oŸ<Ž'“K‹1”o‡,‹&– V (U, x), · · · , V (U, x) •G‰I”o—
Ž'ˆV`–P’o”oŸ<Ž'“K‹1”o‡ s ‰Ii”o— t Ÿ5‹I’VŠD—i™—“K» ”1ŽJ–P‹Ib—V“9»­5'5”Žb1 Ÿ5‹I˜iœg‹1”V5”އLm‹&–­Ž'ˆV‡ ‹I’VŸ

ž1Ÿ
Ž ‹I ¥ ©?ˆV| i˜i‰I“K”o“K”VišZœV'‹Ÿ5—’o “^‡FŽ ˆo5” Ž'ˆVi‡ ‰I˜|i‰I‡Ž ˆg‰RŽC–P‹IFŽ ˆVp‡'Ÿ5‰&ŠD‰&CŸ5‰1‡7
‰I”o—@Œa ‰&š1‰I“K” ‹I™VŽ'‰&“^”@ŒbŠKŠF™o‰&ŠD‰&”gŸ
— ˆV“^šIˆV›‹1'— ¬ ‡'ŸˆV5˜i‡ ¥ (‡ ˆV‹I’oŠ^—
‰IŠ^‡ ‹O˜i5”Ž'“K‹1”Ž ˆo‰&ŽFŠ^‹Ÿ5‰&Š#Ÿˆo‰&‰IŸ
Ž  “D‡Ž'“^Ÿ0—Ÿ
‹1˜|œ‹1‡ “KŽ “^‹I”“D‡`Ž¡œV“DŸ5‰IŠKŠ^¡Z’g‡7—“K”(ˆV“Kš1ˆ›
‹1'—V5 ¬ S‡ ŸˆV˜i‡“K”{‹I—5Ž ‹·‹I™Ž‰&“^” ™
Ž7Ž'5p”V‹1”›A‹1‡'Ÿ
“^ŠKŠD‰RŽ'‹I'¡(œV'‹Iœ5 Ž¡·–P‹I
‡7Ž '‹I”ošM—“D‡ Ÿ5‹I”Ž “^”’V“9Ž'“K‡ ¥ ˆo5”¸Ÿ5‹I˜iœV’Ž'“K”ošpŽ ˆV”’V˜i5'“^Ÿ‰&Чg’¨ ‰RŽ x •Ž ˆVŠK‹Ÿ‰&Š
Ÿˆg‰&‰IŸ<Ž'5'“^‡7Ž “DŸ`˜p‰&Ž '“9¨ R •VŸ5‹I”o‡ “^‡7Ž “^”Vš|‹&–GŽ ˆV,'“Kš1ˆŽa“Kš15”žIŸ<Ž ‹1'‡b‹&–GŽ ˆVi+‰IŸ5‹I™V“D‰&”Z‰RŽ
•“D‡?‰Ÿ5‹I”o‡7Ž'‰I”1Ž?˜p‰RŽ' “K¨p–P‹IaV¨— i ¥ 5”oŸ5CŽ ˆV“D‡?Ÿˆo‰&‰IŸ
Ž 5'“D‡Ž'“^ŸF—Ÿ5‹I˜iœg‹‡7“KŽ “^‹I”
Ui+
œo ‹Ÿ
—’V'—‹‡b”V‹IŽa‰&ŠKŽ LŽ'ˆVF‰I š1’V˜i5”ŽJœV'‡ 5”Ž —p‰&™‹RžIY–P‹1LŽ'ˆVF‡'Ÿ5‰IŠ^‰IbŸ5‰1‡7 ¥ 
'
–P?Ž ‹¯ ¤ ±.–P‹1Y˜i‹I'0—V
Ž'‰I“KŠD‡ ¥
©?ˆoc‡7ˆo‰IŠKŠ^‹RŒ Œ?‰RŽ'5?‘’o‰&Ž “^‹I”o‡ £7¤I¥^¤¦.£ ° ¥K¤W¦ މ ICŽ'ˆV0–P‹I'˜
1
2
1
2
£ ¥^¤ ¦

 ht + (hu)
x = 0
1
 (hu)t + hu + gh2
2
2
= −ghbx ,
©?ˆo,Š^‰ I,‰RŽY'‡7ŽY‡ ‹IŠ^’Ž'“K‹1”[‡'‰RŽ'“^‡7o‡ £ ¥ ¦ “^”ZŽ'ˆV0–P‹I'˜
£ ¥^¤I¤W¦
V1 ≡ hu = 0,
V2 ≡ h + b = constant, .
©?ˆoio'‡7Ž_Ÿ
‹1˜iœg‹1”V5”Ž,‹&–aŽ ˆVO‡ ‹I’o'Ÿ5Ž'5'˜ “D‡ V¥ —VŸ
‹1˜iœg‹‡7“KŽ “^‹I”·‹&–aŽ ˆVO‡ Ÿ5‹I”o—
Ÿ5‹I˜iœ‹I”V”1Ž`‹I–"Ž'ˆVc‡7‹1’VŸ
FŽ 5'˜“^”[Ž ˆV0–P‹1 ˜‹&– £ ¥ ¦ “D‡
£ ¥^¤ ° ¦
x
1
−ghbx = −g (h + b) bx + g b2 x
2
“ ¥  ¥ s = s (V ) = −g (h + b) • s = 1 g • t (x) = b(x) •g‰I”o— t (x) = b2(x) •gŒYˆV“DŸˆ
‡'‰RŽ'“^‡7o1‡ ‡'1‡7’o˜|2 œVŽ “^‹I” ¥ ° ¥ ”oŸ
12•VŽ'ˆV,2 Ž ŸˆV1”V“D‘’V_—‡7“^šI”V—‰&™2‹RžI,Ÿ5‰I”]™g’o‡7—ZŽ ‹
‹1™Ž'‰I“K”¸ˆV“^šIˆ›A‹I—5FŒbŠKŠK›A™o‰&ŠD‰&”oŸ5—[o”o“9Ž'|—“K»­5'5”oŸ5|‡'ŸˆV5˜i_–P‹ICŽ ˆVi‡ ˆo‰&Š^ŠK‹RŒ Œ?‰RŽ'5
‘’o‰RŽ'“K‹1”o‡iŒY“9Ž'ˆ{ŠD‰ 1‰RŽp ‡Žp‡ ‹IŠ^’Ž “^‹I” £ ¥K¤1¤¦<¥ ©GŒb‹y—“^˜|”o‡ “K‹1”o‰&ŠYž15‡7“^‹I”{‹&–Ž'ˆV
¤
‡7ˆo‰IŠKŠ^‹RŒ´Œ?‰RŽ'5,‘1’g‰RŽ “^‹I”g‡cŸ5‰I”y‰IŠ^‡ ‹]™gMˆo‰&”o—VŠK—y™¡(Ž ˆVZ‡ ‰I˜||Ž'ŸˆV”V“D‘’V ¯ ¤ • I ±A•
‰&”o— ‰I (”V‹&Ž]‡7ˆV‹RŒY” ˆo5' ¥ ‹I˜i(”’V˜i5'“DŸ5‰&ŠC'‡ ’VŠ9އOŒY“^ŠKŠC™·‡ ˆV‹RŒY” “^” Ÿ<Ž “^‹I”
² Ž'‹[—V5˜i‹I”o‡7Ž ‰RŽ'|Ž ˆVišI‹‹— œo ‹1œg7Ž'“K‡F‹I–JŽ'ˆV‡ iŒbŠKŠK›™g‰&ŠD‰&”oŸ5— ˆo“Kš1ˆ›‹1'—V5Fo”V“KŽ 
—“9»­5'5”gŸ
,‡ Ÿˆo5˜i‡ ¥
~ ‚ -+ ®~[… ~ ~
#"$# ,(, 2 ‹IŠ^ŠK‹RŒY“^”Vš|Ž ˆo,“^—‰i‹&–$‹I™Ž‰&“^”V“^”VšiŒbŠKŠK›™g‰&ŠD‰&”oŸ5—[‡ ŸˆV˜i‡?™¡M—Ÿ
‹I˜iœ‹1‡ “K”ošŽ'ˆV
‡7‹1’V'Ÿ5 Ž'5'˜i‡•F‰1‡]‡7ˆV‹RŒY”d“K” Ÿ
Ž “^‹I” ¥^¤ •`Œa¸š15”V'‰IŠK“^³5(o”V“KŽ ·žI‹1ŠK’V˜i ¬ ‡ ŸˆV˜i‡iŽ'‹¶‹I™Ž‰&“^” ˆV“Kš1ˆ›A‹I—5pŒa5Š^Š9›A™o‰IŠ^‰I”oŸ
—{‡'ŸˆV5˜i‡ ¥ ©?ˆV(Ÿ
'’oŸ5“^‰IŠ—“K» ”oŸ

™g5ŽŒb5” Ž'ˆV o”o“9Ž'¸ž1‹IŠ^’V˜i(‰&”o— Ž ˆV(o”V“KŽ y—“9»­5'5”gŸ
 ¬ ‡'ŸˆV5˜i‡Z“D‡pŽ ˆg‰RŽ
Ž ˆV ¬  Ÿ
‹1”o‡Ž' ’gŸ<Ž “^‹I”dœV ‹Ÿ5—’V' –P‹1‰¶o”V“KŽ yž1‹IŠ^’V˜i¸‡'ŸˆV5˜iy‰&œVœVŠ^“^‡ZŽ ‹
Ž ˆVy‡7‹1ŠK’VŽ “^‹I”d‰I”o— ”V‹IŽZŽ'‹ Ž'ˆV·§o’¨@–P’V”oŸ
Ž “^‹I” žW‰IŠK’o‡ ¥ ‡]‰®Ÿ
‹1”o‡ ‘’V5”gŸ
I•`o”V“KŽ 
žI‹IŠ^’V˜ic‡'ŸˆV5˜i‡‰&',˜|‹1 ‡7’V“KŽ'‰I™VŠ^,–P‹IŸ5‹I˜iœV’މRŽ'“K‹1”o‡Y“^”(Ÿ
‹1˜|œoŠK5¨ZšI‹I˜i
Ž' ¡[‰&”o—
–P‹Ic’o‡ “^”Vš(‰I—o‰&œŽ'“Kž1p˜|‡7ˆo‡ ¥ ©?ˆoM—
މ&“^Š^‡_‹&–?Ž ˆoOo”V“KŽ MžI‹IŠ^’V˜i ¬ ‡ ŸˆV˜i‡
Ÿ5‰&”®™gM–P‹I’V”o— “K” ¯ ¤ •$° •f° ± ¥ ‹RŒbžI5•#™gŸ5‰&’g‡7Z‹&–‰ —“K»­5'5”Ž|Ÿ5‹I˜iœV’މRŽ “^‹I”g‰&Š
–P'‰I˜|Œb‹1
­•$Ž'ˆV]˜i‰I“K”Ž'5”o‰I”oŸ
[‹&–FŽ ˆV]Œa5Š^Š9›A™o‰&ŠD‰&”gŸ
— œV ‹1œg7Ž¡y'‘’V“^ ‡i—“9»­5'5”Ž
Ž Ÿˆo”V“^Ÿ‰&ЉIœVœV'‹1‰IŸˆo‡ ¥
©?ˆoO˜p‰&“^”·“D—‰Z“^”yŽ ˆopœV ž“K‹1’o‡,‡7’o™o‡7Ÿ<Ž'“K‹1”¸Ž'‹ —‡ “^šI”¶‰[ŒbŠKŠK›™g‰&ŠD‰&”oŸ5—¸ˆV“Kš1ˆ›
‹I—5Fo”V“KŽ p—“K» ”oŸ
 ¬ «‡'ŸˆV5˜i|“^‡FŽ ‹]—Ÿ
‹I˜iœ‹1‡ _Ž'ˆVp‡7‹1’VŸ
cŽ'5'˜ “K”Ž'‹[‰
‡7’V˜ ‹&–L‡ 5ž15‰&Š­Ž  ˜p‡•o‰IŸˆ]‹&–fŒYˆV“DŸˆ]“^‡F—“^‡'Ÿ
'
Ž'“K³—]“^”o—œg”o—5”Ž'ŠK¡[’o‡ “K”VšZ‰|o”V“KŽ 
—“9»­5'5”gŸ
]–P‹I'˜_’oŠ^‰yŸ
‹1”o‡ “^‡7Ž ”1ŽOŒY“KŽ ˆ@Ž'ˆo‰RŽO‹I–0‰IœVœV'‹W¨“K˜p‰RŽ'“K”oš¸Ž'ˆV]§o’¨ — “^žR‰RŽ “^žI
Ž 5'˜p‡0“K”·Ž'ˆVOŸ
‹1”o‡7 žR‰&Ž “^‹I”(ŠD‰WŒ ¥ i–P‹IŠ^ŠK‹RŒ ‰[‡ “^˜|“^ŠD‰&,“D—‰]ˆV p‰I”o—¸—VŸ
‹1˜iœg‹‡7
Ž ˆVC“K”Ž'5šI‰&Š‹&–"Ž ˆV,‡ ‹I’VŸ
Ž 5'˜«“^”1Ž'‹‰|‡7’o˜«‹&–G‡ 5ž15‰&ŠgŽ 5'˜p‡5•Ž'ˆV5”[Ÿ
‹I˜iœV’VŽ C‰IŸˆ
‹&–CŽ ˆV˜ “^”@‰·Œ?‰W¡ Ÿ
‹1”o‡7“D‡7Ž 5”ŽOŒY“KŽ ˆ Ž ˆg‰RŽO‹&–0Ÿ
‹1˜|œo’Ž “^”VšyŽ ˆo Ÿ
‹I''‡ œg‹1”o—“^”Vš(§g’¨
Ž 5'˜p‡ ¥ o‡Ž0Ÿ
‹1”o‡7“D—`Ž ˆo|Ÿ‰I‡ ,Ž ˆo‰&Ž £7¤I¥^¤¦ “D‡C‰M‡'Ÿ5‰&ŠD‰&F™o‰&ŠD‰&”gŸ
cŠD‰WŒ ¥ ©?ˆViŸ5‰1‡7
‹&–#‡ ¡‡Ž'5˜p‡?ŒY“^ŠKŠ™,
¨œVŠ^‹I'—ZŠD‰RŽ  ¥
“K˜i“^Š^‰I Š^¡I•ŒaF˜p‰ I0‡7‹1˜|0‰I‡'‡ ’V˜iœŽ “^‹I”o‡b‹I”ZŽ ˆoC‘’o‰RŽ'“K‹1” £¤1¥K¤W¦ ‰I”o—pŽ'ˆV,‡Ž'‰1—¡
‡Ž‰RŽ ,‡ ‹IŠ^’Ž “^‹I” U ‹&– £ ¥ ° ¦ Ž'ˆo‰RŽYŒac‰&'F“^”Ž  ‡Ž'—MŽ ‹pœV'‡ 5'žIF
¨V‰IŸ
Ž Š^¡º
…… + , ‚ # # . U #" $% '& () * . -, £ ¥^¤ ¦
. V (U, x) ≡
) 0&1 354*.&
p(x)
$
U + p(x)
= constant
q(x)
q(x)
¤
…… + , ‚ # # 4 £ ¥^¤ ¦
s(U, x) =
s(U, x)
X
$ 4
4 sj (V (U, x)) t0j (x)
j
. /0&1 3 4 . sj
tj
'‡ ‡ ’V˜iœŽ “^‹I” ¥ š1“Kž15”_ˆo5'b“D‡#˜|‹1 a'‡7Ž '“^Ÿ
Ž “^žILŽ'ˆo‰&”Ž ˆg‰RŽ$“K” Ÿ
Ž “^‹I”
¥K¤ •V—’V0Ž'‹Ž'ˆVc‰I—o—“9Ž'“K‹1”o‰&Š—V“9¹OŸ
’oŠ9Ž'“K‡Y Š^‰&Ž —OŽ'‹iŽ ˆV0o”o“9Ž',žI‹IŠ^’V˜iC–P‹I'˜_’VŠD‰RŽ'“K‹1” ¥
cŸ
‹1”o‡ “^—aŽ ˆVc‡ 5˜i“K›A—“D‡'Ÿ
'
Ž C–P‹1 ˜’VŠ^‰&Ž “^‹I”Z‹&–#Ž ˆV,™o‰IŠ^‰I”oŸ
0ŠD‰WŒ
‹&Ž'JŽ'ˆo‰RŽ £ ¥^¤²1¦
d
1
1
Ūi (t) = −
(f (U (xi+ 21 ), t) − f (U (xi− 12 ), t)) +
dt
4xi
4xi
Z
s(U, x)dx.
Ii
©?ˆoYŽ “^˜iF—“D‡ Ÿ5 5Ž “^³‰&Ž “^‹I”i“^‡L’o‡7’g‰&Š^ŠK¡|œg7–P‹1 ˜i—™¡Ž ˆVFŸ
ŠD‰I‡'‡7“DŸ5‰IŠˆV“Kš1ˆp‹I—5 Y’V”Vš1
›
0’VŽ7Ž'‰O˜|5Ž ˆV‹— ¥ 
–P‹I'c‡7Ž'‰RŽ'“K”ošp‹I’VY”’V˜i5'“DŸ5‰&ŠG‡ ŸˆV˜iI•VŒa0o‡Ž`œV'‡ 5”ŽYŽ'ˆV,œV'‹&›
Ÿ5—’o Ž ‹Z Ÿ
‹I”g‡Ž' ’oŸ
ŽŽ'ˆVœ‹I“^”ŽŒY“^‡ _žR‰IŠK’V‡™¡]Ž'ˆV ¬ 'Ÿ5‹I”o‡7Ž '’oŸ<Ž'“K‹1”œV'‹&›
Ÿ5—’o 1•‰I”o—iŽ'ˆV5”]—Ÿ5‹I˜iœ‹1‡ YŽ ˆVC“^”1Ž'5š1'‰IŠg‹I–.Ž ˆV0‡7‹1’VŸ
`Ž'5'˜ “K”Ž ‹i‡ 5žI'‰IŠŽ  ˜p‡•
ŒY“KŽ ˆ[Ž'ˆV0‹I™Ÿ<Ž “^žIC‹&– I5œV“^”VšŽ ˆV,5¨‰1Ÿ<Ž?™o‰&ŠD‰&”gŸ
CœV ‹1œg7Ž¡pŒY“KŽ ˆo‹I’Ž`'—’gŸ
“^”Vš_Ž'ˆV
ˆo“Kš1ˆ›‹1'—V5b‰1Ÿ5Ÿ5’V'‰1Ÿ
¡|‹&–Ž'ˆV0‡ ŸˆV˜i ¥ ©?ˆVC‡'ŸˆV˜|F“^‡bŽ'ˆV5”Mo”o‰&Š^Š^¡|“^”Ž '‹—’oŸ
—OŒY“KŽ ˆ
‰i˜i“^”V‹I`Ÿˆg‰&”Vš1F‹1”MŽ'ˆV0§o’¨ZŽ 5'˜]•VŸ
‹1˜|œg‰&'—ZŒY“9Ž'ˆZŽ'ˆV,‹I'“^šI“^”o‰&Š ¬ ‡'ŸˆV5˜i ¥
©?ˆoZg'‡7Ži‡7Ž œ{“^” ™V’V“^Š^—“^”Vš·Ž ˆo]‰IŠKš1‹I'“9Ž'ˆV˜ “^‡|Ž'‹y Ÿ
‹I”g‡Ž' ’oŸ
Ž U ± –P'‹I˜ Ž'ˆV
š1“Kž15”[Ÿ
5Š^Š.‰WžI'‰IšI‡ Ū ™¡iŽ ˆV ¬ 'Ÿ
‹1”o‡7Ž '’oŸ<Ž'“K‹1”OœV'‹Ÿ5—’o 1•ŒYi+ˆo“^Ÿˆ[‰&'ˆV“^šIˆ
‹1'—V5$‰IŸ5Ÿ5’V‰RŽ a‰&œVœo ‹W¨i “^˜i‰&Ž “^‹I”o‡Ž ‹FŽ ˆVa
¨V‰1Ÿ<ŽGžR‰IŠK’V U (x ) ¥ AŽ$Ÿ‰&”_™a5žI”Ž ’o‰IŠKŠ^¡
i+
ŒY'“KŽ7Ž ”]‹I’މ1‡
1
2
1
2
£ ¥^¤ ¦
+
Ui+
1 =
2
r
X
k=−r+1
−
wk Ūi+k ≡ SŪ+ (Ū )i , Ui+
1 =
2
r−1
X
k=−r
w̃k Ūi+k ≡ SŪ− (Ū )i .
ŒYˆo5' r = 3 –P‹1OŽ'ˆV V–¢Ž'ˆd‹1'— ¬ ‰&œVœo ‹W¨“^˜i‰&Ž “^‹I” ‰&”g— Ž ˆVyŸ
‹
¹OŸ5“K”1އ
‰&”g— w̃ —5œ5”g—Z”o‹I”VŠ^“K”o‰&'Š^¡p‹I”ZŽ ˆV,‡ ˜|‹‹IŽ ˆV”V‡ ‡?“^”o—“DŸ5‰&Ž ‹1'‡a“^”ž1‹IŠ^ž“K”VšŽ ˆo0Ÿ55Š^Š
wk
‰Wž15‰&š1 Ūk¥ 5'(Œa·‹I™Ž‰&“^”d‰ Š^“K”o‰&[‹Iœ5‰RŽ'‹I S ±(v) £ ŠK“^”V‰&[“K” v ¦ ŒYˆV“DŸˆ “D‡
‹1™Ž'‰I“K”o—®–P ‹1˜ ‰ ¬ S Ÿ
‹I”g‡Ž' ’oŸ
Ž “^‹I” ŒY“KŽ ˆ V¨Ū—{Ÿ5‹5¹OŸ
“^5”Ž'‡ w Ÿ5‰&ŠDŸ
’oŠ^‰&Ž —
–P'‹I˜Ž ˆVcŸ55Š^Š"‰WžI'‰IšI‡ Ū ¥ I¡O“^—V‰iˆV 0“D‡?Ž ‹p’o‡ 0Ž ˆo `‹Iœ5k‰RŽ'‹I‡ S ±(v)
Ū
¤²
‰&”o—[‰&œVœoŠK¡MŽ ˆV˜ªŽ ‹i'Ÿ5‹I”o‡7Ž '’oŸ<ŽaŽ ˆo0–P’V”oŸ<Ž'“K‹1”o‡
r
X
p+
= SŪ+ (p̄)i =
i+ 1
2
£ ¥^¤ I¦ q+
i+ 12
p̄i
r
X
¥ ©?ˆ’o‡
2
2
k=−r+1
w̃k p̄i+k
r−1
X
w̃k q̄i+k .
k=−r
#• Œbp‹1™Ž'‰I“K”·Ž ˆopœg‹1“K”ŽŒY“D‡7pžR‰&Š^’V
‹&– V (U, x) ™¡ V (U, x)± = U +p ¥ µ Š^‰I Š^¡I• p± ‰I”o— q± ‰I ¸ˆV“Kš1ˆ›
i+
i+
i+
q
‹I—5p‰IŸŸ
’V‰RŽ'Mœ‹I“^”ŽŒY“^‡ ‰&œVœV'‹W¨“K˜p‰&Ž “^‹I”¶Ž'‹¸Ž'ˆV[–P’V”oŸ
Ž “^‹I”@‹&– p(x) ‰&”o— q(x) ‰&Ž
Ž ˆVOŸ55Š^Šf™g‹1’V”o—V‰I ¡ x ¥ ”oŸ
1• V (U, x)± “D‡,‰[ˆV“^šIˆ›A‹I—50‰&œoœV ‹W¨“^˜p‰RŽ “^‹I”(Ž ‹
i+
¥ i+
V (U (xi+ ), xi+ )
‹RŒ ‰1‡ ‡ ’V˜iFŽ ˆo‰&Ž “D‡aŽ ˆoc‡Ž'‰I—V¡M‡Ž‰RŽ'0‡ ‹IŠ^’Ž'“K‹1”[‡'‰RŽ'“^‡7–P¡“K”Vš £ ¥ ¦ •o”o‰&˜i5Š^¡
U
p±
i+ 1
‰&”o—
r−1
X
k=−r
−
−
qi+
1 = S (q̄)i =
Ū
wk q̄i+k ,
“9Ž'ˆyŽ ˆVO'Ÿ5‹I”o‡7Ž '’oŸ
Ž —¸žR‰&Š^’V‡
q̄i
p−
= SŪ− (p̄)i =
i+ 1
wk p̄i+k ,
k=−r+1
= SŪ+ (q̄)i =
‰&”o—
2
±
±
i+ 1
i+ 1
2
2
±
i+ 1
2
1
2
±
qi+
1
2
1
2
1
2
1
2
1
2
1
2
1
2
V (U, x) = c
⇔
U + p(x) = c q(x)
–P‹IJ‡ ‹I˜i`Ÿ
‹1”o‡7Ž'‰&”Ž ¥ A–­Ž ˆVFŸ
5Š^Šo‰Wž15‰&šI‡ • ‰I”o— ‰&'?Ÿ5‹I˜iœV’Ž'—i“^”|Ž ˆV‡'‰&˜i
i
–4‰I‡ ˆV“K‹1” £  ¥ š ¥ ‰&Š^ŠLŸ
‹1c ˜iœV’Ž —·
¨V‰IŸ
Ž Š^¡I•‹10‰IŪŠKŠLi Ÿ5p̄‹Ii˜iœV’Ž'q̄—·
ŒY“KŽ ˆ·Ž ˆVO‡'‰&˜ii”’V˜i5'“^Ÿ‰&Š
‘1’g‰I—‰RŽ'’V  ¦ –P'‹I˜ U • p(x) ‰&”g— q(x) •VŽ ˆV”Œb,Ÿ
Š^‰I Š^¡O‰&ŠD‡ ‹|ˆg‰WžI
Ūi + p̄i = c q̄i
–P‹IŽ'ˆV?‡ ‰I˜|bŸ
‹I”g‡Ž‰&”Ž c ¥ “^”oŸ
JŽ ˆVb Ÿ
‹I”g‡Ž' ’oŸ
Ž —0žW‰IŠK’o‡ U ± • p± ‰&”o— q± ‰I 
Ÿ
‹I˜iœV’VŽ —[–P'‹I˜Ž ˆVŸ
5Š^ŠG‰Wž15‰&š1‡ Ū • p̄ ‰&”o— q̄ ŒY“KŽ ˆ]Ž'ˆV i+ Ci+Š^“K”o‰&‹Iœi+5‰RŽ ‹1'‡
j
j
j
V
•
a
Œ
,

Ÿ
^
Š

I
‰

^
Š
O
¡
o
ˆ
W
‰
1
ž

±
S (v)
1
2
1
2
1
2
ū
±
±
±
= c qi+
Ui+
1 + p
1
i+ 1
–P‹I?Ž ˆoc‡ ‰I˜|,Ÿ5‹I”o‡7Ž'‰I”1Ž c •Ž'ˆo‰RŽ`“D‡•
£ ¥^¤¦
2
2
2
=c
V (U, x)±
i+ 1
2
–P‹I?Ž ˆo0‡'‰&˜i,Ÿ
‹1”o‡7Ž'‰&”Ž c ¥ ©?ˆV“D‡Y“D‡Y‰&”[“K˜iœ‹I Ž'‰&”Ž?–4‰IŸ
Ž?Ž ‹O—‡7“^šI”MŽ ˆV,Œa5Š^Š9›A™o‰IŠ^‰I”oŸ
—
‡ ŸˆV˜i‡ ¥
¤
µ Š^‰I Š^¡I•–P‹1`‰i‡Ž'‰I—V¡M‡Ž‰RŽ'0‡ ‹IŠ^’Ž'“K‹1”

U

‡ ‰&Ž “D‡–P¡“^”Vš ‡'‡7’o˜|œVŽ “^‹I”o‡ ¥ ‰I”o— ¥ •
X
X
d 
sj (V (U, x)) t0j (x)
sj (V (U, x)) tj (x) = f (U )x −
f (U ) −
dx
j
j
= f (U )x − s(U, x) = 0.
©?ˆo5'
–P‹I'I• ) − P s (V (U, x)) t (x) “D‡J‰,Ÿ
‹1”o‡7Ž'‰&”Ž ¥ `Œa‹I’VŠD—|”V5—|Ž ‹cŸˆV‹‹1‡ 
j
j j
‡ ’V“KŽ'‰I™VŠK¡ (t f)(U
‡7’oŸˆ
± •ŒYˆV“DŸˆ ‡7ˆo‹I’VŠD—]™gˆV“^šIˆ›A‹I—5F‰&œVœV'‹W¨“K˜p‰&Ž “^‹I”o‡aŽ'‹
tj (xi+ )
j i+
Ž'ˆo‰RŽ
X
£ ¥^¤ ¦
f (U ± ) −
s (V (U, x)± ) (t )± = constant
1
2
1
2
j
i+ 21
j
i+ 12
j i+ 1
2
–P‹1[‰®‡Ž'‰I—V¡ ‡7Ž'‰&Ž ¸‡ ‹IŠ^’Ž'“K‹1” U ‡ ‰&Ž “D‡–P¡“^”Vš ‡ ‡ ’V˜iœŽ “^‹I”g‡ ¥ ‰I”o— ¥ ¥ ¸ŒY“KŠ^Š
‡ œŸ
“K–P¡iŽ ˆoFŸˆV‹1“^Ÿ5‡L‹I– (t )± –P‹1LŽ ˆoC‡ ˆo‰&Š^Š^‹RŒ Œ?‰RŽ'5b‘’o‰RŽ'“K‹1”o‡J‰&ŽJŽ'ˆV”o—O‹I–.Ž ˆV“D‡
j i+
‡ ’V™o‡ Ÿ
Ž “^‹I” ¥
2 “^”o‰&Š^Š^¡I•Œb`”o5—pŽ ‹_—Ÿ
‹1˜|œ‹1‡ YŽ'ˆV“^”Ž 5š1'‰IŠV‹&–.Ž'ˆVF‡ ‹I’o'Ÿ5?Ž 5'˜ “K”iŽ'ˆV`–P‹1ŠKŠ^‹RŒ?›
“^”VšpŒ?‰W¡p“K”]‹1'—aŽ ‹p‹I™VŽ'‰&“^”]‰Œa5Š^ŠK›™o‰IŠ^‰I”oŸ
—M‡'ŸˆV5˜i
1
2
Z
=
=
£ ¥ ° ¦
s(U, x)dx =
Ii
X 1 XZ
j
Ii
sj (V (U, x))t0j (x)dx
(U, x)+
)
i− 21
(U, x)−
)
i+ 12
Z
sj (V
+ sj (V
t0j (x)dx
2
I
i
j
Z 1
+
−
0
sj (V (U, x)i− 1 ) + sj (V (U, x)i+ 1 ) tj (x)dx
+
sj (V (U, x)) −
2
2
2
Ii
X 1
sj (V (U, x)+
) + sj (V (U, x)−
) (tj (xi+ 12 ) − tj (xi− 21 ))
i− 21
i+ 12
2
j
Z 1
−
0
+
sj (V (U, x)+
t
(x)dx
.
sj (V (U, x)) −
1 ) + sj (V (U, x)
1)
j
i− 2
i+ 2
2
Ii
©?ˆocœV’V'œg‹‡7,‹I–$Ž ˆV“D‡—Ÿ
‹1˜|œ‹1‡ “KŽ “^‹I”]“^‡`Ž ‹O”o‡ ’V 0Ž'ˆo‰RŽŽ ˆVc“^”Ž šI‰&Š.‹&–$Ž'ˆV_‡ ‹I’VŸ

Ž'5'˜ ‘’o‰&ŠD‡.Ž'ˆVbo'‡7ŽŽ'5'˜ ‰&Ž"Ž'ˆVJ'“Kš1ˆŽ"ˆo‰&”g—c‡7“D—b‹&– £ ¥ ° 1¦ ŒYˆo5” V (U, x) = const •
‰1‡aŽ ˆV,ŠD‰I‡7ŽYŽ  ˜ —“^‡'‰&œoœg‰&‡b“^”[Ž ˆV“D‡`Ÿ‰I‡  ¥
‹RŒdŒa,‰&'C'‰1—¡iŽ ‹O—V‡'Ÿ
'“K™CŽ ˆV0o”g‰&Š­–P‹I'˜ª‹I–GŽ'ˆVc‰&Š^šI‹1 “KŽ ˆV˜
£ ¥ ° ¤W¦
d
1
1 ˆ
Ūi (t) = −
(f 1 − fˆi− 21 ) +
ŝi ,
dt
4xi i+ 2
4xi
¤
ŒY“9Ž'ˆ
£ ¥ °I° ¦
X1 +
−
ŝi =
sj (V (U, x)i− 1 ) + sj (V (U, x)i+ 1 )
(t̂j )i+ 21 − (t̂j )i− 12 + si,j
2
2
2
j
ŒYˆV5' (t̂ ) “^‡`‰|ˆV“^šIˆV›‹1'—Y‰&œVœV'‹W¨“K˜p‰&Ž “^‹I”OŽ'‹ t (x ) •gŒYˆV‹1‡ ,—
g”V“9Ž'“K‹1”]ŒY“KŠ^Š
™gc—‡ Ÿ5 “^j™i+
—Z™gŠK‹RŒ,•V‰I”o— s “^‡Y‰I”¡MˆV“Kš1ˆ›A‹I—5?‰&œVjœo ‹Wi+¨“^˜i‰&Ž “^‹I”MŽ ‹|Ž ˆV,“^”Ž šI‰&Š
1
2
1
2
i,j
£ ¥° ¦
Z Ii
sj (V (U, x)) −
1
−
)
+
s
(V
(U,
x)
)
sj (V (U, x)+
t0j (x) dx.
j
i+ 21
i− 12
2
?© ˆoZ”’V˜i5'“DŸ5‰&Šb§o’¨ fˆ “^‡i—5o”V—¶™¡ ‰ ˜i‹I”V‹IŽ ‹1”Vp§o’¨®‡ ’oŸˆ®‰1‡cŽ'ˆV1"‰R¨›
i+
2 '“K— “DŸˆo‡b§o’¨
i
£ ¥° ¦
1h
F (U − , U + ) =
f (U − ) + f (U + ) − α(U + − U − ) .
1
2
i+ 12
i+ 12
2
i+ 12
i+ 21
i+ 21
”V—{Ž ‹y˜p‰ 1‰¸˜i‹—“KgŸ5‰&Ž “^‹I”{Ž ‹yŽ'ˆV“^‡p§o’¨.•b™¡ '5œoŠ^‰1Ÿ
“^”Vš
“K” £ ¥ ° ¦ ŒY“9Ž'ˆ
™gŸ
‹I˜i‡
£ ¥ ° ²1¦
α sign(q(x))(V (U, x)+
− V (U, x)−
i+ 1
i+ 1
2
i+ 21
α(U +
− U− 1 )
¥ ©?ˆV0”’o˜| “Di+Ÿ5‰IŠ­§o’¨Mi+”o‹RŒ
)
1
2
2
2
i
1h
−
+
+
−
f (Ui+
fˆi+ 21 =
1 ) + f (U
1 ) − α sign(q(x))(V (U, x)
1 − V (U, x)
1) .
i+ 2
i+ 2
i+ 2
2
2
pŒa‹I’VŠD—¸”V5— Ž'‹]‰1‡ ‡ ’V˜iiˆV5'|Ž ˆo‰&Ž q(x) “^” £ ¥ ¦ —V‹‡0”V‹&Ž_Ÿˆg‰&”Vš1|‡ “Kš1” ¥ ©?ˆV
Ÿ
‹I”g‡Ž‰&”Ž α ‡ ˆV‹I’VŠD—O™0‡7’V“KŽ'‰I™VŠ^¡O‰I— ’o‡7Ž —O™¡|Ž ˆV,‡ “K³‹I– 1 “^”M‹1'—V5LŽ'‹˜p‰I“K”Ž'‰I“K”
5”V‹1’VšIˆ]‰& Ž “KgŸ
“D‰&Š.ž“D‡ Ÿ5‹1‡ “9Ž¡ ¥ ©?ˆV“^‡?˜i‹—“KgŸ5‰&Ž “^‹I”—‹‡?”o‹&Žq(x)
‰R»­Ÿ
މIŸŸ
’V‰IŸ5¡ ¥ 2 ‹I?Ž'ˆV
‡Ž'‰I—V¡M‡Ž‰RŽ'0‡ ‹IŠ^’Ž'“K‹1” £ ¥^¤ ¦ •
− V (U, x)−
)=0
α sign(q(x))(V (U, x)+
i+ 1
i+ 1
™gŸ5‰&’g‡7,‹I– £ ¥^¤ ¦<¥ 5”oŸ5I•gŽ ˆV_
»­Ÿ<ŽF‹&–#Ž ˆV‡7cž“D‡ Ÿ5‹1‡ “9Ž¡MŽ  ˜p‡Y™Ÿ5‹I˜i‡Y³5'‹O‰&”o—
Ž ˆV,”’V˜i5'“DŸ5‰&Š­§g’¨OŽ ’o ”o‡`‹I’Ž?Ž ‹p™,“^”[‰p‡ “K˜iœVŠ^C–P‹I'˜
2
£ ¥° ¦
i
1h
−
+
f (Ui+
fˆi+ 21 =
1 ) + f (U
1) .
i+ 2
2
2
2 ‹IŠ^Š^‹RŒY“K”VšŽ ˆo“^‡•VŒaFŽ' ‰RŽ?Ž ˆoc‰&œVœV'‹W¨“K˜p‰&Ž “^‹I”
£ ¥ ° I¦
2
(t̂j )i+ 21 =
(t̂j )i+ 21
“^” £ ¥ °I° ¦ “K”]‰p‡7“^˜i“KŠD‰&?Œ?‰W¡­º
i
1h
+
(tj )−
1 + (tj )
1
i+ 2
i+ 2
2
¤
ŒYˆo5'I•‰I‡J˜|”Ž “^‹I”V—p™g5–P‹I'I• (t )± ‰I ˆV“Kš1ˆO‹I—b‰&œoœV ‹W¨“^˜p‰RŽ “^‹I”g‡$Ž ‹ t (x )
‡'‰RŽ'“^‡7–P¡“K”oš £ ¥^¤ ¦
¥ `‹&Ž'Ž'ˆo‰RŽ?ŒaFj “^i+
˜iœVŠK˜i5”Ž £ ¥ ° I¦ –P‹1bŽ'ˆV0šI”V5‰&Š­Ÿ5‰1‡71•1”Vj‹IŽYi+‹I”VŠ^¡
–P‹1#Ž ˆV?‡Ž'‰1—¡,‡7‹1ŠK’Ž'“K‹1” ¥ ©?ˆo5'b“D‡"”o‹Fž“D‡ Ÿ5‹1‡ “9Ž¡FŽ  ˜ “^”cŽ'ˆVY‡7‹1’V'Ÿ5fŽ  ˜]•&Ÿ5‹I˜iœo‰&'—
ŒY“KŽ ˆ[Ž'ˆV,”’V˜i5'“^Ÿ‰&Š­§o’¨ £ ¥ ° ²I¦<¥
2 ‹IpŽ'ˆV '5˜p‰&“^”V“^”Vš ‡ ‹I’VŸ
]Ž'5'˜ s •YŒa(‡ “K˜iœVŠ^¡®’g‡7(‰¶‡ ’V“KŽ'‰I™VŠK(ˆV“Kš1ˆ›A‹I—5
0‰I’o‡'‡_‘’o‰I—V'‰&Ž ’V'|Ž ‹ žW‰IŠK’g‰RŽ iŽ'ˆVM“^”Ž i,jšI‰&Š ¥ ©?ˆVM‰IœVœV'‹W¨“K˜p‰RŽ'“K‹1”¸‹I–?Ž ˆVZžW‰IŠK’o‡
‰&ŽcŽ ˆo‹1‡  0‰&’o‡'‡,œ‹I“^”1އ_‰I i‹I™VŽ'‰&“^”V—¸™¡¸Ž ˆV ¬ 'Ÿ
‹1”o‡7Ž '’oŸ<Ž'“K‹1”¸œV'‹Ÿ
—’V' ¥
AŽ|“^‡‰1‡7¡¸Ž ‹(‹I™o‡ 5'žIiŽ'ˆo‰RŽ|ˆV“Kš1ˆ¶‹I—5|‰IŸŸ
’V‰IŸ5¡ “^‡šI’g‰&‰&”Ž —¸–P‹I‹I’V|‡ ŸˆV˜iI•
‰I”o—Z5žI”M“K–#—“D‡'Ÿ
‹I”Ž'“K”’V“KŽ “^‡?5¨“D‡7Ža“^”MŽ'ˆV,‡7‹1ŠK’VŽ “^‹I”•Ž'ˆV0”V‹I”›A‹1‡'Ÿ
“^Š^Š^‰&Ž ‹I'¡|œV ‹1œg7Ž¡i“D‡
˜p‰I“K”Ž'‰I“K”o— ¥
1
2
1
2
0ƒR‚ J‚… , , ‚ # # 4 $
) !!& " $ " $ " $ 3$ " $ 4* . * * . . #"" $
3 $ 4 3 )( ! &
4*4 4- . .&
©?ˆo,œV ‹‹I–#‹I–GŽ'ˆV“^‡ ‡7’oŠ9Ž`“D‡Y‰RŽ ˆo5`‡7Ž ‰&“^šIˆŽ7–P‹1 Œ?‰&—O‰&”g—[Ÿ‰&”]™,–P‹I’V”g—Z“^”¶¯ I ± ¥
©?ˆoO
¨Ž ”o‡ “K‹1”¸Ž'‹]Ž ˆVZ‡7¡‡7Ž 5˜ Ÿ5‰1‡7i–P‹1ŠKŠ^‹RŒ`‡CŽ ˆVZ‡ ‰I˜|p“D—‰‰I‡0Ž'ˆo‰RŽc–P‹1,Ž ˆoOŒbŠKŠK›
™g‰&ŠD‰&”oŸ5—Mo”V“KŽ c—“K» ”oŸ
c‡'ŸˆV˜|‡ ¥
2 ‹IZŽ ˆVy‡ ˆo‰&Š^ŠK‹RŒ Œ?‰RŽ'5[‘’o‰RŽ'“K‹1”o‡ £ ¥^¤ ¦ ŒY“KŽ ˆ ‰®Š^‰ I·‰RŽZ'‡7Ž[‡7Ž ‰I—¡ ‡7Ž'‰&Ž 
‡ ‹IŠ^’Ž'“K‹1” £ ¥K¤1¤¦ •ŒaLމ 1LŽ ˆoa‡'‰&˜ib—VŸ
‹1˜iœg‹‡7“KŽ “^‹I”c‹I–VŽ ˆoa‡ Ÿ5‹I”o—cŸ5‹I˜iœ‹I”V”1Ž#‹&–VŽ'ˆV
‡ ‹I’o'Ÿ50Ž 5'˜ ‰1‡Y“^” £ ¥^¤ ° ¦¥ _‰IœVœVŠ^¡OŽ'ˆV ¬ 'Ÿ5‹I”o‡7Ž '’oŸ
Ž “^‹I”ZŽ ‹pŽ'ˆV,–P’V”oŸ
Ž “^‹I”
•ŒY“9Ž'ˆiŸ5‹
¹OŸ
“^5”Ž'‡JŸ
‹I˜iœV’VŽ —–P'‹I˜ (h, hu)T •&Ž'‹,‹I™Ž‰&“^” b± •‰&”o—i—5o”V
(b(x), 0)T
i+ 21
2
±
(t2 )±
b
.
1 =
1
i+
i+
(t1 )±
= b±
,
i+ 1
i+ 1
2
2
2
”o—OŽ ˆo‡  —
o”o“9Ž'“K‹1”o‡O‰&”g—@“9–CŽ ˆV¸‡Ž'‰I—V¡{‡7Ž'‰RŽ'
Ÿ5‹I”o‡7Ž'‰I”Ž c “D‡? ‰IŸˆV—.•ŒaCˆg‰WžI
−
f (Ui+
1) −
2
=
=
=
X
j
(tj )−
sj V (U, x)−
i+ 1
i+ 1
2
2
•
h+b = c u = 0
–P‹1M‡7‹1˜i
2
1 −
1 − 2 1 − 2
+
+
g hi+ 1 − g bi+ 1 + g
hi+ 1 + b−
b−
1 + h
1 + b
1
i+ 2
i− 2
i− 2
i+ 21
2
2
2
2
2
2
1
g h−
+ b−
− b−
h−
+ g c b−
i+ 21
i+ 21
i+ 21
i+ 12
i+ 21
2
1
1
−
−
= g c2 ,
g c h−
1 + 2b
1
1 − b
i+
i+
i+
2
2
2
2
2
¤
ŒYˆV“^Ÿˆ[“D‡`‰iŸ
‹I”g‡Ž‰&”Ž ¥ ‡ “K˜i“^Š^‰IY˜i‰I”V“^œV’VŠD‰RŽ “^‹I”[Š^‰I—o‡aŽ ‹
+
f (Ui+
1) −
2
X
1
= g c2 .
(tj )+
sj V (U, x)+
i+ 21
i+ 12
2
5”gŸ
0Ž ˆocˆV“^šIˆ›A‹I—5ao”o“9Ž'cžI‹1ŠK’V˜i ¬ ‡ ŸˆV˜i‡YŸ5‰I”]™g_—V‡ “Kš1”V—Z–P‹IŠ^Š^‹RŒY“K”Vš
j
Ž ˆVc‰I™g‹Rž1F“D—‰–P‹1?Ž ˆVc‡ ˆo‰&Š^Š^‹RŒdŒ?‰RŽ ?‘’o‰RŽ'“K‹1”o‡ ¥
… 0- ~ƒ , … ~ ~
# #(' ~ … , ‚ ‚¶„ , … ‚ ),$+ ‚ + `ˆo‰Wž1a‡ ’oŸŸ
‡'‡7–P’VŠKŠ^¡_—‡7“^šI”o—|ˆV“^šIˆ›A‹I—5$Œa5Š^Š9›A™o‰IŠ^‰I”oŸ
—,o”V“KŽ `—V“9»­5'5”oŸ5`‰&”o—
o”V“KŽ [žI‹IŠ^’V˜i ¬ Œa5Š^Š9›A™o‰IŠ^‰I”oŸ
—¶‡ ŸˆV˜iO–P‹Ii‰(Ÿ5Š^‰1‡ ‡_‹&–ˆ¡œ5'™g‹1ŠK“DŸp™o‰IŠ^‰I”oŸ

Š^‰WŒ`‡ ¥ *”·Ž ˆV“D‡_‡ ’V™o‡ Ÿ
Ž “^‹I”•GŒbpŸ
‹1”o‡ “^—0Ž ˆVMšI5”o5‰&Š^“K³‰RŽ “^‹I”¸‹&–aŽ ˆV‡7p“D—‰I‡CŽ ‹]Ž'ˆV
¦ ˜i
Ž'ˆV‹—V‡ ¥ ŠKŠK›™g‰&ŠD‰&”oŸ5—¸ˆV“Kš1ˆ›
Y’V”Vš1
› 0’Ž7މ[—V“^‡'Ÿ
‹1”1Ž'“K”’V‹1’o‡ 0‰&Š^5“K” £ ‹I—5 ‡ Ÿˆo5˜i‡#ŒY“^ŠKŠ™?—V‡ “Kš1”V—c–P‹I$‰FŸ5Š^‰1‡ ‡G‹&–­Ÿ
‹I”g‡7 žR‰RŽ'“K‹1”,Š^‰WŒ`‡#‡'‰RŽ “D‡7–P¡“^”Vš
‡'‡7’V˜iœŽ'“K‹1”o‡ ¥ ‰I”o— ¥ ¥ ©?ˆVJ™o‰I‡ “^Ÿ$“D—‰?“^‡Ž ˆVJ‡'‰&˜iL‰1‡Ž ˆo‰&Ž–P‹I.Ž'ˆVfo”o“9Ž'LžI‹1ŠK’V˜i
‡ ŸˆV˜i‡•g‡ ’oŸˆ ‰I‡?Ž'ˆVcŽ'ŸˆV”o“^‘’Vc‹I–L—Ÿ5‹I˜iœg‹‡7“^”VšiŽ'ˆV‡ ‹I’VŸ
0Ž'5'˜ ‰I”o—]'5œVŠD‰IŸ5“K”Vš
Ž ˆVCž“^‡'Ÿ
‹‡7“KŽ¡_Ž'5'˜«“K”MŽ ˆVC”’V˜i5'“^Ÿ‰&Šo§o’¨‡•™gŸ5‰&’g‡7Ž ˆV ˜i
Ž ˆo‹—o‡aŸ‰&”O™
Ÿ
‹I”g‡7“D—5'—¸‰I‡0‰[šI”V5‰&Š^“K³‰RŽ'“K‹1” ‹&–bo”V“KŽ ižI‹1ŠK’V˜ii‡ Ÿˆo5˜i‡•5ž15”(Ž ˆV‹1’VšIˆ¸Ž ˆV¡(—‹
”V‹&Žc'‘’V“^ i‰]'Ÿ
‹1”o‡7Ž '’oŸ<Ž'“K‹1”¸‰&”g—¸žI‹1ŠKž1_Ž'ˆVOŸ
‹1˜|œoŠK5Ž pœ‹IŠ^¡”o‹I˜i“^‰IŠf“K”y‰IŸˆyŸ
5Š^Š
–P‹I'Œa‰I'—y“^” Ž'“K˜i ¥ ©?ˆo ˜i
Ž'ˆV‹—V‡i‰&'OŽ'ˆV5'
–P‹1 Z‰I‡ “^5cŽ'‹¸’g‡7M–P‹Ii˜_’VŠKŽ “K›
—“K˜i”o‡7“^‹I”g‰&Šoœo ‹1™VŠK˜p‡L“^”MŸ
‹1˜|œoŠK5¨|š15‹I˜i5Ž '¡I•&Ž'ˆo‰&”OŽ ˆVo”V“KŽ CžI‹IŠ^’V˜i‡'ŸˆV5˜i‡5•‰I‡
Ž ˆV,Ÿ
‹1˜iœVŠK“DŸ5‰&Ž —M'Ÿ5‹I”o‡7Ž '’oŸ<Ž'“K‹1”OœV'‹Ÿ
—V’V 0Ÿ5‰I”M™c‰WžI‹1“^—— ¥ 0'
–P5aŽ'‹[¯ • • •
¤ • ¤1¤ ±.–P‹IY˜i‹1 ,—5Ž'‰&“^ŠD‡?‹&– ´˜i
Ž'ˆV‹—V‡ ¥
©?ˆoc‡7˜|“K›*—“^‡'Ÿ
'
Ž' ‡ Ÿˆo5˜i‡a–P‹1 £¤I¥^¤¦ މ ICŽ'ˆV0–P‹I'˜
£ ¥ ° ¦
R
Ij
f (Uh (x, t))∂x vh (x)dx + fˆj+ 21 vh (x−
)
j+ 12
R
) = Ij s(Uh (x, t), t)vh (x)dx
−fˆj− 21 vh (x+
j− 1
∂t Uh (x, t)vh (x)dx −
R
Ij
2
£ ¥° ¦
Z
Uh (x, 0)vh (x)dx =
Z
U0 (x)vh (x)dx.
2 “^‡Ž•#ŒaM—5o”VM‰ ˆV“Kš1ˆ›A‹I—5c‰IœVœV'‹W¨“^˜p‰RŽ'“K‹1”
Ij
Ij
Ž'‹ V (U , x) •
ŒYˆV5' p ‰I”o— q ‰I  L2 œo ‹ Ÿ<Ž'“K‹1”o‡C‹&– p ‰&”o— “K”Ž ‹ •G‡ 5  £ ¥ ° ¦ –P‹1c‡7’ohŸˆ¶‰
œV ‹ Ÿ
Ž “^‹Ih” ¥ ‹RŒ h ‰1‡ ‡ ’V˜iiŽ ˆg‰RŽ U “^‡cŽ ˆV[‡Ž'‰I—V¡·‡7Ž'‰&Ž M‡ ‹IŠ^’Ž “^‹I” ‡'‰RŽ'“^‡7–P¡“K”oš £ ¥ ¦ •
”o‰&˜i5Š^¡
Vh (Uh , x) =
q
Vh
U (x) + p(x) = c q(x)
Uh +ph
qh
°
–P‹1F‡ ‹I˜icŸ
‹1”o‡7Ž'‰&”Ž c •‰&”o— U “D‡YŽ ˆo L2 œV'‹ Ÿ<Ž'“K‹1”[‹I–$Ž ˆV“D‡‡7Ž ‰I—¡[‡Ž‰RŽ ‡7‹1ŠK’Ž'“K‹1” ¥
µ Š^‰I Š^¡I•V‡ “^”oŸ
CŽ ˆo L2 œV'‹ Ÿ<hŽ “^‹I”Z“^‡‰Š^“^”V‰IY‹Iœ5‰RŽ ‹1•
Uh (x) + ph (x) = c qh (x)
–P‹1?Ž ˆVc‡'‰&˜i,Ÿ
‹1”o‡7Ž'‰&”Ž c ‰RŽY5ž15'¡pœg‹1“K”Ž x ¥ ©?ˆV“D‡?“K˜iœVŠ^“K‡
Vh (Uh , x) =
2 ‹Ii‡7’gŸˆ{‡7Ž ‰1—¡¶‡Ž‰RŽ'[‡ ‹IŠ^’Ž “^‹I”
ˆg‰WžI
Uh (x) + ph (x)
= c.
qh (x)
U
‡'‰RŽ “D‡7–P¡“^”Vš ‡'‡7’V˜iœŽ'“K‹1”o‡ ¥ ‰I”o— ¥ •JŒb


X
d 
sj (V (U, x)) tj (x) = 0.
f (U ) −
dx
j
aŒb‹1’VŠ^—0”o5—,Ž ‹‡ ’V“KŽ'‰&™oŠK¡,ŸˆV‹‹1‡ J‰?–P’o”oŸ<Ž'“K‹1”
W• ŒYˆV“DŸˆ_‡ ˆV‹I’oŠ^—0™a‰`ˆV“Kš1ˆ›A‹I—5
‰&”g—Z‡ ˆV‹I’oŠ^—]‡'‰RŽ “D‡7–P¡pŽ ˆVcŸ5‹I”o—V“9Ž'“K‹1”
‰IœVœV'‹W¨“K˜p‰RŽ'“K‹1”OŽ'‹ t
j
X
£ ¥ ¦
s (V
f (U (x)) −
j
h
(tj )h
h (Uh (x), x))(tj )h (x)
= constant
j
–P‹1G‰IŠKŠ x ¥ ©?ˆoJŸ
‹1”o‡Ž' ’gŸ<Ž “^‹I”,‹I– (t ) ŒY“KŠ^Š™gJ‡ ˆV‹RŒY”C–P‹I"Ž ˆVb‡7ˆo‰IŠKŠ^‹RŒ·Œa‰&Ž 5"‘’o‰RŽ'“K‹1”o‡
“^”[Ž ˆV,”o—[‹&–GŽ ˆV“D‡`‡ ’V™o‡ Ÿ<Ž'“K‹1” ¥ j h
“K˜i“^Š^‰I?Ž ‹iŽ ˆoc—Ÿ5‹I˜iœg‹‡7“KŽ “^‹I”]‹I–GŽ'ˆVc‡7‹1’VŸ
FŽ 5'˜“^”[Ž ˆV_ŒbŠKŠ.™o‰IŠ^‰I”oŸ
—Zo”V“KŽ 
ž1‹IŠ^’V˜ip‡ ŸˆV˜i‡ £ ¥ ° 1¦ •"Œai—VŸ
‹1˜iœg‹‡7|Ž ˆop“K”Ž šI‰&Š$‹&–aŽ ˆoO‡7‹1’V'Ÿ5|Ž 5'˜S‹1”¸Ž'ˆV
'“^šIˆŽYˆo‰&”o—]‡ “^—VC‹I– £ ¥ ° ¦ ‰1‡5º
Z
=
=
s(Uh , x)vh dx
Z
X 1 −
+
t0j (x)vh dx
sj (V (Uh , x)i− 1 ) + sj (V (Uh , x)i+ 1 )
2
2
2
I
i
j
Z 1
+
−
0
sj (V (Uh , x)) −
+
sj (V (Uh , x)i− 1 ) + sj (V (Uh , x)i+ 1 )
tj (x)vh dx
2
2
2
Ii
X 1
−
sj (V (Uh , x)+
1)
1 ) + sj (V (Uh , x)
i+ 2
i− 2
2
j
Z
+
0
· tj (xi+ 12 )vh (x−
t
(x)v
(x)dx
1 ) − tj (xi− 1 )vh (x
1) −
j
h
i+ 2
i− 2
2
Ii
Z 1
−
0
sj (V (Uh , x)) −
sj (V (Uh , x)+
+
)
+
s
(V
(U
,
x)
)
t
(x)v
dx
.
j
h
h
j
i− 12
i+ 21
2
Ii
Ii
°¤
_Ž ˆV”  œVŠD‰IŸ
cŽ ˆV“D‡F‡ ‹I’o'Ÿ5,Ž  ˜ ŒY“9Ž'ˆ¸‰pˆo“Kš1ˆ›‹1'—V5‰IœVœV'‹W¨“^˜p‰RŽ'“K‹1”[‹I–f“9ŽCšI“^žI5”
™¡
X 1 ) + sj (Vh (Uh , x)−
)
sj (Vh (Uh , x)+
i+ 1
i− 1
2
2
2
Z
+
0
1
· (t̂j )h,i+ 12 vh (x−
)
−
(
t̂
)
)
−
v
(x
(t
)
(x)v
(x)dx
j h,i− 2 h i− 1
j h
h
i+ 21
2
Ii
Z 1
−
0
+
sj (Vh (Uh , x)) −
)
+
s
(V
(U
,
x)
)
sj (Vh (Uh , x)+
t
(x)v
dx
j
h
h
h
j
i+ 12
i− 12
2
Ii
j
YŒ ˆV5' (t̂ )
“^‡O‰yˆo“Kš1ˆ›‹1'—V5O‰&œoœV ‹W¨“^˜p‰RŽ “^‹I”{Ž ‹
j h,i+
–P‹IŠ^ŠK‹RŒ`‡ £ ¥ ° ²I¦ ‰&”g— £ ¥ ° I¦ –P'‹I˜ Ÿ
Ž “^‹I” ¥ °
1
2
tj (xi+ 21 )
•?ŒYˆV‹‡7 —5o”V“KŽ “^‹I”
i
1h
+
+
−
f ((Uh )−
fˆi+ 12 =
)
+
f
((U
)
)
−
α
sign(q(x))(V
(U
,
x)
−
V
(U
,
x)
)
,
h i+ 1
h
h
h
h
i+ 12
i+ 21
i+ 12
2
2
i
1h
+
(t̂j )h,i+ 21 =
(tj )h (x−
)
+
(t
)
(x
)
.
j h i+ 1
i+ 21
2
2
Uh
U
V (U, x) = constant
‡7’g‰&Š^ŠK¡1•Œaœ5 –P‹I'˜ Ž ˆVCŠ^“K˜i“KŽ 5a‹I”MŽ ˆV–P’V”oŸ
Ž “^‹I” ‰R–¢Ž b‰IŸˆ Y’o”VšI5› 0’Ž Ž'‰
‡ މ&šI ¥ ‹RŒ,•I‹I’ofœV’V'œg‹‡7?“D‡$Ž ‹0˜p‰&“^”Ž'‰&“^”|Ž ˆV`‡7Ž ‰I—¡‡Ž‰RŽ `‡ ‹IŠ^’Ž'“K‹1” ŒYˆV“DŸˆp‡ ‰&Ž “D‡›
¥ ©?ˆV‰I™g‹Rž1YŠK“^˜i“9Ž'5Jœo ‹Ÿ
—’V'`Ÿ
‹1’VŠ^—i—‡Ž' ‹R¡_Ž ˆVœV ‡77›
o‡
žW‰&Ž “^‹I”‹&–g‡ ’oŸˆ_‡7Ž ‰I—¡c‡7Ž'‰&Ž I•&‡ “^”oŸ
a“9–oŽ ˆVaŠK“^˜i“9Ž'5f“D‡"”o‰IŸ
Ž —.•RŽ ˆob'‡ ’VŠKŽ “^”Vš˜i‹—“Ko—
‡7‹1ŠK’Ž'“K‹1” U ˜p‰W¡i”V‹|ŠK‹1”VšIa‡'‰RŽ'“^‡7–P¡ V (U , x) = constant ¥ CŽ ˆV 5–P‹I'œV'‹Iœ‹1‡ 
Ž ‹Zo'‡7ŽCŸˆohŸ ]ŒYˆV
Ž'ˆV5,‰I”¡]Š^“K˜i“KŽ “^”Vš[h“^‡C”Vh—— ™o‰1‡7—‹I”(Ž ˆV–P’V”oŸ
Ž “^‹I” V (U , x)
“K” ‰1Ÿˆ Y’V”ošI
› 0’Ž Ž'‰·‡Ž‰&šI1•JŒYˆV ZŽ ˆo Ÿ
5Š^Š`‰WžI'‰IšI‡,‹&– V (U , x) £ ”o5h—Vh—{Ž ‹
“K˜iœVŠ^5˜i5”ŽiŽ ˆo]©
Š^“K˜i“KŽ 5 ¦ ‰&'[Ÿ5‹I˜iœV’Ž'—{™¡ ‰·‡ ’V“KŽ'‰I™VŠK h 0‰&h’g‡ ‡i‘’o‰I—V'‰&Ž ’V' ¥
A–b‰MŸ55 Ž'‰&“^”(Ÿ55Š^Š#“D‡§g‰&š1šI— ™¡[Ž'ˆV“^‡CœV'‹Ÿ
—’V'_”V—“^”VšMŠ^“^˜|“KŽ “^”Všg•­Ž ˆV” Ž ˆo|‰1Ÿ<Ž ’g‰&Š
ŠK“^˜i“9Ž'5“D‡Y“^˜iœVŠK˜i5”Ž —]‹I” U •o”V‹IŽ`‹I” V (U , x) ¥ ˆV5”]Ž'ˆVcŠ^“K˜i“KŽ “^”VšOœV'‹Ÿ
—V’V 
“^‡a“^˜|œoŠK˜|”Ž —OŽ ˆV“D‡aŒa‰W¡1•1“K–"Ž'hˆV0‡Ž'‰I—V¡O‡Žh‰RŽ  hU ‡'‰RŽ'“^‡7–P¡“K”Vš V (U, x) = constant “^‡
 ‰IŸˆV—.•1”o‹|Ÿ55Š^Š.ŒY“KŠ^Š­™gC§g‰IšIšI—O‰I‡a'‘’V“^ “^”VšcŠ^“^˜|“KŽ “^”Všp‡ “K”oŸ5 V (U , x) “^‡a‘1’g‰&ŠŽ ‹
Ž ˆV0‡ ‰I˜iCŸ5‹I”o‡7Ž'‰I”1Ž•1ˆo5”oŸ5 U ŒY“^Š^Š”o‹&Ž?™g0Š^“K˜i“KŽ —Z‰&”o—OŽ ˆV 5–P‹Ih'`Ž'hˆVC‡7Ž ‰I—¡O‡7Ž'‰&Ž 
h
“^‡?œV'‡ 5'žI— ¥
©?ˆo“^‡Jo”V“D‡7ˆo‡$Ž'ˆVF—‡ Ÿ5 “^œŽ'“K‹1”|‹I–.Ž ˆV ‡'ŸˆV5˜i‡ ¥ CŸ5‰I”OŸ
Š^‰&'Š^¡c‹I™o‡ 5'žI
Ž ˆo‰&ŽLŽ ˆVF‰IŸ5Ÿ5’V‰IŸ
¡_“^‡f˜p‰I“K”Ž'‰I“K”o— £ ‡ 5`©#‰&™oŠK “^” Ÿ<Ž “^‹I” ²1¦<¥ F‰&ŠD‡7‹c‡7Ž'‰&Ž Y™5Š^‹RŒ
Ž ˆVœV'‹Iœ‹1‡ “KŽ “^‹I”@Ÿ
ŠD‰&“^˜|“^”VšyŽ'ˆV
¨V‰IŸ
ŽpœV ‡7 žR‰&Ž “^‹I” ‹&–CŽ ˆV ‡7Ž ‰I—¡®‡7Ž'‰&Ž  ‡ ‹IŠ^’Ž “^‹I”
£ ¥ ¦
¥ ©?ˆV,œV'‹‹I–G“D‡`‡7Ž ‰&“^šIˆŽ7–P‹1 Œ?‰&—p‰&”o—Z“D‡?Ž ˆV 5–P‹I'F‹1˜i“9Ž Ž — ¥
°1°
0ƒR‚ J‚… , , ‚ # #2 4 ! 4*!. * . . - " " $ $24 () ! &
44 4- . $ # ©?ˆoJ
¨Ž'5”o‡ “K‹1”c‹&–oŽ ˆVbŒbŠKŠK›™g‰&ŠD‰&”oŸ5—0ˆV“^šIˆ›A‹I— ‡'ŸˆV5˜i‡Ž ‹FŽ ˆVa‡7¡‡7Ž ˜
Ÿ‰I‡ –P‹1ŠKŠ^‹RŒ`‡JŽ ˆV,‡'‰&˜i“D—‰|‰I‡bŽ'ˆo‰RŽa–P‹IaŽ ˆoCŒa5Š^ŠK›™o‰IŠ^‰I”oŸ
—|o”V“KŽ 0žI‹1ŠK’o˜|0‡'ŸˆV5˜i‡ ¥
2 ‹IZŽ ˆVy‡ ˆo‰&Š^ŠK‹RŒ Œ?‰RŽ'5[‘’o‰RŽ'“K‹1”o‡ £ ¥^¤ ¦ ŒY“KŽ ˆ ‰®Š^‰ I·‰RŽZ'‡7Ž[‡7Ž ‰I—¡ ‡7Ž'‰&Ž 
‡ ‹IŠ^’Ž'“K‹1” £ ¥^¤I¤¦ •Œb,Ÿ‰&”]‰1‡7“^ŠK¡pž15'“9–P¡OŽ ˆo‰&ŽYŽ ˆVc—5o”V“KŽ “^‹I”o‡`‹&– (t ) •
i h
ŒYˆo5'
bh (x)
“^‡aŽ'ˆV
(t2 )h (x) = (bh (x))2
(t1 )h (x) = bh (x),
L2
œV'‹ Ÿ<Ž “^‹I”M‹&–
f (Uh ) −
X
b(x)
Ž ‹|Ž'ˆVCo”V“KŽ ,5Š^5˜i”1ŽY‡ œo‰IŸ5
sj (Vh (Uh , x))(tj )h =
j
Vh
•ŠK‰I—OŽ ‹
1 2
gc
2
ŒYˆo5”[Ž ˆVc‡7Ž ‰I—¡Z‡Ž‰RŽ  h + b = c • u = 0 “^‡Y'‰1ŸˆV—•‡'‰RŽ'“^‡7–P¡“K”oš|‹1’V? ‘’V“K'5˜i”1Ž ¥
”V5Œ@‰&œVœo ‹‰IŸˆŽ ‹,‹I™VŽ'‰&“^”iŒbŠKŠg™o‰&ŠD‰&”gŸ
—˜i
Ž'ˆV‹—V‡5•™¡Ÿ‰&ŠDŸ
’VŠD‰RŽ'“K”Vš0Ž'ˆV`‡ ‹I’VŸ

Ž'5'˜S
¨V‰1Ÿ<Ž Š^¡ ‰RŽCŽ ˆoi‡7Ž ‰I—¡ ‡7Ž'‰&Ž 1•.Œa‰1‡F“^”Ž '‹—’oŸ
—–P‹1 ª˜|5Ž ˆV‹—V‡FŽ'‹]‡'‰WžI
Ÿ5‹I˜iœV’މRŽ'“K‹1”o‰&ŠfŸ
‹‡Ž,“^”{¯ ± ¥ ©?ˆV|Ž ‰I—“KŽ “^‹I”o‰IŠ ª˜i
Ž ˆo‹—o‡C‰I i‡ ˆV‹RŒY” Ž'‹[™
Ÿ‰&œo‰I™VŠ^Z‹I–F˜p‰&“^”Ž'‰&“^”V“^”VšyŸ
5 Ž'‰I“K” ‡Ž'‰1—¡ ‡Ž‰RŽ'‡|
¨V‰IŸ
Ž Š^¡I•b“9–0‰¸‡ ˜p‰&Š^Ša˜i‹—“KgŸ5‰&Ž “^‹I”
‹1”5“KŽ ˆVYŽ ˆoc“K”o“9Ž'“^‰IŠ"Ÿ
‹1”o—“KŽ “^‹I”]‹IYŽ'ˆV,§o’V¨Z“D‡YœV'‹Rž“D—— ¥ , 5–P5YŽ'ˆVc“^”Ž 5'‡7Ž “^”Vš
'‰1—5aŽ'‹¯ ±
4. Schemes based on well-balanced quadrature
* ”[Ž'ˆV“^‡F‡7Ÿ<Ž'“K‹1”•Œb0–P‹1ŠKŠ^‹RŒ ¯ ° ¤ ±G‰&”g—[—V5žIŠK‹1œ[‰I”‰&ŠKŽ 5'”o‰&Ž “^žI,‰&œVœo ‹‰IŸˆOŽ'‹pŒbŠKŠK›
™g‰&ŠD‰&”oŸ5“K”Vš ¥ AŽ|“^‡™o‰I‡ —y‹1” Œa5Š^Š9›A™o‰&ŠD‰&”gŸ
—¶‘’o‰1—‰RŽ ’o p'’VŠ^‡_–P‹IŸ55Š^Ša‰Wž15‰&š1‡0‹&–
Ž'ˆVp'‡ “^—’g‰&Šf—
g”V—·“^” £ ¥^¤¦ ‰&”g—(Š^‰1—V‡CŽ ‹‰[ˆV“^šIˆ›A‹I—50‰IŸŸ
’V‰RŽ'_g”V“9Ž'pžI‹1ŠK’V˜i
‡'ŸˆV˜|0ŒYˆV“DŸˆ]“^‡?Œa5Š^ŠK›™o‰IŠ^‰I”oŸ
—O–P‹1Y˜i‹Rž“^”Vš|Œa‰&Ž Y‘’V“^ŠK“^™V'“^‰ ¥
©?ˆoM‡7Ÿ<Ž'“K‹1”·“D‡,‹1 š‰&”V“^³5—¸‰1‡0–P‹IŠ^ŠK‹RŒ`‡º ‰I‡ —·‹I”·Ž'ˆVO'‡ “^—’g‰&ŠL‹I–bŽ'ˆVO™o‰IŠ^‰I”oŸ

ŠD‰WŒ “K”Ž '‹—’oŸ5—Z“K” ’o™o‡7Ÿ<Ž'“K‹1”° ¥ °V•Œbc—V
o”V £ “K” ’V™o‡ Ÿ<Ž'“K‹1” ¥K¤W¦ ‰išI”V5‰&Š.Ÿ
ŠD‰I‡'‡
‹I–#‡ 5˜i“D—“^‡'Ÿ
'
Ž'`o”o“9Ž'Cž1‹IŠ^’V˜iF‡'ŸˆV5˜i‡a‰I”o—Oš1“Kž1F‰|—
g”V“9Ž'“K‹1”O–P‹1?‡ ’oŸˆ[‡ ŸˆV˜i‡JŽ ‹
™|ŒbŠKŠK›™g‰&ŠD‰&”oŸ5—[–P‹I0‰&”(‘’V“^ŠK“^™V'“K’V˜ ‡7Ž'‰&Ž  V ¥ 2 ‹IF‰IŸˆ(™V’V“^Š^—“^”VšZ™VŠK‹Ÿ ]‹&–fŽ'ˆV‡ 
‡'ŸˆV˜|‡`›?Ž'ˆVœo“KŸ
5ŒY“D‡ ‡ ˜|‹‹IŽ ˆ 'Ÿ5‹I”o‡7Ž '’oŸ<Ž'“K‹1”‹&–LŽ'ˆVi—V‰RމV•Ž ˆVi‘’o‰I—V'‰&Ž ’V'c‹&–
°
Ž ˆVb šI’VŠD‰&.œo‰I7ŽG‹&–Ž ˆVb ‡7“D—’o‰IŠI“^”0Ž ˆVb“K”Ž'5'“K‹1‹&–Ž'ˆVJŸ
ŠKŠD‡•W‰I”o—CŽ ˆoJ'Ÿ
‹1”o‡7Ž '’oŸ<Ž'“K‹1”
‹&–aŽ ˆVO‡ “K”ošI’VŠD‰&0œo‰I7Ž,‹&–aŽ ˆop ‡7“D—’o‰IŠL‰RŽ0Ž ˆVZŸ
5Š^Šf“^”1Ž'5 –4‰IŸ5‡C›`ŒaO—
o”oO‰Z”o‹&Ž “^‹I”
‹&–YŒbŠKŠK›A™o‰&ŠD‰&”oŸ5“K”oš £ ’V™o‡ Ÿ
Ž “^‹I” ¥ ° ¦<¥ ©?ˆV5‹1 ˜ ¥K¤ ‡7Ž'‰&Ž ‡,Ž ˆo‰&ŽcŽ ˆV‡7ZŸ
‹I”g—“9Ž'“K‹1”o‡
šI’o‰I'‰I”1Ž'5JŽ ˆo‰&ŽfŽ ˆVY‹Rž15‰&Š^Ї'ŸˆV5˜i?“D‡$ŒbŠKŠK›™g‰&ŠD‰&”oŸ5— ¥ *” ’o™o‡7Ÿ<Ž'“K‹1” ¥ Œaa'‰IŠK“^³5
Ž ˆV“D‡Jš15”V'‰IŠoœV'‹Iš1'‰I˜´’o‡ “^”Všc‘’V“^Š^“K™V'“^’V˜  Ÿ
‹I”g‡Ž' ’oŸ
Ž “^‹I”o‡ ¥ *”Mœo‰& Ž “DŸ
’VŠD‰&•ŒbYŽ' ‰RŽ
Ž ˆV ¤ ‡ ˆo‰IŠKŠ^‹RŒ Œ?‰RŽ 0‘’o‰RŽ'“K‹1”o‡0‰I‡0‰ZœV ‹IŽ ‹IŽ¡œi‰&”o—·Ÿ
‹1”o‡7“D—FŽ'ˆViŠ^‰ Ii‰RŽ,'‡7Ž•
 “^žI.§o‹RŒ`‡‰I”o—,Œ?‰RŽ 7–4‰IŠKŠD‡‰IŠK“^šI”V—0ŒY“9Ž'ˆ,Ž ˆoLšI'“^— ¥ ¬f¨VŸ
œŽ"–P‹1G—“D‡'Ÿ
‹I”Ž'“K”’V“KŽ “^‡"ŒYˆV“^Ÿˆ
‰&'”V‹IŽ?‰IŠK“^šI”V—pŒY“KŽ ˆZŽ ˆVCšI'“^—•Œa0Ÿ5‰&”MŽ ˆV 5–P‹I'™o‰IŠ^‰I”oŸ
FšI”V5‰&Š ¤ ‘’V“^Š^“K™V'“^’V˜
‡7‹1ŠK’Ž'“K‹1”o‡0–P‹1,Ž ˆVZ‡7ˆo‰IŠKŠ^‹RŒ´Œ?‰RŽ'5,‘1’g‰RŽ “^‹I”g‡ ¥ 3 ‰&”¡(‹I–bŽ'ˆVpŽ'ŸˆV”V“D‘’V‡cœV ‡7”Ž —
ˆV5'cŸ5‰I”[™‰1—V‰&œVŽ —ZŽ'‹O‹&Ž'ˆV5Ÿ5Š^‰1‡ ‡ ‡?‹I–f™o‰&ŠD‰&”oŸ5,Š^‰WŒ`‡ ¥ *” ’V™o‡ Ÿ<Ž'“K‹1”o‡ ¥ ¥ ²
Œb,—“D‡ Ÿ5’o‡'‡Y‡7‹1˜|0“^”Ž 5'‡7Ž “^”Všp‰I‡ œŸ<އ?‹&–$ Š^‰&Ž —M‡'ŸˆV5˜i‡ ¥
~ (, ~ g‚ -.+ ~]„ , … ƒR~ ,!0 , ‚ #%&# ƒ 0 ~_‚gƒ {‚ 5',Œb,Ÿ5‹I”o‡ “^—V5Y‰|šI5”o5‰&Š.™o‰IŠ^‰I”oŸ
CŠ^‰WŒ “K”[Ž'ˆV0–P‹I'˜ £ ° ¥ ¦<¥ 1"
Ž
Z
1
U (x, t) dx
4xi Ii
Z
1
R(x, t) dx
Ri (t) ≈
4xi Ii
U (xi , t) ≈
£ ¥^¤¦
™gY‰&œoœV ‹W¨“^˜p‰RŽ aŸ
ŠKЉWžI'‰IšI‡.‹&–gŽ ˆVY‡ ‹IŠ^’Ž “^‹I”|‰&”o—cŽ ˆV?'‡ “^—’g‰&Š ¥ ©?ˆV”ŒaaŸ5‹I”o‡ “D—5
‡7˜|“D—“D‡ Ÿ5 5Ž ,‡'ŸˆV5˜i‡?‹I–"Ž'ˆV0–P‹I'˜
£ ¥° ¦
d
U i (t) = Ri for i = 1, . . . , N.
dt
Z~ , , ‚ #%&# 4 £ ¥ ° ¦ ?Œa5Š^Š9›A™o‰&ŠD‰&”gŸ
—p–P‹IY‰&”Z‘’V“^ŠK“^™V'“K’V˜ ‡Ž‰RŽ 
V
(
£ ¥ ¦
& £ ¥ ¦
Ri = 0 for i = 1, . . . , N
% ! &
( ( *
V (U, x) ≡ V = constant.
|› £¤W¦ ’oŸˆ‡'ŸˆV5˜i‡?ˆg‰WžI,‰&ŠD‡7‹i™5”]Ÿ‰&Š^ŠK— 4 .
& 4|“K”
Ž ˆV|ŠK“KŽ '‰&Ž ’V'I•“^”(‹I—`Ž ‹[—“D‡Ž'“K”Vš1’V“D‡7ˆ(Ž ˆV˜ –P'‹I˜ & 3 4 ‡ ŸˆV˜i‡•–P‹IYŒYˆV“DŸˆ
£ ¥:²I¦
Ri = O(4xp )
°
–P‹1F‘’V“KŠ^“^™V “^’V˜ —V‰Rމ £ ¥ ¦ •ŒYˆV5' p ‡7ˆV‹1’VŠD—™gˆV“^šIˆV`Ž ˆg‰&”]Ž ˆo_‹I—‹&–LŸ5‹I”o‡ “^‡7›
Ž'5”oŸ5¡M‹I–GŽ'ˆV,‹RžI'‰IŠKŠ­‡ Ÿˆo5˜i ¥
£ ° ¦ “K”gŸ
Ž ˆV|‡7‹1ŠK’Ž'“K‹1” U ‰&”g— ‰&ŠD‡7‹OŽ ˆV_Ž ‹Iœ‹Iš1'‰IœVˆ¡ b ˜p‰W¡[™g|—“^‡'Ÿ
‹1”Ž “^”’o‹I’o‡•gŒa
Ÿ5‹I”o‡ “D—5 R Ž ‹|™0‰™‹I’V”o—V— ‹1 Šg˜i‰I‡ ’V C‹RžI Ω •“ ¥  ¥ R ∈ M(Ω) ¥ *”[šI”V5‰&Š•
ˆo‰1‡L™‹&Ž ˆp'5š1’VŠD‰&J‰I”o—p‡7“^”Vš1’VŠ^‰Ifœo‰& Ž'‡JŒY“9Ž'ˆp ‡7œŸ
ŽLŽ ‹ 15™‡ šI’o‡ I˜i‰1‡7’V'I•1‰&”o—
R
Ž'ˆV5'
–P‹1 Y“KŽJ“D‡f”V‹IŽb‡Ž''‰I“Kš1ˆŽ7–P‹I'Œ?‰&—0Ž ‹,š1“Kž1Y˜|‰&”V“^”Vš0Ž'‹0Ž ˆV`“^”Ž šI‰&Š“^” £ ¥^¤¦ •1‹1$Ž ‹
—V
o”VC‰cŸ
‹1”o‡ “^‡7Ž ”1ŽJ‘’o‰1—‰RŽ ’o ?–P‹1LŽ ˆo“^‡J“K”Ž šI‰&Š ¥ ‹RŒbžI•RŽ'ˆV‡ —“K¹OŸ
’VŠKŽ “^‡aŸ5‰I”›
”o‹&Ža‰I”o—O‡ ˆV‹I’oŠ^—p”o‹&Žb™F‰Wž1‹I“D——•1‰&”g—pŒbF™gŠK“^5ž1YŽ ˆg‰RŽY—“^‡'Ÿ
’g‡ ‡ “K”oš,Ž ˆV˜«—“K'Ÿ
Ž Š^¡i“K”
Ž'5'˜p‡J‹I–˜|‰I‡ ’V'‡L˜p‰ I‡LŽ ˆVFœV'‡ 5”Ž'‰&Ž “^‹I”p‹&–"‡ 5ž15‰&ŠV'Ÿ55”ŽJŒa5Š^Š9›A™o‰IŠ^‰I”oŸ
—|o”V“KŽ 
ž1‹IŠ^’V˜ic‡ Ÿˆo5˜i‡Y˜i‹‡Ž`Ž''‰I”o‡ œo‰&'5”Ž ¥ ©?ˆV“^‡œg‹1“K”Ž‹I–#ž“^5Œ “D‡`Ÿ
Š^‹1‡ 5Š^¡M'5ŠD‰RŽ'—ZŽ ‹pŽ'ˆV
Œa‹IO‹1”Z”V‹1”›*Ÿ
‹I”g‡7 žR‰RŽ'“Kž1œV'‹—’oŸ
Ž'‡?‹&–$˜i‰1‡7’V'‡a“^”y¯ ¤ °•g°I°W±
£ ¦ ¸™gšI“^” ŒY“9Ž'ˆd‡'ŸˆV5˜i‡OŒYˆV“^Ÿˆ ‰&' ‡7˜|“D—“D‡ Ÿ5 5Ž  “^” Ž'“K˜i ¥ 1"‰RŽ'5•YŒb(ŒY“KŠ^Š
’g‡7 `’V”VšI5› 0’VŽ7Ž'‰pŽ “^˜|—“^‡'Ÿ
'
Ž'“K³‰RŽ'“K‹1”o‡`‰I‡`“K”¶¯ ¤ •° •° ±"Ž ‹Z—5'“Kž10–P’VŠ^ŠK¡—“D‡ Ÿ5 5Ž 
‡'ŸˆV˜|‡ ¥
‡?“^‡?Œa5Š^Š ”V‹RŒY”Z–P ‹1˜Ÿ
‹1”o‡7 žR‰&Ž “^‹I”MŠD‰WŒ`‡•1Ž'ˆVc—“K¹OŸ
’VŠKŽ¡O“^”]—V“^‡'Ÿ
'
Ž'“K³“K”Vš £ ¥ ° ¦
‰I “D‡ ‡–P ‹1˜ —V“^‡'Ÿ
‹1”1Ž'“K”’V“KŽ “^‡F“^” Ž ˆoi‡ ‹IŠ^’Ž'“K‹1” ¥ A–bŽ ˆV§o’¨–P’o”oŸ<Ž'“K‹1” f “D‡F”o‹I”VŠ^“K”o‰&•
Ž'ˆV0‡7‹1ŠK’Ž'“K‹1” U ŒY“^ŠKŠ­—5ž15Š^‹IœO‡ ˆV‹Ÿ ‡L“^”po”V“KŽ Ž “^˜| ¥ 2 ‹1b‡7Ž'‰RŽ'“K‹1”o‰&'¡i‡7ˆV‹Ÿ ‡ f (U ) “D‡
Ÿ5‹I”Ž “^”’V‹I’g‡`—’V0Ž'‹pŽ ˆV ‰&” “^”V
› ’Vš1‹I”V“^‹&Ž`Ÿ5‹I”o—“KŽ “^‹I”"•g‡ ‹ U = 0 ‰&ŽYŽ ˆV_‡ ˆV‹Ÿ ¥ A–
Ž'ˆVc‡ ˆV‹Ÿ p“^‡?’V”g‡Ž'‰I—V¡I•Ž ˆo5” f (U ) ‰&”o—ZˆV5”gŸ
 U ™Ÿ5‹I˜i,t‰ “^'‰1Ÿ˜i‰I‡ ’V 1•‰&”o—
t
’V˜iœo‡`‰1‡aŽ ˆVc‡ ˆV‹Ÿ pœo‰I‡'‡ ‡?x ™¡ ¥
U (x, t)
2 ‹IC™o‰&ŠD‰&”gŸ
_ŠD‰WŒ`‡•g“KŽC“D‡C—‡ “K‰&™oŠK_Ž ‹OŽ' ‰RŽ0‰&ŠD‡7‹[—“^‡'Ÿ
‹1”Ž “^”’o“9Ž'“K‡“^”Ž ˆo|—V‰&Ž'‰ b •
ŒYˆo“^Ÿˆ]˜p‰W¡O™,šI“^žI5”Z5“KŽ ˆV`™¡pŽ ˆo,œV ‹1™VŠ^5˜ª“KŽ'‡ 5ŠK–#‹1Y™¡pŽ ˆVc—V“^‡'Ÿ
'
Ž'“K³‰RŽ “^‹I” ¥
*”|šI”V5‰&Š•&—“D‡ Ÿ5‹I”Ž “^”’V“KŽ “^‡$“^”_Ž'ˆVa§o’¨ f (U ) ‹I#Ž ˆVY—V‰&Ž'‰ b ŒY“KŠ^ŠŠK‰I—_Ž ‹0‡7“^”Vš1’VŠ^‰I
œg‰& Ž'‡|“K”®Ž ˆV]˜i‰1‡7’o  ¥ ©?ˆoMŽ'5'˜
Ÿ‰&”®™ZŽ '‰RŽ'—{Ÿ
ŠD‰I‡'‡7“DŸ5‰IŠKŠ^¡¸ž“D‰ Ž'ˆV
Ž'ˆV5‹1 ¡M‹&–GŒa‰ O‡7‹1ŠK’VŽ “^‹I”oR‡?‹I–#Ÿ
‹1”o‡ 5'žW‰&Ž “^f‹I(U
”ZŠ^)‰WxŒ`‡ ¥ “K”ošI’VŠD‰&'“9Ž'“K‡a“K”[Ž ˆo0‡ ‹I’o'Ÿ5Ž'5'˜
‰I 0Š^‡'‡?ŒbŠKŠ.’o”o—5‡7Ž ‹‹— ¥
# " # ~ +(-.0 ƒ 0 „ … , + -0 ƒ 0 ƒ …p‚ ~ƒR~… , „ +(0* ”y‹1'—0Ž ‹žW‰IŠK’g‰RŽ iŽ'ˆVp“^”1Ž'5š1'‰IŠf‹I”·Ž ˆV ‹&– £ ¥^¤¦ •#ŒaO‡7œVŠ^“KŽ
'5š1’VŠD‰&Y‰&”o—]‡ “K”ošI’VŠD‰&?œo‰I7އ?ŒY“9Ž'ˆ['‡ œŸ<Ž?Ž'‹ 1"5™‡ šI’V0˜i‰1‡7’o  dx •
£ ¥ ¦
R=R +R
.
reg
sing
R
“^”1Ž'‹“9އ
°²
”o‰IŠK‹1šI‹I’g‡7Š^¡I•Œa0‡ œVŠ^“9ŽYŽ'ˆVcŸ
ŠKЉWž15‰&š1‡b‹&–"Ž'ˆV,'‡ “^—’g‰&Š.ž“^‰
£ ¥ &¦
i
i
Ri = Rreg + Rsing .
_‰1‡ ‡ ’V˜i0Ž ˆg‰RŽ`Ž'ˆV_‡ “K”Vš1’VŠD‰&Yœo‰I7އY‹&–#Ž ˆV_ ‡7“D—’o‰IŠ"‰&'cŸ
‹1”oŸ
”1Ž''‰&Ž —Z‰&Ž`Ž ˆVŸ
5Š^Š
“K”Ž 7–4‰1Ÿ
‡5•V‰I”o—Z—VŸ
‹1˜iœg‹‡7
£ ¥ 1¦
i
Rsing
i
“^”Ž ‹
i−1/2+
‡7‹
£ ¥ ¦
Rsing = Rsing
i
i−1/2+
‰&”o—
£ ¥^¤ ¦
Ri = Rreg + Rsing
i+1/2−
+ Rsing
,
i+1/2−
+ Rsing
d
i
i−1/2+
i+1/2−
U i (t) = Rreg + Rsing + Rsing .
dt
2 ‹IbŽ ˆoC'‡7Žb‹I– Ÿ<Ž “^‹I” •ŒaFš1“Kž1F‰&”M‹RžI5'ž“KŒ@ˆV‹RŒ Ž ‹_Ž '‰&ŽbŽ'ˆVF'5š1’VŠD‰&b‰I”o—pŽ'ˆV
7‡ “^”VšI’oŠ^‰IaŸ5‹I˜iœg‹1”V5”އJ‹I–Ž ˆV0'‡ “^—V’o‰&Š‹I”MŽ ˆV ‹&– £ ¥K¤ 1¦¥ *”[©?ˆV5‹1 ˜ ¥K¤ •Œb
šI“^žILš15”V'‰IŠI‡7’V¹pŸ5“K”Ž#Ÿ
‹1”o—“KŽ “^‹I”o‡GŒYˆV“DŸˆ,šI’o‰I'‰I”Ž 5$Ž'ˆo‰RŽ#Ž ˆob‡'ŸˆV5˜i £ ¥^¤ 1¦ “^‡GŒbŠKŠK›
™o‰&ŠD‰&”oŸ5— –P‹I,‰&”¸‘’V“^ŠK“^™V'“K’V˜S‡7Ž'‰&Ž  V ¥ *” ’o™o‡7Ÿ<Ž'“K‹1” ¥ •.Œai—“^‡'Ÿ
’g‡ ‡0‰Z”’o˜_™5
‹&–#‡'ŸˆV˜|‡Y‰&”o—[‘1’o“KŠ^“K™o “^’V˜‡7Ž'‰&Ž ‡a–P‹1YŒYˆV“DŸˆZŽ'ˆV‡ ,Ÿ
‹1”o—“KŽ “^‹I”o‡Y‰I ,‡'‰RŽ “D‡7o— ¥
#"$#%&#
~ ƒR~ + -0 ƒ 0 ƒ ‚ ~]ƒR~… , „ + 0
’VœVœ‹1‡ CŽ ˆo‰&Ž
£ ¥^¤I¤¦
Ũ (x) ≈ U (x)
£ ¥^¤ ° ¦
b̃(x) ≈ b(x)
‰&'|œo“KŸ
5ŒY“D‡ O‡7˜i‹‹&Ž'ˆ·'Ÿ5‹I”o‡7Ž '’oŸ
Ž “^‹I”o‡0‹I–bŽ'ˆVMŸ
ŠKŠb‰WžI5‰&š1‡ Ū , b̄ ‹RžI5CŽ'ˆVMŸ
ŠKŠD‡
i i
¥
Ÿ
5

^
Š
Š
•
'
Ž
‹{™·’o‡7—d“^” Ž'ˆV
1

Ž
(1)
(p) ™·‘’o‰1—‰RŽ ’o ¸œg‹1“K”Ž'‡[ŒY“KŽ ˆV“^”
Ii
xi . . . x i
Ii
£
^
¥
¤
I
²
¦
¥
¥
‘1’g‰I—‰RŽ'’V 
™5Š^‹RŒ *” ’o™o‡7Ÿ<Ž'“K‹1”
ŒaŒY“KŠ^ŠF—V5žIŠK‹1œ{'Ÿ5‹I”o‡7Ž '’oŸ
Ž “^‹I”o‡
ŒY“9Ž'ˆZŽ'ˆV0–P‹IŠ^Š^‹RŒY“K”Vš|œV'‹Iœ5 Ž¡­º
Z~ , , ‚ # " # ! &
( £ ¥ ¦ ! . * V (U,
b) * 2 (Ūi , b̄i)
4 (U, b) 4 *.4 . (Ũ , b̃) °
0Œa5Š^Š9›A™o‰IŠ^‰I”oŸ
—–P‹I0Ž'ˆVp‘’V“^Š^“K™V'“^’V˜ ‡7Ž'‰RŽ'
(U, b)
(1)
(p)
xi . . . x i ∈ I i
£ ¥K¤ ¦
(j)
(j)
V
(j)
Ṽ (xi ) := V (Ũ (xi ), b̃(xi )) ≡ V
‰&”o—(Ž ˆVO‘’o‰1—‰RŽ ’o |œg‹1“K”އ
for j = 1 . . . p.
*”‰I”o‰&Š^‹Iš1¡Ž'‹ £ ° ¥ ²1¦ V• Š^
Ž
£ ¥^¤ ¦
R̃ := R(Ũ , b̃) = −f (Ũ)x + s(Ũ , b̃)
™0Ž ˆoc‰&œVœV'‹W¨“K˜p‰&Ž C ‡7“D—’o‰IŠ ¥ 15Ž
£ ¥^¤²I¦
K(R̃; Ii ) :=
p
X
xi+1/2
(j)
ωj R̃(xi )
j=1
1
≈
4xi
Z
R̃(x)dx
xi−1/2
™‰M‘1’g‰I—‰RŽ'’V ,‹I–$Ž ˆV|‰&œVœV'‹W¨“K˜p‰&Ž ,'‡ “^—’g‰&Š R̃ ‹RžIYŽ ˆV“K”Ž'5'“K‹1`‹&–LŸ
ŠKŠ I ‰&”o—
i
Š^
Ž
£ ¥^¤ ¦
i
Rreg := K(R̃; Ii ).
,ŒY“^ŠKŠ"‡7Ž ’g—¡Z‘’o‰1—'‰&Ž ’V'‡aŒY“KŽ ˆ[Ž ˆo0–P‹IŠ^ŠK‹RŒY“^”Vš|œV ‹1œg7Ž¡­º
[~ (,, ‚ # # £ ¥^¤ ¦ |ŒbŠKŠK›A™o‰&ŠD‰&”oŸ5—y–P‹1_Ž'ˆV]‘’V“^ŠK“^™V'“K’o˜
‡7Ž'‰&Ž  V £ ¥^¤ &¦
i
Rreg = 0
. (Ũ , b̃) & .4 £ ¥^¤ ¦ #" #" #
~ … , + -0 ƒ 0 ƒ ‚ ~ƒR~… , „ +(0 ?”V‹RŒ¶Ž'’V ”Ž ‹FŽ ˆo?‡ “^”VšI’VŠD‰&$œo‰I7Ž$‹&–oŽ ˆV?'‡ “^—’g‰&Š ¥ 15Žf’o‡G–P‹Ÿ5’o‡$’Vœ‹I”i‰&”“K”Ž 7–4‰1Ÿ

¥ 2 ‹IZ“K”g”V“9Ž'‡ “K˜p‰IŠF‡ ˜i‰IŠKŠ ε •YŒa“^”1Ž' ‹—’gŸ
 ‰¶™‹I’V”g—V‰&'¡®ŠD‰W¡I (x
xi+1/2
i+1/2 −
¥
9
“
'
Ž
V
ˆ
K
“
y
”
'
Ž
V
ˆ
D
“
,
‡
^
Š
W
‰
1
¡
5


.
•
b
Œ
p

5
Ÿ
I
‹
o
”
7
‡
Ž
'

o
’
<
Ÿ
,
Ž
™
I
‹
V
’
g
”
—

y
—
Ÿ
1
‹
”
Ž
^
“
”
o
’
I
‹
o
’
C
‡
P
–
V
’
”gŸ<Ž “^‹I”g‡
ε, xi+1/2 + ε)
‰&”g— b̂ (y) •VŒYˆV  y = x − x ¥ ©?ˆoC™‹I’o”o—V‰&'¡OžR‰&Š^’V‡Y‰&'
Ûε (y)
ε
i+1/2
£ ¥^¤ ¦
±
Ûε (±ε) = Ũ (xi+1/2 ±) = Ũi+1/2
£ ¥^¤ ¦
b̂ (±ε) = b̃(x
±) = b̃±
,
ε
i+1/2
i+1/2
°
ŒYˆV5' Ũ ‰&”o— b̃ ‰I iŽ'ˆVOœV“^Ÿ55ŒY“D‡7O‡ ˜i‹‹IŽ ˆy'Ÿ
‹1”o‡7Ž '’oŸ<Ž'“K‹1”o‡C–P ‹1˜ £ ¥^¤I¤W¦ • £ ¥^¤ ° ¦<¥
`‹RŒdŒa,—
g”V0Ž ˆVc‡ “^”VšI’VŠD‰&?œo‰I7އ?‹&–GŽ ˆV,'‡ “^—V’o‰&Š.‹1”MŽ'ˆV ‹I– £ ^¥ ¤ ¦ ž“D‰
£ ¥ ° 1¦
i+1/2−
Rsing
£ ¥ ° ¤¦
i+1/2+
Rsing
1
:= lim
ε→0 ε
:= lim
ε→0
1
ε
Z0
−ε
Zε
R̂ε (y)dy
R̂ε (y)dy,
ŒYˆV5'
£ ¥ °I° ¦
R̂ε (y) := R(Ûε (y), b̂ε (y)).
Z~ , , ‚ # # # £ ¥ ° 1¦V£ ¥ ° ¤¦ !
$?Œa5Š^Š9›A™o‰IŠ^‰I”oŸ
—p–P‹I?Ž'ˆV,‘’V“^Š^“K™V'“^’V˜ ‡7Ž'‰&Ž  V (
£ ¥° ¦
Ṽ
= Ṽ
=V
0
i+1/2−
£ ¥° ¦
#"$# #
i+1/2−
Rsing
i+1/2+
i+1/2+
= Rsing
= 0.
~ ~ ~ƒ 0- _~ -.- / 0-.0 !, ~‚gƒR~ ‹c–4‰IbŒaFˆg‰WžI`“^”Ž '‹—V’oŸ
—M‰c”o‹&Ž “^‹I”M‹&–"Œa5Š^Š9›A™o‰IŠ^‰I”oŸ
“^”Vš,–P‹1b‰IŸˆO™V’o“KŠD—“^”Vš&›A™VŠ^‹Ÿ i‹I–
Ž ˆVi‡7˜i“9›*—“D‡ Ÿ5 5Ž ,o”o“9Ž'ž1‹IŠ^’V˜i_‡ Ÿˆo5˜i ¥ µ ‹I˜_™o“K”V“^”VšMŽ ˆV˜ Œb|Ÿ5‰&”(“K˜i˜i—“D‰RŽ'5Š^¡
‡7Ž'‰&™oŠK“D‡7ˆo—MŽ ˆV0–P‹1ŠKŠ^‹RŒY“K”oš_Ž'ˆV5‹1 ˜[º
~‚gƒR~ #%&# . 4 £ ¥ ° ²1¦
d
i
i−1/2+
i+1/2−
U (t) = R + R
+R
,
dt
i
reg
sing
sing
R
£ ¥ ° ¤¦ & R
R
$
4 (i − 1) . 4 *) * V i
4& 4 . (Ũ , b̃) £ ¥K¤1¤¦ £ ¥K¤ ° ¦ ! £ ¥^¤ ¦ $ & *.&! & 3 4 4*4 + , .# " $
4 £ ¥ ° ²1¦ & 4 . *
* ( V
, . £ ¥° ¦
d
U (t) ≡ 0.
& i
reg
£ K¥ ¤ ¦ i+1/2−
sing
dt
i
£ ¥ ° ¦ $
i−1/2+
sing
°
©?ˆo“^‡Fo”V“D‡ ˆV‡C‹I’oFš15”V'‰IŠ#—“D‡'Ÿ
’o‡'‡7“^‹I”(‹&–bŒa5Š^ŠK›™o‰IŠ^‰I”oŸ
—‡ Ÿˆo5˜i‡ ¥ *” Ž'ˆVi”V
¨Ž
‡ ’V™o‡ Ÿ
Ž “^‹I”•RŒaaŒY“KŠ^ŠVŸ
‹1”o‡Ž' ’gŸ<Ž#‡ 5ž15‰&Ї ŸˆV˜i‡#ŒYˆV“DŸˆc–4‰&Š^Š“K”Ž'‹Ž'ˆVJ–P‰&˜iŒb‹1
C‹I’Ž ›
Š^“^”V—[“^”[©?ˆV‹I'5˜ ¥K¤ •‰I˜i‹I”VšŽ ˆV˜«Ž ˆoC'Ÿ55”ŽY‡7Ÿ
‹I”g—M‹1'—a‡'ŸˆV˜|C‹&– ’o—V’o‡ ‡ 
5Žc‰&Š ¥ ¯ ¤ ±f‰I”o—Ž'ˆViˆV“^šIˆ›A‹I—5C‡ Ÿˆo5˜i‡F‹&– µ ‰1‡Ž' ‹g• $‰I ‡5Ž0‰IŠ ¥ ‰&”o— Ž ˆVi‰&’Ž'ˆV‹I‡
¯ •° •o° ¤ ± ¥
# # ~ 0-., 0, ‚ ,0 ~ )$+(,.-,/ ƒ ,.+ ƒW~ ‚ … ƒ + , ‚ …
* ”cŽ ˆV“D‡G‡ Ÿ
Ž “^‹I”,ŒaJŒY“^ŠKЇ ˆV‹RŒ(Ž'ˆo‰RŽ$‡7‹1˜iJ'Ÿ
”ŽG‡ Ÿˆo5˜i‡–4‰&Š^Š1“^”Ž ‹YŽ'ˆVL–P‰&˜i5Œa‹I
‹1’Ž Š^“^”V—¸“K”¸Ž ˆoœV'5ž“^‹I’o‡0‡ Ÿ
Ž “^‹I” ¥ *” ’V™o‡ Ÿ
Ž “^‹I”o‡ ¥ ¥K¤ ¥ ¥ •gŒb|ŒY“^ŠKŠ$Ž'ˆV5'
–P‹1 
ž15'“9–P¡_Ž ˆVŒbŠKŠK›™g‰&ŠD‰&”oŸ5“K”VšCœV'‹Iœ5 Ž “^‡$–P‹1$Ž ˆV Ÿ
‹I”g‡Ž' ’oŸ
Ž “^‹I”•&Ž ˆV‘’o‰1—‰RŽ ’o 1•&‰&”o—
Ž'ˆV‡ “^”VšI’VŠD‰&FŠ^‰W¡15‰1‡`“^”Ž '‹—V’oŸ
—]“K” 
g”V“9Ž'“K‹1”o‡ ¥ °• ¥ ‰&”o— ¥ ¥ F”oŸ
cŽ ˆV“D‡ˆg‰I‡
™5”d—‹1”VI•`©?ˆV‹I'5˜ ¥^¤ “K˜iœVŠ^“^‡MŽ ˆo‰&ŽMŽ ˆo ‹RžI'‰IŠKЇ'ŸˆV˜|‡O‰&' Œa5Š^Š9›A™o‰IŠ^‰I”oŸ
—
‰1Ÿ5Ÿ5‹I—“K”oš_Ž'‹ 5o”V“KŽ “^‹I” ¥^¤I¥
# #.% # ‚ ‚ ƒR~ ‚ … ƒ +
3 , ‚ ,. ~ ~ -.- ,) ~ƒ , ‚oƒ
]€„GƒR‚g… 0 ,
ƒR~ ‚ … ƒ +
3, ‚ … ,. ~ ~ -.- ,) ~1ƒ , ‚oƒ
]™gšI“^”®ŒY“KŽ ˆ ‰¸‡ ‹&›*Ÿ5‰IŠKŠ^— $ *..4 4 4*. Ž ˆo‰&Ž|œV'‡ 5'žI‡,Ž'ˆV[—V“^‡7›
Ÿ ˆg‰&'šI m ‰&”g—_Ž'ˆV`Œ?‰RŽ'5'ŠKžI5Š η = h + b ¥  YŒa?–P‹IŠ^Š^‹RŒ ’g—’o‡'‡7`5ŽJ‰&Š ¥ ¯ ¤ ± ¥ ©?ˆV5¡
™5š1“K”[Ž'ˆV, Ÿ
‹1”o‡Ž' ’gŸ<Ž “^‹I”ZœV'‹Ÿ5‡'‡?™¡O Ÿ
‹1”o‡Ž' ’gŸ<Ž “^”VšŽ ˆVc—V“^‡'Ÿˆo‰&'šI m •Ž ˆV,Œ?‰RŽ'5
Š^5ž15Š η ‰&”o— Ž ˆV™‹&Ž Ž ‹I˜ b ¥ ©?ˆo5” “K” ¯ ¤ • £ ° ¥ 1¦ ±•JŽ ˆV¡®—
g”V]Ž ˆV]'Ÿ5‹I”o‡7Ž '’oŸ<Ž'—
ˆo5“^šIˆŽ‰I‡
£ ¥ ° &¦
h̃(x) := η̃(x) − b̃(x).
©?ˆo5'
–P‹I'I•1“9–.Ž'ˆVF—V“^‡'Ÿˆo‰&'šI`‰I”o—|Ž ˆoŒ?‰RŽ JŠ^5ž15Šg‰I `Ÿ5‹I”o‡7Ž'‰I”ŽLŽ ‹™gšI“^”pŒY“9Ž'ˆ•Ž ˆV¡
ŒY“^Š^ŠG'5˜p‰&“^” Ÿ
‹1”o‡7Ž'‰&”Ž—’o “^”VšpŽ'ˆV_'Ÿ5‹I”o‡7Ž '’oŸ<Ž'“K‹1” ¥ *” œo‰& Ž “DŸ
’oŠ^‰I•Ž'ˆV_ŠD‰ 1c‰RŽC ‡Ž
£ m = 0 • η = const¦ “^‡$œo ‡7 ž1—_Ž ˆV'‹I’Vš1ˆV‹I’VŽ#Ž'ˆVY'Ÿ
‹1”o‡7Ž '’oŸ<Ž'“K‹1” ¥ 15ŽL’o‡f˜i5”Ž'“K‹1”
“^”y
œo‰I‡'‡ “K”VšMŽ ˆo‰&Ž h ‰I‡,—5o”V—¸“^” £ ¥ ° &¦ “D‡0Š^‰&Ž 50‹1”(Ž' ’V”gŸ5‰RŽ'—¸™¡ ’o—’g‡ ‡ i
Žc‰&Š ¥
“^”®‹1'—V5cŽ'‹(š1’o‰&‰&”Ž pœg‹‡7“KŽ “^ž“9Ž¡y‹I–YŽ ˆV[Œa‰&Ž _ˆV“Kš1ˆ1Ž ¥ ©?ˆo“^‡“^‡|—‹1”VM“^”{‡ ’oŸˆ®‰
Œ?‰W¡OŽ'ˆo‰RŽYŽ'ˆVcŒa5Š^Š9›A™o‰IŠ^‰I”oŸ
“^”Vši Š^‰&Ž “^‹I” £ ¥ ° &¦ “D‡`œV'‡ 5'žI— £ ‡ 5M¯ ¤ • £ ° ¥ ¦ • £ ° ¥^¤ ¦ ± ¦<¥
©?ˆo5'
–P‹I'I•­Ž'ˆV|ˆ¡—'‹1‡7Ž'‰&Ž “DŸc'Ÿ5‹I”o‡7Ž '’oŸ<Ž'“K‹1” “D‡FŒa5Š^ŠK›™o‰IŠ^‰I”oŸ
—]–P‹ICŽ'ˆViŠ^‰ I‰&Ž, ‡Ž
‰1Ÿ5Ÿ5‹I—“K”oš_Ž'‹ 5o”V“KŽ “^‹I” ¥ ° ¥
' )$+(,.-.,./ ƒ ,+ ƒR~ ‚ … ƒ +
3, ‚ , ~ ~ -- ,.) ~ƒ , ‚gƒ
*”{¯ ° ¤ • Ÿ
Ž ¥ ¥ °W±#Ž ˆV|‰&’Ž'ˆV‹I‡—V5ž“^‡ —(‰O'Ÿ
‹1”o‡7Ž '’oŸ<Ž'“K‹1”ŒYˆV“^Ÿˆ(œV ‡7 ž1‡`‰IŠKŠ#‹I”o
›
°
—“K˜i”o‡7“^‹I”g‰&Š#‘’V“^ŠK“^™V'“^‰O–P‹IFŽ ˆV|‡7ˆo‰IŠKŠ^‹RŒ Œ?‰RŽ ‘1’g‰RŽ “^‹I” ¥ ˆV“^Š^Œa_'
–PŽ'‹OŽ ˆg‰RŽ
œo‰&œ5$–P‹1GŽ'ˆV`—5Ž'‰&“^ŠD‡5•&Œa?Œb‹1’VŠD—cŠ^“ 1bŽ'‹0šI“^žIbŽ ˆV 15¡,“D—‰C“^”i‰C”’އ7ˆVŠKŠ ¥ C“Kž15”iŸ
5Š^Š
‰WžI5‰&š1‡ (U ) ‰&”o—[‰|™g‹IŽ7Ž'‹I˜ª–P’o”oŸ<Ž'“K‹1” b(x) •oŒa0Ÿˆo‹‹‡7CŠ^‹Ÿ‰&Š.'
–P ”oŸ
0žR‰&Š^’V‡ V
‹&–JŽ'ˆVi‘’V“^ŠK“^i™V'“K’o˜SžR‰&'“^‰I™VŠK‡ ¥ ©?ˆV‡ i‰&'|—5o”V—(“^˜iœVŠK“DŸ
“KŽ Š^¡(™¡]Ž'ˆVp ‘’V“K'5˜i”1Ži
Ž ˆo‰&Ž
Z
£ ¥ ° ¦
1
U (V , x)dx = U .
4xi
i
i
1
Ž,’o‡0œg‰&’o‡ |–P‹I,‰[˜|‹1˜i5”Žc‰&”o—·—“D‡ Ÿ5’o‡ ‡FŽ'ˆV“^‡0'5ŠD‰RŽ'“K‹1”¸Ÿ‰&'
–P’VŠ^ŠK¡­º
“^‡CŽ'ˆV
“K”žI'‡ _‹I– V (U, x) •“ ¥  ¥ U (V (U, x), x) = U ¥ `5ŠD‰RŽ “^‹I” £ ¥ ° 1¦ ŸˆV‹‹1U‡ (V,
‡ Vx) ‰1‡`Ž'ˆV
’V”V“D‘1’o £ ‡7`Ž ˆoFœo‰I'‰IšI‰&œVˆg‡fœV'Ÿ
—“^”VšM¯:° ¤ • 
– ¥ ¥ °W± ¦ Š^‹Ÿ5‰IŠg‘1’o“KŠ^“K™o “^’V˜ª‡ ’oiŸˆpŽ ˆg‰RŽ
Ž ˆVpŸ
‹1 '‡ œ‹I”o—“^”Vš[Ÿ
‹I”g‡7 ž1—žR‰&'“D‰&™VŠ^‡ U (V , b(x)) ˆo‰Wž1cŽ ˆoO‡ ‰I˜|iŸ
ŠKŠL‰Wž15‰&š1
‰I‡FŽ ˆVp”’V˜i “DŸ5‰IŠ$—o‰RŽ'‰ ¥ AŽ,“D‡0œV ‹Rž15” “^” ¯ i° ¤ • 
– ¥ ¥ °W±$Ž ˆg‰RŽ•G“9–bŽ ˆVp—V‰&Ž'‰ U (x)
Ui
‰&”o—
‰I “K”·ŠK‹Ÿ‰&Š$‘’V“^ŠK“^™V'“K’o˜ £
–P‹I0‰&Š^ŠfŸ
ŠKŠD‡ ¦ •­Ž ˆV”(Ž'ˆV
 5–P5'b(x)
5”oŸ5b‘1’o“KŠ^“K™o “^’V˜ ‡7Ž'‰RŽ'‡ V Ÿ5‹I˜iœVV’(U
Ž'—_(x),
ž“D‰ x)£ ¥ ≡° 1V¦ Ÿ5‹I“^”oŸ
“D—?ŒY“KŽ ˆIŽ iˆVaŽ '’VaŠK‹Ÿ‰&Š
i
‘’V“^ŠK“^™V'“K’V˜ ‡Ž‰RŽ' V ¥
©?ˆo|'Ÿ5‹I”o‡7Ž '’oŸ
Ž “^‹I” “D‡0Ÿ
‹I˜iœVŠ^
Ž'—(™¡Š^“^˜|“KŽ “^”Vš[Ž ˆo|'Ÿ5‹I”o‡7Ž '’oŸ
Ž “^‹I”
ŒY“KŽ ˆ
 ‡7œŸ
ŽcŽ ‹Ž'ˆVM'
–P ”oŸ
pžR‰IŠK’V‡ V £ ‡ 5(¯ ° ¤ • £ ¥^¤ ¦ ± ¦<¥ ©?ˆV[‰&'šI’V˜i5”ṼŽ,Ž'(x)
ˆo‰RŽ_‹1’V
 Ÿ
‹I”g‡Ž' ’oŸ
Ž “^‹I”,“D‡"Œa5Š^ŠK›™o‰IŠ^‰I”oŸ
—C–P‹I i
‘’V“^ŠK“^™V'“K’V˜ ‡7Ž'‰&Ž ‡G“D‡G”o‹RŒ ‡Ž''‰I“Kš1ˆ1Ž –P‹I'Œa‰I'—º
“9–#Ž ˆV,—V‰&Ž'‰i‰&'CšIŠ^‹I™o‰IŠKŠ^¡p“K”[‘’V“^Š^“K™V'“^’V˜ £ “ ¥  ¥£ ¥ ¦ ˆV‹IŠD—V‡a–P‹I`‰|š1ŠK‹1™o‰&Š­‘’V“^Š^“K™V'“^’V˜
‡Ž‰RŽ  ¦ •LŽ'ˆV5” V = V –P‹1i‰IŠKŠ`Ÿ55Š^Š^‡•b‰I”o—®Ž ˆV]‘’V“^Š^“K™V'“^’V˜|›Š^“K˜i“KŽ ¯ ° ¤ • £ ¥^¤ 1¦ ±
i
¥
5”–P‹1'Ÿ5V‡bŽ ˆo‰&Ž Ṽ (x)
≡V
~ -- /(0-0
~„ ƒW~ ‚ … ƒ + , ‚ „ + ~ ‚ 0 … ƒW‚ 0 ƒR~…p~ 0- #
*”®¯ ± µ ‰I‡7Ž '‹o• 0‰&Š^ŠD‰&—‹o• 1‹1œg³|‰I”o— f‰&'‡C‡7Ž'‰& Ž0™¡ Ÿ5‹I˜iœV’Ž'“K”oš V ‰1‡F“^” £ ¥ ° ¦<¥
©?ˆV“^‡?š1“Kž1‡aŽ'ˆV,ŠK‹RŒ ‹I—5Y‰1Ÿ5Ÿ
’o'‰&Ž C‘’V“^ŠK“^™V'“K’V˜  Ÿ
‹1”o‡Ž' ’gŸ<Ž “^‹I” i
Ii
Ũ ∗ (x) := U (V i , b(x))
YŒ ˆV“^Ÿˆ “D‡i‹I”VŠ^¡¶™o‰I‡ —{’Vœ‹I”{Ž ˆVžR‰IŠK’V‡|ŒY“9Ž'ˆV“K” Ž'ˆV ith 5Ÿ 5Š^Š ¥ 15ŽO’o‡ I 5œ i ‰&”o—
ˆV5”oŸ5 Ũ ∗ V¨— ¥ ©G‹¸g”o— Ž'ˆVˆV“^šIˆ›A‹I—|Ÿ5‹I' Ÿ<Ž “^‹I” µ I‰ ‡7Ž '‹¸5Žp‰IŠ ¥ Ÿ ‹1˜iœV’Ž ‰
 Ÿ
‹I”g‡Ž' ’oŸ
Ž “^‹I”Zœg‹1ŠK¡”V‹1˜|“D‰&Š
¯ ∗ ), j = i − k, . . . , i + k)
Qi (x) = p(x|(Ij , U j − Ũ
j
ŒYˆV“^Ÿˆ[“^”1Ž'5'œg‹1Š^‰&Ž ‡aŽ ˆVc—“K»­5'5”oŸ5‡?‹&–GŽ ˆVcŸ55Š^Š"‰WžI'‰IšI‡ U ‰&”o—MŽ ˆVcŸ55Š^Š"‰WžI'‰IšI‡
j
‹&–YŽ ˆoMŠ^‹RŒ ‹1'—V5_'Ÿ5‹I”o‡7Ž '’oŸ
Ž “^‹I” Ũ ∗ ¥ `‹IŽ MŽ ˆo‰&Ž U ‹1”VŠK¡¶
Ÿ5‹I“^”oŸ
“D—‡_ŒY“9Ž'ˆ Ũ¯ ∗ “9–
j
j
j=i
¥ 2 “K”g‰&Š^ŠK¡ µ ‰1‡Ž' ‹|
މIŠ ¥ 'Ÿ5‹I”o‡7Ž '’oŸ
Ž
U
™¡
Ũi (x) := Ũi∗ (x) + Qi (x).
AŽO“D‡pœV'‹RžI”®“^” ¯ ±Ž ˆo‰&ŽpŽ ˆV“D‡i Ÿ
‹1”o‡Ž' ’gŸ<Ž “^‹I” “D‡iˆV“Kš1ˆ›A‹I—5p‰IŸŸ
’V‰RŽ'I•J‰I”o— ŒbŠKŠK›
™g‰&ŠD‰&”oŸ5—Z“9– V = V –P‹I`‰&”¡ i ¥
i
# # " # ~ -- /(0-0
~„ )$+ 0 „Gƒ 0 + ƒR~ ,. ~ ~ -.- ,) ~1ƒ , ‚oƒ
*”yŽ'ˆV“D‡_‡ Ÿ<Ž'“K‹1”¶ŒbO‡7Ž'‰I7Ž,–P'‹I˜ Ž ˆoM‡7˜i‹‹&Ž'ˆ•#ŒbŠKŠK›™g‰&ŠD‰&”oŸ5—¸ Ÿ
‹I”g‡Ž' ’oŸ
Ž “^‹I”o‡ Ũ • b̃
ŒYˆo“^Ÿˆ[Œb,Ÿ5‹I”o‡7Ž '’oŸ<Ž'—M“K”ZŽ ˆV,œo ž“^‹I’g‡a‡ Ÿ
Ž “^‹I”[‰&”o—[—5'“^žICŒbŠKŠK›™g‰&ŠD‰&”oŸ5—p“^”Ž 5'“^‹I
‘’o‰1—‰RŽ ’o ‡ K(R̃, I ) £ Ÿ
– ¥`£ ¥K¤W²I¦¦
¥ *”[‰&Š^Šo‹I–.Ž ˆV“D‡b‡ Ÿ
Ž “^‹I”•Œa'‡7Ž '“^Ÿ
ŽJ‹I’V‡ 5Š^žI‡fŽ ‹
Ž'ˆVc‡ ˆo‰&Š^ŠK‹RŒ Œa‰&Ž ai‘’o‰RŽ'“K‹1”o‡ ¥
2 ‹I`Ÿ5‹I”oŸ5“^‡ 5”V‡ ‡•Œb0’o‡ 0Ž ˆo0–P‹IŠ^ŠK‹RŒY“^”Vš|”V‹&މRŽ “^‹I”"º$‡ ’VœVœ‹1‡ 0Ž ˆg‰RŽ
a, b : Ω → R
‰I 0'‰IŠ9›AžR‰&Š^’V—O–P’V”oŸ<Ž'“K‹1”o‡`—5o”V—M‹1”[‹1’VY‡7œg‰RŽ “D‰&Š—V‹I˜p‰&“^” ¥ 2 ‹1`‰_o¨—]Ÿ
5Š^Š I •VŠ^
Ž
i
ã, b̃ : Ii → R
™Z‡ ˜i‹‹&Ž ˆ® Ÿ
‹I”g‡Ž' ’oŸ
Ž “^‹I”o‡0‹Rž15,Ž'ˆVM“^”Ž  “^‹Ic‹I–YŽ ˆV[Ÿ
ŠKŠ ¥ ©?ˆV5”®ŒbM—V5”V‹IŽ OŽ'ˆV
—V“9»­5'5”oŸ5c‰&”o—Z˜i‰I”[‹1œg'‰&Ž ‹1'‡b™¡
£ ¥° ¦
+
+
Dã := ã−
ā := (ã−
i+1/2 − ãi−1/2 ,
i+1/2 + ãi−1/2 )/2
2 ‹IYŠD‰RŽ'5Y’o‡ I•VŒa0‹I™o‡ 5'žIFŽ ˆoc—“^‡'Ÿ
'
Ž'0œV ‹—’gŸ<ŽY ’oŠK0‹&–f—“K» ”oŸ
“^”Vš
£ ¥ ¦
D(ãb̃) = ā Db̃ + Dã b̄.
+ 0 „"ƒ 0+ ƒR~ A‚gƒ ~ -0 g~ 0 ƒW~… 0™gšI“^”MŒY“KŽ ˆ]‰_ŒY“D—ŠK¡p’o‡ —[‘’o‰I—V'‰&Ž ’V'`ŒYˆV“DŸˆM“D‡?ŒbŠKŠK›A™o‰&ŠD‰&”oŸ5—i–P‹1JŽ'ˆV0Š^‰ IC‰RŽ
'‡7Ž £ m ≡ 0 • h + b ≡ η̄ ¦<¥ 2 ‹I`‰I”¡O‡ ˜i‹‹&Ž ˆ Ũ • b̃
xi+1/2
Z
xi−1/2
£ ¥ ¤¦
xi+1/2
R̃(x)dx =
Z
xi−1/2
(−f2 (Ũ )x − g h̃b̃x )(x)dx
xi+1/2
= − Df2 (Ũ ) − g
Z
xi−1/2
(h̃b̃x )(x)dx.
¤
©?ˆV5'
–P‹1 Œb|”V5—Ž'‹[—5o”Vi‰Z‘’o‰1—‰RŽ ’o _–P‹ICŽ ˆV|“^”1Ž'5š1'‰IŠG‹I–LŽ ˆVp‡ ‹I’VŸ
_Ž  ˜ ¥
‰&”o— ‰IœVœV'‹W¨“K˜p‰RŽ',™g‹IŽ ˆ
(1)
(2)
xi = xi−1/2 , xi = xi+1/2
‰I”o— h̃ ™¡MŠK“^”V‰I?–P’V”oŸ
Ž “^‹I”o‡ ¥ ©?ˆV“D‡YšI“^žI‡
b̃
ŒY“KŠ^ŠG’g‡7_Ž ˆV_ŽŒb‹O”o‹—V‡
£ ¥ °¦
xi+1/2
Z
(h̃b̃x )(x)dx =
xi−1/2
h̃i−1/2 + h̃i+1/2
(b̃i+1/2 − b̃i−1/2 ) = h̄ Db̃
2
*”o‡77Ž'“K”oš £ ¥ ¤W¦ ‰&”o— £ ¥ ° ¦ “K”Ž'‹ £ ¥^¤²1¦ Œa0‹I™Ž‰&“^”MŽ'ˆVc‘’o‰I—V'‰&Ž ’V'
£ ¥I ¦
K(R̃, Ii ) :=
1 −Df2 (Ũ ) − g h̄Db̃ .
4xi
‡7“^˜iœVŠKcŸ‰&ŠDŸ
’VŠD‰RŽ'“K‹1”Z‡ ˆV‹RŒ`‡aŽ ˆg‰RŽ?Ž ˆV“D‡Y“D‡YŒa5Š^Š9›A™o‰&ŠD‰&”gŸ
—O–P‹I?Ž'ˆV,Š^‰ I0‰RŽ`'‡7Žº$ A–
£ ¥ ¦
Ž ˆV”
£ ¥ ²1¦
m̃i−1/2 = m̃i+1/2 = 0,
f2 (Ũi±1/2 ) = g2 (h̃i±1/2 )2
•o‡ ‹
b̃i−1/2 + h̃i−1/2 = b̃i+1/2 + h̃i+1/2 = η̄,
g −Df2 (Ũ ) = − D h̃2 = −g h̄Dh̃ = −g h̄D(η̄ − b̃) = g h̄Db̃.
2
LŠK’ošIšI“^”Vš £ ¥ ²I¦ “^”Ž ‹ £ ¥ 1 ¦ Œb0“^˜i˜|—“D‰RŽ ŠK¡Z‹I™Ž‰&“^”MŽ'ˆo‰RŽ
£ ¥ ¦
K(R̃, Ii ) = 0
–P‹I?Ž ˆo,Š^‰ I,‰RŽY'‡7Ž ¥
+(0 „"ƒ 0+ ƒR~ ‚g2
ƒ ‚ ,. ¸ 0 ~ƒZ~ )$+ ,-.,./ ƒ ,.0
*”·¯:° ¤ ±Œb,'
o”o—MŽ ˆVc‘’o‰1—'‰&Ž ’V' £ ¥ I ¦ Ž ‹i“K”gŸ
Š^’o—,˜i‹Rž“K”Vši‘1’o“KŠ^“K™o “D‰ ¥ ©?ˆVI¡
‹I™o‡ 5'žR‰RŽ “^‹I”Z“^‡aŽ'ˆo‰RŽ
Df2 (Ũ ) = D(m̃ũ + g h̃2 /2)
= m̄Dũ + ūDm̃ + g h̄Dh̃
£ ¥ I¦
`‹&Ž'“K”ošŽ'ˆo‰RŽ
£ ¥ ¦
= m̄Dũ + ūDm̃ + h̄D(Ẽ − g b̃ − ũ2 /2)
= ūDm̃ + h̄DẼ − g h̄Db̃ + (m̄ − h̄ū)Dũ.
m̄ − h̄ū = Dh̃Dũ/4
•Œa0‹I™Ž‰&“^”MŽ'ˆo‰RŽ
1
Df2 (Ũ ) = ūDm̃ + h̄DẼ − g h̄Db̃ + Dh̃(Dũ)2 .
4
°
©?ˆo5'
–P‹I'I•–P‹1`‰|˜|‹Rž“^”Vš|Œa‰&Ž 5Y‘’V“KŠ^“^™V “^’V˜]•VŒYˆV  Dm̃ = DẼ = 0 •
£ ¥ ¦
1
−Df2 (Ũ ) − g h̄Db̃ + Dh̃(Dũ)2 = 0.
4
‡`‰iŸ
‹1”o‡7‘’V5”oŸ5I•Ž'ˆVc‘’o‰I—‰RŽ'’V'
£ ¥ ¦
1
1
K(R̃, I ) :=
−Df (Ũ ) − g h̄Db̃ + Dh̃(Dũ)2
i
2
4xi
4
“D‡CŒbŠKŠK›A™o‰&ŠD‰&”oŸ5—[–P‹1Fš15”V'‰IŠ"‘’V“^Š^“K™V'“D‰p“K” ¤ $¥ 2 ‹I0‡ ˜|‹‹IŽ ˆ§o‹RŒ`‡•gŽ ˆViŸ
’V™o“^ŸŸ
‹I ›
'Ÿ
Ž “^‹I” Ž  ˜ 1 Dh̃(Dũ)2 “^‡M‡7‹¶‡ ˜i‰IŠKŠ`Ž ˆo‰&ŽO“9ŽM—‹‡p”V‹&ŽM‰&»Ÿ<ŽpŽ'ˆV‹I—5p‹I–FŽ'ˆV
‘’o‰1—‰RŽ ’o F ’VŠ^4 ¥ *”¸¯ ° ¤ ±Œb0‡ ˆV‹RŒb—pˆV‹RŒ@Ž'‹Š^“K˜i“KŽ?Ž ˆV“D‡bŽ 5'˜ªŒYˆV”OŽ'ˆV ’o˜|œg‡ Dh̃
‰I”o— Dũ ‰&'0”V‹iŠK‹1”VšIa‹I–GŽ'ˆV,‹I—a‹I–"Ž'ˆV,šI'“^—o‡7“^³5 ¥
# # # , + -0 ƒ -.0 €g~ƒR… 0 ~ ~ -- / ‚ + „ 0 ƒ , ~…
*” ’V™o‡ Ÿ
Ž “^‹I” ¥ ° ¥ °aŒaL“^”1Ž' ‹—’gŸ
—_‰YšI”V5‰&ŠR–P‰&˜iŒb‹1
F‹&–ŒbŠKŠK›A™o‰&ŠD‰&”oŸ5—0‡ “K”Vš1’VŠD‰&
ŠD‰W¡I'‡ ¥ AŽ$Œb‹1’VŠD—,™g?Ÿ
‹1”žI5”o“K”1ŽG“9–VŽ'ˆVa‘’V“^ŠK“^™V'“K’V˜ žR‰IŠK’V‡G‰I bŸ
‹I”g‡Ž‰&”Ž"Ž'ˆV ‹1’VšIˆo‹I’Ž
¥ *”
Ž'ˆVM‡ “K”ošI’VŠD‰&0ŠD‰W¡I5 ¥ ’Ž,Ž ˆV“D‡cŸ‰&”y™gO—V‹I”Vp‹1”VŠK¡(“9– Ṽ
i+1/2− = Ṽi+1/2+ = V
Ž'ˆV“D‡`Ÿ5‰1‡70Œa0‡ 
Ž
£ ¥ ¤¦
Ûε (y) = U (V , b̂ε (y)),
ŒYˆo5' b̂ (·) “^‡Z‰&”¡ ‡ ˜i‹‹&Ž ˆ 'Ÿ5‹I”o‡7Ž '’oŸ
Ž “^‹I”@‹&–0Ž ˆo(™‹&Ž7Ž'‹I˜ Ž ‹1œg‹1šI‰&œVˆ¡ ¥ 2  ‹1˜
£ ¥ °I° ¦ Œaε0“K˜i˜i—V“^‰&Ž 5Š^¡M‹1™Ž'‰I“K”ZŽ ˆg‰RŽ
£ ¥ °¦
R̂ε (y) = R(Ûε (y), b̂ε (y)) = 0.
*”]Ž'ˆV_š15”V'‰IŠŸ5‰1‡71•Ž ˆV _“^‡”V‹O‡Ž''‰I“Kš1ˆŽ7–P‹I'Œ?‰&—MŸ
‹1”o‡7Ž '’oŸ<Ž'“K‹1”[‹I–$Ž ˆVc'‡ “D—’o‰&Š"“K”
Ž'ˆVM‡ “K”ošI’VŠD‰&,ŠD‰W¡I ¥ ‹RŒbžI•ŒapŒY“^ŠKŠb˜|“^˜i“^ŸpŽ ˆVMŸ5‹I”o‡7Ž '’oŸ
Ž “^‹I” £ ¥ ¤W¦.£ ¥ ° ¦ ‰I‡
˜’oŸˆ‰I‡?œ‹1‡'‡7“^™VŠ^0“K”‡ ’V“9މ&™VŠ^0œo‰& Ž'‡?‹I–"Ž'ˆV,“K”Ž'5'žW‰IŠ [−ε, ε] ¥
2 ‹IbŽ ˆV“D‡?Œa`Ž ’o ”MŽ ‹Ž ˆV0‡ Ÿˆo5˜i‡bœV'‹Iœ‹1‡ —p“^”¸¯ ¤ • ² •V° ¤ ±•ŒYˆV“DŸˆZ‰I C‰&Š^Š­ Š^‰&Ž —
‰1‡`–P‹1ŠKŠ^‹RŒ`‡º`©?ˆV|Ÿ5‹I”Ž “^”’V‹I’g‡œV“^Ÿ55ŒY“D‡7ŠK“^”V‰&FŽ ‹Iœ‹Iš1'‰IœVˆ¡Z“D‡C—
o”o— ™¡]Ž'ˆV_–P‹1’V
žR‰IŠK’V‡ y = −ε, −ε/2, ε/2, ε •"Ÿ
‹1 '‡ œ‹I”o—“^”Vš[Ž ‹(Ž ˆVZœg‹1“K”އ x
¥ Ž`Ž ˆo‡ cœg‹1“K”އ`‹I’o`œV“^Ÿ
ŒY“^‡ ,i+1/2
Š^“K”V‰& −b̂ε,Ž'x‰ i+1/2
1‡?Ž'ˆV−
ε/2, xi+1/2 + ε/2, xi+1/2 + ε
ε
žR‰IŠK’V‡
£ ¥ ¦
b̂ε (y) :=
(
b̃±
i+1/2
for
b̂i+1/2
for
y = ±ε
y = ± ε/2,
I
ŒYˆV5'cŽ'ˆV_“^”Ž 5'˜i—“D‰RŽ'_žR‰&Š^’V|”V‰I`Ž'ˆV“^”Ž 7–4‰1Ÿ
 b̂
‡7Ž “^ŠKŠ$”V—V‡Ž ‹Z™gi—5Ž 5 ›
˜|“^”V— ¥ µ 7މ&“^”VŠK¡1•f“9Ži‡7ˆo‹I’VŠD—¶™Z‰(‡ ’V“KŽ'‰I™VŠK[Ÿ
‹1”ž1
¨yi+1/2
Ÿ
‹I˜™V“^”o‰RŽ'“K‹1”o‡c‹I–YŽ ˆVZžW‰IŠK’o‡
‰&ŽfŽ ˆVY”o—œ‹I“^”1އ ¥ ©?ˆV“D‡f“^”Ž 5'˜i—“D‰RŽ'YžR‰&Š^’VY‹&–Ž ˆV`Ž ‹Iœ‹Iš1'‰IœVˆ¡,Œa‰1‡f—
g”V—
b̃±
i+1/2
‡7Š^“Kš1ˆŽ Š^¡|—“K»­5'5”Ž Š^¡i“K”Z‰IŸˆp‹I–L¯ ¤ •° ¤ • ² ±A•‰I”o—pŒa`ŒY“^ŠKŠ.—“D‡ Ÿ5’o‡'‡fŽ ˆo“^‡a“^”pŽ ˆVF–P‹IŠ^Š^‹RŒY“K”Vš
‡7’V™g‡7Ÿ<Ž “^‹I” ¥
— 7‰IŸ
”ŽŽ ‹MŽ ˆV“K”Ž'5'“K‹1'‡Y‹I–fŽ ˆVŠK5–¢Ž0‰I”o—]'“Kš1ˆ1ŽF”V5“^šIˆ™‹I'“K”VšZŸ
5Š^ŠD‡5•“ ¥  ¥ “K”Ž'ˆV
“K”Ž  žR‰IŠ^‡ [−ε, −ε/2] ‰&”g— [ε/2, ε] •oŒb 155œ[Ž'ˆVc‘’V“^Š^“K™V'“^’V˜ žR‰IŠK’V‡Ÿ5‹I”o‡7Ž'‰I”1Ž•o‰&”g—
—
o”o Û ‰I”o— R̂ ž“^‰ £ ¥ ¤¦ .£ ¥ ° ¦¥ *”y¯:° ¤ ±Œa0ˆo‰WžI0Ÿ5‰IŠKŠ^—MŽ ˆVc‡ 
Ž [−ε, −ε/2] ∪
•W–Pε‹1fŒYˆV“^Ÿˆ|ε Ž'ˆVY ‡7“D—’o‰IŠžR‰&”V“D‡7ˆo‡•RŽ ˆV* ¥ ¡Ÿ
‹1”o‡7Ž '’oŸ<Ž'“K‹1”•
[ε/2, ε]
Ž ˆV,žR‰&Š^’V‡ Û (±ε/2) ‰I 
ε
£ ¥ ¦
ε
Ûε (− ) = U (Ṽ (xi+1/2− ), b̂i+1/2 ) =: Ûi+1/2−
2
£ ¥ ²1¦
ε
Ûε ( ) = U (Ṽ (xi+1/2+ ), b̂i+1/2 ) =: Ûi+1/2+ .
2
`‹&Ž'|Ž ˆo‰&ŽCŽ'ˆVi–P’V”oŸ
Ž “^‹I”
’g‡7—(“^” £ ¥ ¦ ­£ ¥ ²I¦ —œg”o—V‡c‡7Ž '‹I”Vš1ŠK¡]‹1”(Ž'ˆV
U (V, b)
œo‰& Ž “DŸ
’VŠD‰&‘’V“^ŠK“^™V'“K’V˜ ’V”o—V5FŸ5‹I”o‡ “D—5‰RŽ'“K‹1” ¥ 2 ‹I5¨V‰&˜iœVŠ^,“9Ž0—“9»­5‡Y–P‹1YŽ ˆo_ŠD‰ I
‰RŽY ‡Ž`Ÿ5‹I”o‡ “^—V5'—Z“K”y¯ ¤ ±G‰&”g—OŽ'ˆV,˜i‹Rž“^”VšiŒ?‰RŽ aŽ '‰RŽ'—Z“K”y¯:° ¤ ± ¥
*”(Ž ˆV ˜p‰&“^”V“K”ošO“K”Ž'5'žW‰IŠ [− ε , ε ] •­ŒYˆV“DŸˆ Œb|Ÿ5‰IŠKŠ^— 4 4*. `“^” ¯:° ¤ ±A•
Ž ˆVaŽ ‹1œg‹1šI‰&œVˆ¡C“^‡fŸ5‹I”o‡7Ž'‰I”Ž• b̂ (y)2 ≡2b̂ ¥ ©?ˆo5'
–P‹I'I•&‰1‡–P‹1#Ž ˆV?
¨V‰1Ÿ<Žf‡7‹1ŠK’Ž'“K‹1”•
ε
i+1/2
ŒYˆV5'
R(x) = −∂x f (U (x)),
Ž ˆVp‰&œoœV ‹W¨“^˜p‰RŽ  ‡7“D—’o‰IŠ#‡ ˆV‹1’VŠ^—¸'—’oŸ5_Ž'‹[‰[Ÿ
‹1”o‡ 5'žW‰&Ž “^žI_§o’¨¸—“K»­5'5”oŸ5 ¥ 2 ‹I
Ž ˆV“D‡5•­Œa|—V
o”V|‰&”(‰IœVœV'‹W¨“K˜p‰RŽ',§o’¨ fˆ (y) ‰1‡`–P‹1ŠKŠ^‹RŒ`‡ ¥ *” Ž'ˆV|Ÿ55”Ž  y = 0 •Ž ˆo
§o’¨yŒY“KŠ^ŠJ™M‰&” ‰IœVœV'‹W¨“K˜p‰RŽ' Y“K˜p‰&”V” ε ‡ ‹IŠ^žI fˆ(Û
•$‰I”o—y‰RŽcŽ'ˆV
i+1/2− , Ûi+1/2+ )
¥ *”¶™
ŽŒa5”• fˆ ˜p‰W¡(™
5”o—œ‹I“^”Ž'‡ y = ±ε/2 •"“9Žcމ 1‡0Ž'ˆVOžR‰&Š^’V‡ f (Û
ε
¥ ©?ˆV5”]) Œa0‡ 
Ž
‰&”¡MŸ
‹1”Ž “^”’o‹I’o‡b–P’V”oŸ
Ž “^‹I”•o ¥ š ¥ œV“^Ÿ55ŒY“D‡70Š^“K”V‰& i+1/2±
£ ¥ ¦
R̂ε (y) := −∂y fˆε (y).
2 '‹I˜ˆo5'I•oŒa_Ÿ‰&”]‰1‡7“^ŠK¡Z5žR‰&Š^’o‰&Ž ,Ž'ˆV_‡ “K”Vš1’VŠD‰&`œo‰I7އY‹&–$Ž'ˆVc'‡ “^—’g‰&Š“^” £ ¥ ° 1¦ £ ¥ ° ¤W¦ ‰&”o—Z‹I™Ž‰&“^”
£ ¥ I¦
i+1/2−
Rsing
= −fˆ(Ûi+1/2− , Ûi+1/2+ ) + f (Ûi+1/2− )
£ ¥ ¦
i+1/2+
= −f (Û
) + fˆ(Û
, Û
).
R
sing
i+1/2+
i+1/2−
i+1/2+
b~ 0 #%&# $ . £ ¥ &¦ o£ ¥ ¦ ( * !
$ YŒa5Š^Š9›A™o‰IŠ^‰I”oŸ
— % , . # “^”oŸ
?Ž'ˆVY'‡ “^—’g‰&ŠžR‰&”V“D‡7ˆo‡$“^”Ž'ˆVY‘’V“^Š^“K™V'“^’V˜ ŠD‰W¡I5•R“KŽL“^‡f‡ ’¹OŸ
“^5”Ž
Ž'‹O‡7ˆo‹RŒ Ž ˆg‰RŽ
£ ¥ ¦
Û
= Û
,
i+1/2−
i+1/2+
‡ “^”oŸ
0Ž'ˆV5”
£ ¥:² ¦
ˆ Ûi+1/2− , Ûi+1/2+ ) = f (Ûi+1/2+ )
f (Ûi+1/2− ) = f(
‰I”o—.•–P'‹I˜ £ ¥ I¦ ­£ ¥ ¦ •
£ ¥:²¤¦
i+1/2−
i+1/2+
Rsing
= Rsing
= 0.
‹Z‡ ’VœVœ‹1‡ cŽ ˆg‰RŽFŒa‰I _“K”¸ŠK‹Ÿ5‰IŠ"‘1’o“KŠ^“K™o “^’V˜ “^”Ž ˆV|‡7”o‡ _‹&– 
g”V“9Ž'“K‹1” ¥ •g“ ¥  ¥
–P‹I`‡ ‹I˜i0‘’V“^Š^“K™V'“^’V˜‡7Ž'‰RŽ' V ¥ ©?ˆV”
Ṽi+1/2− = Ṽi+1/2+ = V
£ ¥:² ° ¦
Ûi+1/2− = Ûi+1/2+ = U (V , b̂i+1/2 ),
ŒYˆo“^Ÿˆ]“D‡ £ ¥ ¦¥ # #
~ ‚ ,
~ ‚ ~ ,) ~1ƒ ~„ ,.0 ~ / ‚ * ‚/
‹RŒ
b̂i+1/2
bŒ p–P‹Ÿ5’o‡_’oœg‹1”®‰&”¶“^”Ž 5 –4‰IŸ5 x
‰I”o—yŽ ˆoOŽŒa‹ žR‰&Š^’V‡ b̃± •#ŒYˆo“^Ÿˆ
i+1/2
'5œo ‡7”1Ž_Ž ˆV ’V˜iœ®‹&–YŽ'ˆVM™‹&Ž Ž ‹1˜ ‰&Ž_Ž'ˆVZŸ55Š^Šb“^”Ž 5 –4‰IŸ5 ¥ Z ‘1’oi+1/2
“K'pŽ ˆg‰RŽ_Ž'ˆV
‡'‰RŽ'“^‡7o‡
“^”Ž  ˜i—V“^‰&Ž ,žR‰&Š^’V b̂
i+1/2
£ ¥:² ¦
+
−
+
min{b̃−
i+1/2 , b̃i+1/2 } ≤ b̂i+1/2 ≤ max{b̃i+1/2 , b̃i+1/2 }.
*”y¯ ¤ • £ ° ¥ ¦ ±A• ’o—’o‡'‡705މ&Š ¥ ŸˆV‹‹1‡ 
£ ¥:² ¦
+
b̂i+1/2 := max{b̃−
i+1/2 , b̃i+1/2 }.
©G‹Iš1
Ž'ˆV5ZŒY“9Ž'ˆd‰&” ‰IœVœV'‹IœV'“^‰&Ž  µ 2 1 '‡7Ž '“^Ÿ
Ž “^‹I” ‰&”g— ‰ ‡ ’V“9މ&™VŠ^§o’V¨ –P’o”oŸ<Ž'“K‹1”•
£ ¥:² ¦ šI’o‰I'‰I”Ž 5‡,œ‹1‡ “9Ž'“Kž“KŽ¡·‹I–YŽ ˆVZŒa‰&Ž  ˆV“Kš1ˆŽ ¥ AŽˆg‰I‡™g5” ’o‡ — ™¡·žR‰&'“K‹1’o‡
‰I’Ž ˆo‹I‡5•“K”gŸ
Š^’o—“^”VšOŽ'ˆV_œV'‡ 5”Ž0‰&’Ž'ˆV‹I‡5•‰&”o— Œb_Ÿ5‹I”o‡ “D—5F“9ŽCŽ ‹O™Ž ˆV|‡Ž‰&”o—V‰I'—
Ÿˆo‹I“DŸ
 ¥
²
‹RŒbžI•Ž ˆV a“D‡G‰I”c“K˜iœ‹I Ž'‰I”1Ž$Ÿ5‰1‡7bŒYˆV“^Ÿˆ‡7’Vš1šI‡Ž‡.Ž ˆg‰RŽ#Ž ˆV?‡Ž‰&”o—o‰&—cŸˆV‹I“DŸ

7‡ ˆV‹1’VŠD—,‡7‹1˜|5Ž “^˜i‡™J'5œoŠ^‰1Ÿ
— ¥ ˆV“^ŠKJŽ ˆVJŸˆo‹I“DŸ
L‹I– ’o—’o‡'‡ J
Ž#‰&Š ¥ “D‡œo‰I7Ž'“^Ÿ5’VŠ^‰I Š^¡
’o‡75–P’VŠJ‰&Ž,Ž ˆVM‡ ˆV‹1 i‹&–Y‰]ŠD‰ IiŒY“KŽ ˆ ‡ ’V™­Ÿ
'“9Ž'“^Ÿ‰&ŠLž15Š^‹Ÿ5“9Ž¡1•ŒaOŸ
‹I”g‡7“D—50Ž'ˆVO‰RŽ'ˆV5
—“9»­5'5”ŽF‡ “KŽ ’o‰&Ž “^‹I” ‹I–f‰OŒa‰&Ž 5 –4‰&Š^Š“^”(‡7Ž 5œ•g–4‰I‡7Ž˜i‹I’V”Ž'‰I“K”o‹I’o‡ “^žI'‡ £ ‡7M¯:° ¤ ±G–P‹I
—
މ&“^Š^‡ ¦<¥ *” 2 “^šI’V' ¤ ŒaO‡7ˆV‹RŒ´Ž ˆV“D‡_‡7Ž'‰&Ž “^‹I”o‰I ¡(˜|‹Rž“^”Vš]Œa‰&Ž 0§o‹RŒ ¥ ©?ˆVOŒ?‰RŽ'5
§o‹RŒ`‡$“K”p‡ ’Vœ5Ÿ
'“9Ž'“^Ÿ‰&Š^ŠK¡,–P'‹I˜´Ž ˆVYŠ^
–¢ŽL’o”1Ž'“KŠg“9ŽLˆo“9އL‰,‡Ž'5œ £ ‹IfžI5”p—“D‡'Ÿ
‹I”Ž'“K”’V‹1’o‡ ¦
—‡'Ÿ
”1Ž (¥ 2 Š^‹RŒY“K”ošc—‹RŒY”•1Ž ˆV`Œ?‰RŽ'5J‰1Ÿ5Ÿ55Š^5‰RŽ ‡ ¥ ’oYŽ ‹_Ÿ5‹I”o‡ 5'žR‰RŽ'“K‹1”‹I–­˜p‰1‡ ‡$Ž'ˆV
Œa‰&Ž 5Yˆo5“^šIˆŽ—Ÿ5 ‰I‡ ‡?’V”Ž'“KŠ"Ž ˆV0§o‹RŒ ™Ÿ
‹1˜i‡`Ÿ5 “KŽ “DŸ5‰IŠ ¥ AŽ`“^‡`Ž ˆV”]‡7Ž ‹1œVœ—]™¡Z‰
‡Ž‰RŽ “^‹I”g‰&'¡[‡ ˆV‹Ÿ ­•g‹1F™‹I' ¥ 5ˆV“^”o—Ž'ˆVi‡7ˆV‹Ÿ ­•gŽ ˆV|Œa‰&Ž ˜i‹RžI‡‹1”(‡7Š^‹RŒYŠ^¡ZŒY“KŽ ˆ
‡7’V™­Ÿ
'“KŽ “DŸ5‰&Š.ž15Š^‹Ÿ
“KŽ¡ ¥
1.2
1
0.8
0.6
0.4
0.2
0
−0.02
−0.015
−0.01
−0.005
0
$&J&L*98$C-( L$&F
0.005
0.01
x ∈ [−0.024, 0.022]
0.015
0.02
_‹1™Ž'‰I“K” Ž ˆV|‡ ‰I˜|‡7‹1ŠK’Ž'“K‹1”]–P‹IŽ ˆV Y “K˜p‰&”V” œo ‹1™VŠK˜ ŒY“KŽ ˆ¸—“^‡'Ÿ
‹1”Ž “^”’o‹I’o‡
™g‹IŽ7Ž ‹1˜ ¥ ©?ˆop“K”Ž  ‡Ž'“K”oš‹I™o‡ 5'žR‰RŽ “^‹I”y“D‡0Ž ˆg‰RŽcŽ'ˆVOˆ¡— ‹—¡”o‰I˜i“^ŸiœV'‹I™oŠK˜ £ Ž'ˆV
‡Ž‰RŽ “^‹I”g‰&'¡¸‡ ˆV‹Ÿ ¦ “^‡_ ‡7‹1ŠKž1—y‰RŽcŽ'ˆVM™‹&Ž Ž ‹1˜ ‹I–YŽ ˆVOŽ ‹Iœ‹Iš1'‰IœVˆ¡I•$‡7‹(ŒbM‡ ˆV‹1’VŠ^—
 œVŠ^‰1Ÿ
 £ ¥ ² ¦ ™¡
£ ¥:²I²1¦
+
b̂i+1/2 := min{b̃−
i+1/2 , b̃i+1/2 }.
*”M¯ ² ±• µ ‰1‡Ž' ‹g• $‰I'—V‹o•R‰&”o— $‰I‡.–P‹1 ˜’VŠ^‰&Ž bŒbŠKŠK›™g‰&ŠD‰&”oŸ5—,‡'ŸˆV5˜i‡GŒY“KŽ ˆ‰šI”V5‰&Š
ŸˆV‹I“DŸ
`‹I– b̂
‡ ‰&Ž “D‡–P¡“^”Vš_‹1”VŠK¡ £ ¥:² ¦
¥ ©?ˆV‹1œŽ “^˜p‰&ŠgŸˆo‹I“DŸ
`‹I– b̂
 ˜i‰I“K”g‡J‰&”
i+1/2
i+1/2
‹Iœ5”œV'‹I™VŠ^5˜]•ŒYˆV“DŸˆ ‡75˜p‡YŽ'‹M™Ÿ
Š^‹1‡ 5Š^¡M'5ŠD‰RŽ'—[Ž'‹pŽ ˆV”V‹I”V›’V”o“^‘’V”V‡'‡`‹I–#Ž'ˆV
!
`“K˜i‰I”V”]œV'‹I™VŠ^5˜]•V‡ 5i¯ • ¤ ± ¥ 3‰&”ŒYˆV“^ŠK0ŒaC'Ÿ5‹I˜i˜i5”o—OŽ ‹p’o‡  £ ¥ ² ¦ ‡7“^”oŸ5C“KŽ
“D‡Yœ‹1‡ “9Ž'“Kž“KŽ¡OœV'‡ 5'ž“K”Vš ¥
# $# ‚ ~ ‚ ~ ‚ …~ƒ 0 , g~ (0 ƒ 0
3 ~1ƒ‚ ~ + ~… #
*”·—“D‡ Ÿ5’o‡ ‡ “^‹I”o‡F‹&–L'Ÿ55”ŽFŒa5Š^Š9›A™o‰IŠ^‰I”oŸ
—‡ ŸˆV˜i‡•“KŽ0Œa‰1‡F‰I š1’V—[Ž'ˆo‰RŽCŽ ˆV|”’›
˜| “DŸ5‰IŠV§o’V¨‡J“^” ¯ ¤ • £ ° ¥K¤W²I¦ ±­Œa5'`”V‹&Ž?Ÿ
‹1”o‡7 žR‰&Ž “^žI ¥ FŒb‹1’VŠD—pŠK“ I`Ž ‹Ÿ5Š^‰I “K–P¡Ž ˆV“D‡
œg‹1“K”ŽºG *”‹1’Vf”V‹IŽ'‰RŽ'“K‹1” £ ‡7 £ ¥ ° ¦ ¦ •RŽ'ˆV?o‡Žf‹I—#‡'ŸˆV5˜i?‹&– ’o—V’o‡ ‡ ?
ŽL‰&Š ¥  ‰I—V‡
£ ¥:² ¦ ∆x d U (t) = F (U , U , b , b ) − F (U , U , b , b ) = ∆x R
i
i
l
i
i+1 i i+1
r
i−1
i i−1 i
i i
dt
ŒY“9Ž'ˆZ§g’¨‡0¯ ¤ • £ ° ¥^¤ ¦ ±
£ ¥:² I¦
£ ¥:² ¦
ˆ i−1 , U i ) +
Fr (U i−1 , U i , bi−1 , bi ) = f(U
0
g 2
g 2
2 hi − 2 hi−1/2+
ˆ i , U i+1 ) +
Fl (U i , U i+1 , bi , bi+1 ) = f(U
0
g 2
g 2
h
−
2 i
2 hi+1/2−
1
Ž`’g‡YŸ
‹I˜iœo‰I FŽ ˆo“^‡?Ž'‹iŽ ˆVc‡'ŸˆV˜| £ ¥^¤ 1¦ — “^žI—M“^”[Ž ˆV“D‡`‡ Ÿ<Ž'“K‹1”º
!
!
£ :¥ ² ¦
d
i
i−1/2+
i+1/2−
U i (t) = Rreg + Rsing + Rsing .
dt
2 '‹I˜ £ ¥^¤ ¦ • £ ¥ &¦ ‰&”o— £ ¥ 1¦
£ ¥ ¦
i
i
4xi Rreg = −f (Ũi+1/2− ) + f (Ũi−1/2+ ) + 4xi S̄reg
£ ¥ ¤W¦
i+1/2−
ˆ Ûi+1/2− , Ûi+1/2+ ) + f (Ûi+1/2− )
= −f(
4xi Rsing
£ ¥ ° ¦
i−1/2+
= −f (Ûi−1/2+ ) + fˆ(Ûi−1/2− , Ûi−1/2+ ),
4xi Rsing
ŒYˆV5'CŽ ˆV,'5š1’VŠ^‰I?œo‰& ŽY‹&–"Ž'ˆVc‡ ‹I’VŸ
FŽ  ˜ “^‡?š1“Kž15”[™¡
£ ¥ I ¦
i
4xi S̄reg

Ž Ž “^”Vš
=−
0
g h̄i Db̃i
!
.
ˆ Ûi+1/2− , Ûi+1/2+ ) − fˆ(Ûi−1/2− , Ûi−1/2+ ),
Dfi := f(
Ž ˆVc‡'ŸˆV5˜i £ ¥ ² ¦ '‰I—o‡
£ ¥ ¦
4xi
d
U i (t) = −Dfi + [f (Ũi−1/2+ ) − f (Ûi−1/2+ )]
dt
i
+ [f (Ûi+1/2− ) − f (Ũi+1/2− )] + 4xi S̄reg
.
2 ‹IŠ^ŠK‹RŒY“^”Vš,Ž'ˆV‰I š1’V˜i5”Ž'‡f“^” ¯ ¤ •° ¤ ±­‹IfŽ'ˆVœo ‡7”1Žbœo‰&œ5•1‹1”VŸ‰&”OŸˆVŸ cŽ ˆg‰RŽJŽ'ˆV
‡'ŸˆV˜|‡0—
o”o—¸™¡ £ ¥ ¦ ‰&o” — £ ¥ ² ¦ Ÿ
‹I“^”oŸ5“^— ¥ ‹RŒa5ž15•Ž ˆVpŸ
’o “^‹I’o‡C”V‹1”oŸ
‹1”›
‡ 5'žR‰RŽ'“Kž1b§g’¨|—“K»­5'5”oŸ5‡L‰IœVœg‰&L‰IŠ^‡ ‹F“^”iŽ ˆo?–P‹I'˜ £ ¥ ¦¥ YŒY“KŠ^Šo”V‹RŒ ‡7ˆo‹RŒ Ž ˆg‰RŽ
Ž'ˆVCŽŒb‹_§o’¨O—“K» ”oŸ
‡a“K”MŽ ˆV0‡ ‘’o‰I ™V'‰1Ÿ I5Ž'‡J‰I FœV'Ÿ
“D‡ 5Š^¡Ž'ˆV0‡7“^”VšI’oŠ^‰Ib‡ ‹I’VŸ

Ž'5'˜p‡Y“K”ZŽ ˆo,ŠK5–¢ŽF‰&”o—Z'“Kš1ˆ1ŽY‘1’o“KŠ^“K™o “^’V˜ŠD‰W¡I'‡•ŒYˆV5'CŽ ˆVc‡ ‹I’VŸ
FŽ  ˜ ’V˜iœo‡ ¥
2  ‹1˜ £ ¥ °I° ¦ ‰&”o— £ ¥ ° ¦ Œb ”V‹RŒ¸Ž ˆg‰RŽ"Ž'ˆVJ'‡ “D—’o‰&ŠIžW‰I”V“D‡7ˆV‡“^”0Ž ˆVb‘’V“^ŠK“^™V'“K’o˜
ŠD‰W¡I ¥ 3‹1 |œV'Ÿ
“D‡ 5Š^¡I•“KŽcŸ
‹I”g‡7“D‡Ž‡0‹&–?‰Z”o‹I”›A³5 ‹M§o’¨·—V“9»­5'5”oŸ5p‰&”o—·‰[”V‹I”›A³5 ‹
‡ ‹I’o'Ÿ5FŽ'5'˜ªŒYˆV“DŸˆ]™o‰&ŠD‰&”oŸ5F‰IŸˆ[‹&Ž'ˆV5º
£ ¥ ²I¦
i−1/2+
i−1/2+
4xi R̄equil = −f (Ũi−1/2+ ) + f (Ûi−1/2+ ) + 4xi S̄sing
=0
£ ¥ ¦
i+1/2−
i+1/2−
4x R̄
= −f (Û
) + f (Ũ
) + 4x S̄
= 0.
©?ˆo5'
–P‹I'I•
£ ¥ I¦
£ ¥ ¦
i
i+1/2−
equil
i−1/2+
4xi S̄sing
i+1/2−
4xi S̄sing
i+1/2−
i
sing
= f (Ũi−1/2+ ) − f (Ûi−1/2+ )
= f (Ûi+1/2− ) − f (Ũi+1/2− )
‰I”o—ZŽ ˆVc‡'ŸˆV˜| £ ¥ ¦ Ÿ‰&”[™g,'5ŒY'“9Ž Ž ”Z“^”[Ž ˆV,”o‰&Ž ’V‰&Š–P‹1 ˜
£ ¥ ¦
d
i−1/2+
i+1/2−
i
+ S̄reg
+ S̄sing
U i (t) = −Dfi + 4xi S̄sing
dt
ŒYˆo“^Ÿˆ Ÿ5ŠK‰&'ŠK¡·—“^‡7Ž “^”Vš1’V“^‡ ˆV‡cŸ
‹1”o‡7 žR‰&Ž “^žI|§o’¨ —“K» ”oŸ
‡5•#'5šI’oŠ^‰Ic‰&”o—y‡ “K”Vš1’VŠD‰&
‡ ‹I’o'Ÿ5FŽ'5'˜p‡ ¥
5. Numerical examples for the shallow water equations
iˆo‰WžIi‡ ’oŸ5Ÿ5‡'‡–P’VŠ^Š^¡ —‡ “Kš1”V—(ˆV“^šIˆ›A‹I—5CŒa5Š^Š9›A™o‰&ŠD‰&”gŸ
—(‡ ŸˆV˜i‡C™¡ —“9»­5 ›
5”Ž0‰IœVœV'‹1‰1ŸˆV‡ ¥ *” Ÿ<Ž “^‹I” •.ˆV“^šIˆV›‹1'—Œa5Š^Š9›A™o‰IŠ^‰I”oŸ
—[o”V“KŽ p—“K» ”oŸ
1•­o”V“KŽ 
žI‹IŠ^’V˜iY‰&”o— ‡ ŸˆV˜i‡f‰&'Y—‡ “^šI”V—c–P‹1J‰0Ÿ
ŠD‰I‡'‡$‹&–­ˆ¡œ5'™g‹1ŠK“DŸ?™o‰IŠ^‰I”oŸ
?ŠD‰WŒ`‡5•
ŒYˆV“^Ÿˆ¶“^”oŸ5ŠK’o—VOŽ ˆoM‡7ˆg‰&Š^ŠK‹RŒ Œa‰&Ž c‘’o‰&Ž “^‹I”o‡,ŒY“KŽ ˆ Ž ˆVZŠ^‰ IO‰Rސ ‡Ž_‘’V“KŠ^“^™V “^’V˜ ¥
©?ˆVI5¡M“^—‰Ž ‹RŒ?‰&—V‡LŽ'ˆV0ŒbŠKŠK›A™o‰&ŠD‰&”oŸ5—MœV ‹1œg7Ž¡p“D‡Y‰i‡7œŸ5“^‰IŠ—Ÿ5‹I˜iœ‹1‡ “9Ž'“K‹1”Z‹I–
Ž ˆV[‡7‹1’V'Ÿ5pŽ  ˜ ¥ 2 “K–¢Ž ˆ{‹I—5_o”V“KŽ [—“9»­5'5”gŸ
I•$g”V“9Ž'Mž1‹IŠ^’V˜i ¬ ‡ ŸˆV˜i‡
‰&”o—OŽ ˆV“^'—Z‹I—Jo”o“9Ž'CŠK˜i5”Ž ´‡ ŸˆV˜iC‰I F“K˜iœVŠ^5˜i5”Ž'—.•V‰I”o—MŒa0—5”V‹IŽ 
Ž ˆV˜ ™¡ 2 0² • 2 ² › £ –P‹1OŒbŠKŠK›A™o‰&ŠD‰&”oŸ5—®o”V“KŽ (—V“9»­5'5”oŸ5“K”oš ¦ ‰&”g—  ‡7œŸ
Ž “^žI5Š^¡ ¥ *” ’V™o‡ Ÿ<Ž'“K‹1” ¥ •JˆV“^šIˆ ‹I—g”V“9Ž']žI‹IŠ^’V˜i]‡ ŸˆV˜i‡iŒYˆV“DŸˆ ‰I 
ŒbŠKŠK›™g‰&ŠD‰&”oŸ5—[–P‹IŽ ˆV˜i‹Rž“^”VšO‘’V“KŠ^“^™V “^’V˜ ‹I–fŽ ˆV|‡7ˆo‰IŠKŠ^‹RŒ Œa‰&Ž ‘’o‰&Ž “^‹I”o‡ˆo‰WžI
™g5”]œV'‡ 5”Ž — ¥ ©?ˆV,Œa5Š^Š9›A™o‰IŠ^‰I”oŸ
—OœV'‹Iœ5 Ž¡O'5Š^“K‡?‹I”‰p‡7œŸ5“^‰IŠ.‘’V“^ŠK“^™V'“K’o˜'
›
Ÿ
‹I”g‡Ž' ’oŸ
Ž “^‹I”,‰&”g—0”V‹I”›Ž '“^ž“D‰&Š&‘’o‰1—‰RŽ ’o f‹I–Ž'ˆVJ‡ ‹I’VŸ
$Ž'5'˜]•ŒYˆV“^Š^fŽ ˆVbˆV“^šIˆ›A‹I—5
‰IŸ5Ÿ5’V‰IŸ
¡[Ÿ
‹1˜|‡Y–P'‹I˜ Ž ˆo_ˆV“^šIˆ›A‹I— ¬ 'Ÿ5‹I”o‡7Ž '’oŸ
Ž “^‹I”‰&”o— 
¨Ž ‰&œ‹IŠD‰RŽ'“K‹1”
‹&–fŽ ˆo|‡ ‹I’VŸ
cŽ 5'˜ ¥ 2 ‹I’V Ž ˆ(‹I—5C‰IŸ5Ÿ5’V‰IŸ
¡[Ÿ5‰I” ™g|‹I™VŽ'‰&“^”V— ¥ —V5”V‹IŽ Ž ˆV‡7
o”V“KŽ |žI‹IŠ^’V˜i_‡'ŸˆV5˜i‡‰I‡ 2 › £ ´–P‹1FŒa5Š^ŠK›™o‰IŠ^‰I”oŸ
—]‘1’g‰I—‰RŽ'’V  ¦<¥ ‹&Ž'cŽ ˆg‰RŽ
ŒbYˆo‰Wž1aŽŒb‹,Œa5Š^Š9›A™o‰IŠ^‰I”oŸ
—co”o“9Ž'`žI‹1ŠK’V˜i`‡'ŸˆV5˜i‡5• 2 ² › ‰&”g— 2 › •&‹I™Ž‰&“^”V—
Ž ˆV'‹I’Vš1ˆ[—V“9»­5'5”Ž`‰&œVœo ‹‰IŸˆV‡ ¥
*”ZŽ ˆo“^‡Y‡ Ÿ
Ž “^‹I”MŒaCœV ‹Rž“D—”’V˜i “DŸ5‰IА'‡ ’VŠKŽ'‡bŽ ‹i—˜|‹1”o‡7Ž ‰RŽ FŽ ˆoCš1‹‹—MœV'‹Iœ›
5 Ž “^‡b‹&–Ž'ˆV‡ FŒa5Š^ŠK›™o‰IŠ^‰I”oŸ
—O‡'ŸˆV5˜i‡•ŒYˆV5”[‰&œVœVŠ^“^—pŽ'‹_Ž'ˆV0‡7ˆo‰IŠKŠ^‹RŒ Œ?‰RŽ b‘’o‰R›
Ž “^‹I”o‡ ¥ *” ‰&Š^Š"”’V˜i5'“^Ÿ‰&Š"Ž ‡7Ž'‡•VŽ'“K˜i|—“^‡'Ÿ
'
Ž'“K³‰RŽ'“K‹1”[“D‡`™¡ZŽ ˆVŸ
ŠD‰I‡'‡7“DŸ5‰IŠ.Ž ˆV“^—]‹I—5
© Y’V”ošI
› 0’Ž Ž'‰¸˜|5Ž ˆV‹— ¯:° ± ¥ 2 ‹I|o”V“KŽ ]ž1‹IŠ^’V˜iI•Lg”V“9Ž'—“9»­5'5”gŸ
 ¬ ‡ ŸˆV˜i‡•Ž ˆV µ 2 1y”’V˜™g`“^‡YŽ'‰ 15”]‰I‡ o¥ •
¨VŸ
œŽY–P‹I?Ž'ˆV_‰1Ÿ5Ÿ
’o'‰1Ÿ
¡iŽ ‡Ž‡YŒYˆV 
¥ 2 ‹I0Ž'ˆV
‡7˜p‰&Š^Š^50Ž “^˜iM‡7Ž 5œg‡c‰&'iŽ'‰ I5”¸Ž ‹(5”o‡ ’V'Ž'ˆo‰RŽ|‡7œo‰&Ž “D‰&ŠL '‹I‡0—‹I˜i“^”o‰RŽ' Ž ˆV“^'— ‹1'— ‡'ŸˆV5˜i1•bŽ'ˆV µ 2 1 ”’V˜_™5O“D‡ o¥K¤ V¥ 2 ‹1pŽ ˆo ©
ŠK“^˜i“9Ž'5
“K˜iœVŠ^5˜i5”Ž'—y“^”yŽ ˆV ‡'ŸˆV5˜iI•GŽ ˆoM©
Ÿ
‹I”g‡Ž‰&”Ž M £ ‡ 5¯ •#° ² ±L–P‹1c“9އ
¦
—
o”o“9Ž'“K‹1” “D‡Ž'‰ 15”(‰1‡ “K”(˜|‹‡ŽC”’V˜i5'“^Ÿ‰&Š#
¨V‰&˜iœVŠ^‡•g’o”VŠK‡ ‡F‹&Ž'ˆV5'ŒY“D‡7|‡Ž‰RŽ — ¥
©?ˆV,šI‰Wž“9މRŽ “^‹I”ZŸ
‹I”g‡Ž‰&”Ž g “^‡aމ I”[‰1‡ ¥ V¤ ° m/s2 —V’V “^”Vš|Ž ˆocŸ
‹I˜iœV’VŽ'‰RŽ'“K‹1” ¥
$#%&# ~ -.- /(0 -.0
~„ ~… …
?© ˆoaœo’V œ‹1‡ J‹I–VŽ ˆobg'‡7ŽGŽ'‡7Ž#œo ‹1™VŠK˜p‡G“D‡GŽ ‹CžI “K–P¡CŽ ˆV?Œa5Š^Š1™o‰IŠ^‰I”oŸ
—cœV'‹Iœ5 Ž¡
‹&–$‹I’V`‰IŠKš1‹I'“9Ž'ˆV˜p‡ ¥ `‹IŽ 0Ž'ˆo‰RŽ 2 › “D‡`Ÿ5‰Iœo‰&™VŠ^0‹&–$Ÿ5‰&œVŽ ’V'“K”ošiŽ ˆV,˜i‹Rž“K”oš|Œ?‰RŽ'5
‘’V“KŠ^“^™V “^’V˜]•g‰I”o— 2 ² › • 2 0² • ‰I ,—‡7“^šI”o—Z–P‹ICŸ5‰&œVŽ ’V'“K”ošŽ'ˆV_ŠD‰ 1,‰RŽ
'‡7ŽY‘’V“^ŠK“^™V'“K’o˜ ¥ 5”o5Ÿ I•ŽŒa‹p—“K» ”1ŽYŽ'‡7ŽYœV ‹1™VŠ^5˜p‡Y‰&'0œV ‹1œg‹‡7—OˆV  ¥
#.% #.% # 0 g~ 0 ƒR~… ~ )$+ ,-.,/ ƒ ,.+ ©?ˆo“^‡$Ž'‡7ŽL“^‡J‡7ˆV‹RŒY”Ž ‹,ž15'“9–P¡cŽ ˆo‰&Ž 2 ² › • 2 0² &‰ ”g—
“^”o—5—|˜i‰I“K”މ&“^”Ž'ˆV
5 ¨V‰IŸ<Ž µ ›œV'‹Iœ5 Ž¡c‹Rž15L‰0”V‹1”›e§‰RŽL™‹&Ž7Ž'‹I˜ ¥ FŸˆV‹‹1‡ bŽŒa‹c—“K» ”ŽL–P’V”oŸ
Ž “^‹I”o‡L–P‹I
Ž'ˆV,™‹&Ž7Ž'‹I˜Ž ‹Iœ‹Iš1'‰IœVˆ¡pšI“^žI”M™¡ £ 0 ≤ x ≤ 10¦ º
£²¥^¤¦
b(x) = 5 e− (x−5) ,
ŒYˆo“^Ÿˆ]“D‡Y‡7˜i‹‹&Ž'ˆ•o‰&”g—
(
“9– 4 ≤ x ≤ 8,
£²¥ ° ¦
4
b(x) =
‹&Ž'ˆV5'ŒY“^‡  ,
0
ŒYˆo“^Ÿˆ]“D‡Y—“^‡'Ÿ
‹1”Ž “^”’o‹I’o‡ ¥ ©?ˆV,“K”o“9Ž'“^‰IŠ—V‰Rމ“D‡?Ž'ˆVc‡Ž‰RŽ'“K‹1”o‰&'¡O‡7‹1ŠK’VŽ “^‹I”º
2
5
h + b = 10,
2
hu = 0.
©?ˆo“^‡F‡Ž'‰I—V¡Z‡7Ž'‰RŽ'c‡7ˆo‹I’VŠD—[™gc5¨V‰IŸ<Ž'ŠK¡ZœV'‡ 5'žI— ¥ cŸ5‹I˜iœV’Ž',Ž ˆo_‡7‹1ŠK’VŽ “^‹I”]’V”Ž “^Š
’o‡ “K”oš N = 200 ’V”V“K–P‹I'˜SŸ
5Š^ŠD‡ ¥ *”¸‹I—5FŽ ‹]—5˜i‹1”o‡Ž''‰&Ž _Ž ˆo‰&ŽFŽ'ˆVi
¨V‰IŸ
Ž
t = 0.5
µ ›AœV'‹Iœ5 Ž¡i“^‡a“^”o—5—M˜p‰I“K”Ž'‰I“K”o—O’oœOŽ ‹|'‹I’V”o—›‹I»] '‹I•IŒaC’o‡70‡ “K”Vš1ŠKCœV'Ÿ5“^‡ “K‹1”•
—V‹I’V™VŠ^·œV Ÿ
“D‡7“^‹I” ‰&”o— ‘1’g‰I—'’VœVŠ^(œV'Ÿ5“^‡ “^‹I” Ž'‹{œ5 –P‹I'˜ Ž ˆVyŸ
‹1˜|œo’Ž'‰&Ž “^‹I”•C‰&”o—
‡ ˆV‹RŒ@Ž'ˆV L1 ‰&”g— L∞  '‹I‡#–P‹IbŽ ˆVFŒa‰&Ž JˆV“Kš1ˆ1Ž h £ ”V‹&Ž'Iº h “K”pŽ'ˆV“D‡bŸ‰I‡ “D‡J”V‹IŽa‰
Ÿ5‹I”o‡7Ž'‰I”ŽJ–P’V”oŸ
Ž “^‹I” ¦ ‰&”o—pŽ ˆV0—“D‡ Ÿˆo‰I š1 hu “^”Z©#‰&™VŠ^‡ ¤ ‰I”o—M°0–P‹1JŽ'ˆV`ŽŒa‹_™‹&Ž Ž ‹1˜
–P’o”oŸ<Ž'“K‹1”o‡ £²¥^¤¦ ‰&”o— £²¥ ° ¦ ‰&”o—]—“K»­5'5”Ž`œV'Ÿ
“D‡ “K‹1”o‡ ¥ 2 ‹I?Ž'ˆV ˜i
Ž'ˆV‹—.•VŽ'ˆV
 '‹I‡`‰I _Ÿ5‹I˜iœV’Ž'—™g‰I‡ —]‹I” Ž ˆV”’o˜| “DŸ5‰IŠG‡ ‹IŠ^’Ž “^‹I”g‡‰RŽ0Ÿ
ŠKŠ$Ÿ
”1Ž'5‡ ¥ iŸ5‰&”
Ÿ5ŠK‰&'ŠK¡¸‡7Ž'ˆo‰RŽ_Ž ˆV L1 ‰I”o— L∞ 5' ‹1'‡C‰&'p‰RŽ,Ž'ˆVpŠKžIŠf‹&–? ‹1’V”o—›A‹&»  '‹I‡F–P‹I
—V“9»­5'5”Ž`œV'Ÿ5“^‡ “K‹1”o‡•ž15'“9–P¡“^”Vš|Ž ˆV,5¨V‰IŸ<Ž µ ›AœV'‹Iœ5 Ž¡ ¥
_ˆg‰WžI_‰IŠ^‡ ‹MŸ
‹1˜iœV’Ž — ‡7Ž'‰RŽ'“K‹1”o‰&'¡Z‡ ‹IŠ^’Ž'“K‹1”o‡`’o‡ “^”VšM“^”V“KŽ “D‰&Š$Ÿ
‹I”g—“9Ž'“K‹1”o‡`ŒYˆo“^Ÿˆ
‰I ”V‹&ŽFŽ ˆVi‡7Ž ‰1—¡]‡Ž‰RŽ |‡7‹1ŠK’VŽ “^‹I”o‡C‰&”o— ŠK5Ž7Ž “^”VšMŽ “^˜||5ž1‹IŠ^žIc“^”Ž ‹[‰M‡7Ž ‰1—¡]‡Ž‰RŽ 1•
‹1™Ž'‰I“K”o“K”Všp‡ “K˜i“^Š^‰IY ‡7’oŠ9އ?ŒY“9Ž'ˆZŽ'ˆV,
¨V‰1Ÿ<Ž µ ›œo ‹1œg7Ž¡ ¥
 0 ~ƒZ~ )$+(,.-,/ ƒ ,+ #.% # " # ‚ , ¸
`œV“DŸ _—“K»­5'5”ŽfŽ ‡ŽLœV'‹I™oŠK˜i‡#–P‹1 2
›•WŽ ‹,ž15'“9–P¡cŽ ˆVYŒa5Š^Š™o‰&ŠD‰&”gŸ
—œV'‹Iœ5 Ž¡
Ž'‹RŒa‰I'—o‡cŽ'ˆV]˜|‹Rž“^”Všy‡Ž'‰I—V¡ ‡Ž‰RŽ ‡ ‹IŠ^’Ž “^‹I” ¥ ©?ˆV‡ ‡Ž'‰1—¡ ‡Ž‰RŽ'ZœV'‹I™oŠK˜i‡i‰I 
¤
,B&
"
L1
F4 7
2 0 ²
2 ² ›
$&
L∞
!-';L ?@!-!8A-!!'
'TL 1I'-
$C
$&#'-- 9O -1 $2'
"# &
1
œV'Ÿ5“^‡ “^‹I”
‡7“^”Vš1ŠK
—‹1’V™VŠ^
‘’o‰I—'’VœVŠ^
‡7“^”Vš1ŠK
—‹1’V™VŠ^
‘’o‰I—'’VœVŠ^
‡7“^”Vš1ŠK
—‹1’V™VŠ^
‘’o‰I—'’VœVŠ^
L1
¥K¤ h¬f› ¤1¥ ° ¬f› ¤²
¤1¥ °R¬f› I
¥ ¬f› ° ¥ ² ¬f› ¤
¥ ¬f› I
¥ ¬f› ¥ °R¬f› ¤²
¥ ¬f› ¤
5' ‹1
¤I¥ 1²hu¬f› 1²
° ¥ ¬f› ¤
° ¥^¤I¤ ¬f› °
¥ &² ¬f› 1²
° ¥ ° ¬f› ¤
° ¥ ¬f› °
° ¥ ¬f› 1²
° ¥ ¬f› ¤
¥ °&¬f› I
L∞
¥:² h¬f› ¥^¤I¤ ¬f› ¤²
¥^¤ ¬f› I
¤I¥ I ¬f› 1²
¥ ¬f› ¤
¤I¥ ¬f› °
° ¥:² ¬f› 1²
° ¥ ¬f› ¤
V¥ 1² ¬f›°
5' ‹1
¥ 1hu
² ¬f› ²
V¥ ² ¬f› ¤
V¥ ¬f› °
¤I¥ I ¬f›
¥ ¬f› ¤
¥ °&¬f› °
¤I¥ &² ¬f›
° ¥^¤ ¬f› ¤
¤I¥^¤ °&¬f› ¤
Ÿ ŠD‰I‡'‡7“DŸ5‰IŠ"Ž'‡7Ž0Ÿ‰I‡ ‡F–P‹IFŽ ‰&”o‡'Ÿ
'“KŽ “DŸ5‰&Š$‰&”g—(‡ ’V™Ÿ5 “KŽ “DŸ5‰IŠ#§o‹RŒ`‡5•‰I”o—Ž'ˆV5¡ ‰I |ŒY“D—5Š^¡
’o‡7—iŽ ‹_Ž ‡Ža”’o˜| “DŸ5‰IЇ'ŸˆV˜|‡f–P‹1a‡ ˆo‰&Š^Š^‹RŒ Œ?‰RŽ'5b‘’o‰RŽ'“K‹1”o‡ ¥(2 ‹IJ5¨V‰&˜iœVŠ^I•1Ž ˆV¡
ˆo‰WžI™g5”·’o‡7—(‰1‡C‰MŽ ‡ŽcŸ‰I‡ _“^”{¯:° ± ¥ 5'I•.‹1’VFœo’V œ‹1‡ |“^‡FŽ ‹]˜p‰&“^”Ž'‰I“K”(Ž ˆV‡7
‡Ž'‰I—V¡M‡Ž‰RŽ'0‡ ‹IŠ^’Ž'“K‹1”o‡?
¨V‰IŸ
Ž Š^¡ ¥
©?ˆo,™g‹IŽ7Ž ‹1˜ª–P’V”gŸ<Ž “^‹I”]“D‡?šI“^žI”Z™¡­º
(
“9– 8 ≤ x ≤ 12,
£e²¥ ¦
0.2 − 0.05(x − 10)2
b(x) =
‹&Ž ˆo5'ŒY“^‡ I•
0
–P‹Ic‰Ÿˆo‰I”V”V5Šf‹I–aŠ^5”oš&Ž ˆ ° ² m ¥ ©?ˆV'5p‡Ž'‰1—¡¸‡7Ž'‰&Ž ‡•"‡ ’V™­Ÿ
'“9Ž'“^Ÿ‰&ŠL‹10Ž ‰&”o‡'Ÿ
'“9Ž'“^Ÿ‰&Š
§o‹RŒdŒY“KŽ ˆ]‹IYŒY“KŽ ˆo‹I’މi‡7Ž ‰1—¡M‡ ˆV‹Ÿ pŒY“KŠ^Š™,“K”ž1‡7Ž “^š1‰RŽ'— ¥
‰ ¦ ºL©G'‰I”o‡'Ÿ
'“9Ž'“^Ÿ‰&Чo‹RŒdŒY“KŽ ˆo‹I’މi‡ ˆV‹Ÿ ¥ ©?ˆV,“^”V“KŽ “D‰&ŠŸ5‹I”o—“KŽ “^‹I”]“D‡?šI“^žI”Z™¡­º
£e²¥ ¦
1.532
+ 9.812 × 0.66,
m = 1.53,
E=
2 × 0.662
Ž ‹Iš1
Ž'ˆV5YŒY“KŽ ˆ[Ž ˆo,™g‹1’V”o—V‰I ¡OŸ5‹I”o—“KŽ “^‹I”
’Vœo‡7Ž '‰I˜]ºL©?ˆV,—“^‡'Ÿˆo‰I š1 hu ¤1¥ ² m2/s “^‡Y“^˜iœg‹‡7— ¥
•
—
R
‹
Y
Œ
o
”
7
‡
Ž
'


I
‰
]
˜
O
º
?
©
V
ˆ
M

?
Œ
R
‰
'
Ž
5

|

V
ˆ
5

^
“
šIˆŽ h V¥ m “D‡_“^˜iœg‹‡7—¶ŒYˆV5”®Ž ˆVZ§o‹RŒ«“D‡
•
‡ ’V™Ÿ5 “KŽ “DŸ5‰IŠ ¥
°
L1
"#&-10,B&
"
$&
!--'ILO ?@!-!2A(!'-'ILMO-1P'-
$C
$&0'
-09O 1 $ '-<
L∞
4 7
œV'Ÿ5“^‡ “K‹1”
‡7“^”VšIŠ^
—‹1’V™VŠ^
‘’o‰I—'’VœVŠ^
‡7“^”VšIŠ^
—‹1’V™VŠ^
‘’o‰I—'’VœVŠ^
‡7“^”VšIŠ^
—‹1’V™VŠ^
‘’o‰I—'’VœVŠ^
2 0 ²
2 ² ›
L1
5' ‹1
° ¥ ° h¬f› ¥ ¥ ² ¬f› ¤² ²¥ ¤1¥ ¬f› I ¤I¥
¥ ² ¬f› ° ¥ ¤1¥ ¬f› ¤ ²¥ ° ¥ ¬f› ° ¥
²V¥ ¬f› ¥:²
¤1¥ ¤ ¬f› ¤² V ¥
° ¥ ¬f› ¤ I¤ ¥ L∞
¤ ¬f› ¬f› ¤
¬f› °
¤ ¬f› 1²
¬f› ¤
¬f› °
¬f› ¬f› ¤ °&¬f› ²
hu
5' ‹1
¤I¥ ¤ h¬f› ¥:²I² ¬f› ¤W²
¥ °&¬f› 1
¤I¥ ¤ ¬f› ²
¥ °&¬f› ¤
²¥ 1² ¬f› °
¥:² ¬f› ¥:²I² ¬f› ¤W²
V¥ ¬f›*°
¬f› ²
° ¥ hu
¥ ¬f› ¤
²¥ ¬f› °
¤I¥:² ¬f›
° ¥ ¬f› ¤
¥ ¬f› ¤
¤I¥^¤ ¬f› ° ¥ ¬f› ¤W²
V¥^¤ ¬f›
©?ˆo“^‡F‡Ž'‰I—V¡Z‡7Ž'‰RŽ'c‡7ˆo‹I’VŠD—[™gc5¨V‰IŸ<Ž'ŠK¡ZœV'‡ 5'žI— ¥ cŸ5‹I˜iœV’Ž',Ž ˆo_‡7‹1ŠK’VŽ “^‹I”]’V”Ž “^Š
’o‡ “K”oš
’V”V“K–P‹I'˜˜i‡ ˆ]œg‹1“K”އ ¥ ©?ˆVcŸ
‹1˜|œo’Ž —‡7’V –4‰IŸ50ŠKžI5Š
t = 20
‰I”o—·Ž ˆoO™g‹IŽ7Ž'N‹I˜ =b 200
‰I pœoŠK‹IŽ7Ž —·“K” 2 “^šI’V'M° ¥ *”¶‹I—50Ž'‹ —5˜i‹1”o‡Ž''‰&Ž iŽ'ˆo‰RhŽc+Ž'ˆVb
‡7Ž ‰I—¡p‡7Ž'‰&Ž “D‡b“K”o—V5—O˜i‰I“K”މ&“^”V—p’oœOŽ ‹ ‹1’V”o—›A‹&»[5' ‹1•1ŒbF’o‡ F‡ “K”Vš1ŠKœV Ÿ
“D‡7“^‹I”
‰I”o—¶—‹1’V™VŠ^pœV Ÿ
“D‡7“^‹I”·Ž'‹œg7–P‹1 ˜ Ž ˆVMŸ5‹I˜iœV’މRŽ'“K‹1”•#‰I”o—¶‡ ˆV‹RŒ Ž'ˆV L1 ‰&”o— L∞
 '‹I‡_–P‹I|Ž ˆV[Œ?‰RŽ iˆV5“^šIˆŽ h ‰&”o— Ž ˆV—“D‡ Ÿˆg‰&'šI hu £ ”V‹IŽ Iº[”V“9Ž'ˆV5 h ”V‹1 hu
“^”{Ž ˆV“D‡OŸ5‰1‡7[“D‡|‰yŸ5‹I”o‡7Ž'‰I”1Ži‹Iiœ‹IŠ^¡”V‹I˜i“D‰&Ša–P’V”oŸ
Ž “^‹I” ¦ “^” ©#‰&™oŠK‡ –P‹1i—V“9»­5'5”Ž
œo Ÿ
“D‡7“^‹I”o‡ ¥ MŸ5‰I”·Ÿ5ŠK‰&'ŠK¡(‡ 5iŽ'ˆo‰RŽ,Ž'ˆV L1 ‰&”o— L∞ 5' ‹1'‡0‰I p‰RŽ,Ž'ˆVOŠ^5ž15Šf‹&–
'‹I’o”o—›A‹&» 5''‹I‡L–P‹1`—“9»­5'5”Ž`œV'Ÿ5“^‡ “^‹I”o‡•žI5'“K–P¡“^”Vš|Ž ˆo,ŒbŠKŠK›™g‰&ŠD‰&”oŸ5—Oœo ‹1œg7Ž¡ ¥
2
L1
$&
›
L∞
(-'TLM3 ?@!(8A!('-'3LM-18
-$&'
! ($&% 9
œo Ÿ
“D‡7“^‹I”
‡7“^”Vš1ŠK
—‹1’V™VŠ^
L1
° ^¥ ¤ h¬f› ¤I¥^¤² ¬f› ¤ 5' ‹1
¥ huf¬ ›
¥ ° ¤ ¬f› ¤ L∞
I¤ ¥ ¤ h¬f› ²¥:²I² ¬f› ¤ 9O 18$2'
1 B
 '‹I
¤I¥^¤ hu¬L› ¤I¥ I ¬L› ¤W²
1.2
surface level h+b
bottom b
1.1
1
surface level h+b
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0
5
10
15
20
25
x
18'-L$&! !
h+b
$&D-1O,B&--"
b
L 1O-
$&'
!- -($& 9
9O 18$ '
1 B
™ ¦ ºJ©G'‰I”o‡'Ÿ
'“9Ž'“^Ÿ‰&Чo‹RŒ ŒY“KŽ ˆ ‰i‡ ˆV‹Ÿ ¥ ©?ˆV0“^”V“KŽ “D‰&Š"Ÿ5‹I”o—“KŽ “^‹I”[“D‡YšI“^žI”Z™¡­º
£e²¥:²I¦
E=



3
2 (9.812 ×
2
2
0.18) 3 ) + 9.812 × 0.2
0.18
+ 9.812 × 0.33
2 × 0.332
“9– x ≤ 11.665504281554291,
‹&Ž ˆo5'ŒY“^‡ I•
m = 0.18,
Ž ‹Iš1
Ž'ˆV5YŒY“KŽ ˆ[Ž ˆo,™g‹1’V”o—V‰I ¡OŸ5‹I”o—“KŽ “^‹I”
’Vœo‡7Ž '‰I˜]ºL©?ˆV,—“^‡'Ÿˆo‰I š1 hu o¥K¤ m2/s “^‡Y“^˜iœg‹‡7— ¥
•
—
R
‹
Y
Œ
o
”
7
‡
Ž
'


I
‰
]
˜
$
º
?
©
o
ˆ
C

?
Œ
R
‰
'
Ž
5

Y

V
ˆ

K
“
1
š
ˆŽ h V¥ I m “^‡`“K˜iœ‹1‡ — ¥
•
©?ˆV“^‡|‡7Ž ‰1—¡¶‡Ž‰RŽ'Z‡ ˆV‹I’VŠD—y™Z5¨‰1Ÿ<Ž'ŠK¡yœV'‡ 5'žI— ¥ ‡|ŒaM˜i5”Ž “^‹I”o—¶“^” ’V™g‡7Ÿ<›
Ž “^‹I” ¥ •bŒb]‹I”oŠK¡®—V“^‡'Ÿ
’o‡'‡iŽ'ˆV Ÿ5‰1‡7[ŒYˆV5” Ž'ˆV ‡7ˆo‹Ÿ ®“^‡p5¨V‰IŸ<Ž'ŠK¡¶Š^‹Ÿ5‰&Ž —@‰&Ž|Ž'ˆV
Ÿ
5Š^Š$™g‹1’V”o—V‰I ¡ ¥ 5”gŸ
|Œb|‡7ˆV“K–¢Ž0Ž ˆViŸ
‹1˜iœV’Ž'‰&Ž “^‹I”o‰IŠ#—V‹I˜p‰&“^”Ž ‹[œV’Ž0Ž'ˆV|‡ ˆV‹Ÿ ‰RŽ
Ž ˆV|Ÿ
5Š^Š#™g‹1’V”o—V‰I ¡ ¥ 2 ‹IŽ ˆV“D‡CŸ5‰I‡ cŒYˆV”(‡7Ž'‰RŽ'“K‹1”o‰&'¡Z‡ ˆV‹Ÿ [
¨“^‡7Ž'‡•Œbc”o5—Ž ‹M’g‡7
Ž ˆV Y‹ ‡b§o’¨pŽ'‹|Ÿ5‹I˜iœV’Ž'Ž'ˆV,‰&œVœV'‹W¨“K˜p‰&Ž  `“K˜i‰I”V”Mœo ‹1™VŠK˜]•‰I”o—O'5œoŠ^‰1Ÿ
`Ž'ˆV
ŠK“^˜i“9Ž'5|œV ‹Ÿ5—’V'M™¡¶‰ ‹1”V
›*‡ “^——¶Š^“K˜i“KŽ 5–P‹IŽ ˆoMŽŒa‹¸Ÿ55Š^Š^‡”V
¨ŽŽ ‹¸Ž ˆV[‡7ˆV‹Ÿ ¥
Š^‡ ‹o•­Ž'ˆViŠK5–¢Žc‰&”o—( “^šIˆŽ,‰&œVœV'‹W¨“K˜p‰&Ž —]žR‰IŠK’V‡C‹&–J™‹&Ž Ž ‹I˜ ‰RŽCŽ ˆVp‡ ˆV‹Ÿ [˜’o‡7Ž0™
5 ¨V‰IŸ<Ž•V‡7‹|Ž'ˆo‰RŽYŽ'ˆV Y‹ ‡a§o’¨[Ÿ‰&”]Ÿ5‰IœŽ ’V'CŽ ˆV“D‡Y‡ ˆV‹Ÿ O
¨V‰IŸ
Ž Š^¡ ¥  0Œa,Ÿ
‹I˜iœV’VŽ 
Ž'ˆVi‡7‹1ŠK’Ž'“K‹1”’V”Ž “^Š t = 20 ’g‡7“^”Vš N = 400 ’V”V“K–P‹I'˜ ˜|‡7ˆœ‹I“^”Ž'‡ ¥ ©?ˆV|Ÿ
‹1˜|œo’Ž —
‡ ’V –4‰IŸ5YŠKžI5Š h + b ‰I”o—Ž ˆVY™‹&Ž Ž ‹1˜ b ‰&'?œVŠK‹IŽ7Ž'—i“^” 2 “^šI’V' ¥ *”i‹I—5$Ž'‹c—5˜i‹1”›
‡7Ž ‰RŽ'CŽ ˆo‰&ŽaŽ'ˆV,‡Ž'‰1—¡O‡Ž‰RŽ'C“D‡a“K”g—5—Z˜p‰I“K”Ž'‰I“K”o—O’oœMŽ'‹|'‹I’o”o—›A‹&»5' ‹1•ŒaF’o‡ 
‡ “^”VšIŠ^MœV'Ÿ5“^‡ “^‹I” ‰&”g— —‹I’o™VŠKZœV'Ÿ
“D‡ “K‹1”yŽ ‹(œ5 –P‹I'˜ Ž ˆV]Ÿ
‹1˜|œo’Ž'‰&Ž “^‹I”•f‰&”g— ‡7ˆo‹RŒ
Ž'ˆV L1 ‰I”o— L∞ 5' ‹1'‡J–P‹I?Ž'ˆV,Œ?‰RŽ YˆV5“^šIˆŽ h ‰I”o—ZŽ ˆVc—“D‡'Ÿˆo‰&'šI hu “^”©G‰I™VŠ^‡
–P‹1c—“K» ”1Ž0œV'Ÿ5“^‡ “K‹1”o‡ ¥ pŸ‰&”¸Ÿ5ŠK‰&'ŠK¡ ‡ 5Ž ˆg‰RŽ0Ž ˆV L1 ‰I”o— L∞ 5''‹I‡F‰I |‰RŽ
Ž'ˆV0ŠKžIŠ‹I–"'‹I’V”o—›‹I»[ '‹I‡f–P‹1?—V“9»­5'5”Ž?œV Ÿ
“D‡7“^‹I”g‡5•žI “K–P¡“K”Vš_Ž ˆV0Œa5Š^Š9›A™o‰IŠ^‰I”oŸ
—
œo ‹1œg7Ž¡ ¥
0.45
surface level h+b
bottom b
0.4
surface level h+b
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0
0
5
10
15
20
25
x
12'- LF$&!2!
h+b
$&:-12,B&--"
b
L;-1 -$&'-( - $& %
(9
Ÿ ¦ º ’o™Ÿ5 “KŽ “DŸ5‰IŠ.§o‹RŒ ¥ ©?ˆV0“K”o“9Ž'“^‰IŠ"Ÿ
‹1”o—“KŽ “^‹I”[“^‡Yš1“Kž15”[™¡º
£²¥ ¦
E = 22.06605,
Ž'‹Iš1
Ž ˆo5YŒY“KŽ ˆ[Ž ˆV,™‹I’o”o—V‰&'¡MŸ5‹I”o—“KŽ “^‹I”
’Vœo‡7Ž '‰I˜]º$©?ˆoc—“^‡'Ÿˆo‰I š1 hu ¥ °
•
m = 4.42,
m2 /s
“^‡?“^˜iœg‹‡7— ¥
9O 1:$D'
1B
²
2
L1
$&
›
L∞
(-' LM; ?@!-! A!!'
'8L;-1 -
$&'-!- -($& 9
œo Ÿ
“D‡7“^‹I”
‡ “K”Vš1ŠK
—V‹I’V™VŠ^
L1
5' ‹1
° ¥ h¬f›
¤1¥ f¬ › ¤²
L∞
° ¥ huf¬ ›
¤I¥ ° ¬f› ¤²
¥ h¬f› V¥ ¬f› ¤
9O 10$/'-1 @
5' ‹1
° ¥:² hu¬f› V¥ °&¬f› ¤
— ‹RŒY”o‡7Ž '‰I˜]º$©?ˆoCŒ?‰RŽ'5YˆV“Kš1ˆŽ h ° m “^‡Y“^˜iœg‹‡7— ¥
©?ˆV“^‡‡Ž'‰I—V¡Z‡7Ž'‰RŽ'c‡7ˆo‹I’VŠD—]™g_
¨V‰IŸ
Ž Š^¡OœV'‡ 5'žI— ¥ Ÿ
‹I˜iœV’VŽ 0Ž ˆo_‡7‹1ŠK’VŽ “^‹I”]’V”Ž “^Š
’o‡ “K”oš N = 200 ’V”V“K–P‹I'˜˜i‡ ˆœ‹I“^”1އ ¥ ©?ˆVcŸ
‹1˜iœV’Ž —]‡7’V –4‰IŸ5,ŠKžIŠ h + b
t = 20
‰&”o—¸Ž ˆoO™g‹IŽ7Ž'‹I˜ b ‰I pœoŠK‹IŽ7Ž —y“K” 2 “^šI’V' ¥ *”¶‹I—50Ž'‹(—˜|‹1”o‡7Ž ‰RŽ |Ž'ˆo‰RŽcŽ'ˆV
‡Ž'‰I—V¡i‡7Ž'‰&Ž `“D‡a“K”g—5—p˜p‰&“^”1މ&“^”V—O’VœpŽ ‹ ‹1’V”o—›A‹&»]5''‹I•&ŒbF’o‡ F‡ “K”Vš1ŠKFœV'Ÿ
“D‡ “K‹1”
‰&”o—y—‹1’V™VŠ^OœV'Ÿ
“D‡ “K‹1”(Ž'‹ œg7–P‹1 ˜ Ž ˆVZŸ
‹I˜iœV’VŽ'‰RŽ'“K‹1”•$‰&”o—y‡ ˆV‹RŒ´Ž'ˆV 1 ‰&”o— ∞
5' ‹1'‡c–P‹IiŽ ˆo[Œ?‰RŽ'5iˆV“Kš1ˆ1Ž h ‰&”g—¶Ž ˆo —“^‡'Ÿˆo‰I š1 hu “^”@©G‰I™VŠK‡ ² –PL‹1O—“9»­5'L5”Ž
œV Ÿ
“D‡7“^‹I”g‡ ¥ OŸ5‰I”yŸ5ŠK‰&'ŠK¡¸‡7Ž'ˆo‰RŽ_Ž ˆV 1 ‰&”o— ∞ 5''‹I‡C‰I p‰&Ž,Ž ˆVpŠ^5ž15ŠL‹I–
 ‹1’V”o—›A‹&»  '‹I‡L–P‹1`—“K» ”1Ž`œo Ÿ
“D‡7“^‹I”o‡•žIL “K–P¡“K”VšLŽ ˆo,ŒbŠKŠK›™g‰&ŠD‰&”oŸ5—Oœo ‹1œg7Ž¡ ¥
•
œV'Ÿ
“D‡ “K‹1”
‡ “^”VšIŠ^
—‹I’V™oŠK
L1
$&
L∞
!-'ILM8 ?@(! IA!('-'8L;-1 '
,B!- -($& %
(9P
L1
5' ‹1
¥ h°R¬f› ¤1¥ ¬f› ¤ L∞
¥hu
° ¬L› V¥ ¬L› ¤ ¥ Vh¤ ¬f› ¥ ¬f› ¤  '‹I
¬f› ¤1¥ ¬f› ¤²
¥ °
hu
$#"$# ~… , ~ ‚gƒW„#~ƒR…p‚ 0
0
+ ƒ 0
€
* ”·Ž'ˆV“^‡c
¨V‰&˜iœVŠ^iŒbiŒY“^ŠKŠ$Ž'‡7Ž,Ž ˆVpˆV“^šIˆV›‹1'—C‰1Ÿ5Ÿ5’V'‰1Ÿ
¡‹I–b‹I’oc‡ ŸˆV˜i‡F–P‹Ic‰
‡7˜i‹‹&Ž'ˆ(‡7‹1ŠK’VŽ “^‹I” ¥ ©?ˆV |‰&'‡ ‹I˜i ”V‹RŒY” 5¨V‰IŸ<Ž,‡ ‹IŠ^’Ž “^‹I”o‡Ž ‹MŽ ˆVi‡ ˆo‰&Š^ŠK‹RŒ Œ?‰RŽ'5
‘’o‰RŽ'“K‹1”¶ŒY“9Ž'ˆ®”V‹1”›§g‰RŽ_™‹&Ž Ž ‹1˜ “^” Ž'ˆVMŠ^“KŽ 5‰RŽ'’V'I•f‡7’gŸˆ®‰I‡‡7‹1˜|Z‡Ž‰RŽ “^‹I”g‰&'¡·‡ ‹&›
ŠK’Ž'“K‹1”o‡•f™V’Ž|Ž ˆV¡ ‰&'O”V‹&Ž|šI”V5'“^ŸOŽ ‡ŽiŸ5‰I‡ ‡c–P‹Ii‰IŸŸ
’V‰IŸ5¡ ¥ Mˆg‰WžIOŽ'ˆV5'
–P‹1 
2.5
surface level h+b
bottom b
surface level h+b
2
1.5
1
0.5
0
0
5
10
15
20
25
x
12'-L$&! !
h+b
$&:-1 ,@&-"
b
LM;
1P'-,B!- -($& %
9 Ÿˆo‹1‡ 5”ZŽ ‹i’o‡ 0Ž ˆV0–P‹1ŠKŠ^‹RŒY“K”oš™‹&Ž Ž ‹I˜–P’V”oŸ
Ž “^‹I”‰&”o—[“^”V“KŽ “D‰&ŠŸ
‹1”o—“KŽ “^‹I”o‡
b(x) = sin2 (πx), h(x, 0) = 5 + ecos(2πx) , (hu)(x, 0) = sin(cos(2πx)), x ∈ [0, 1]
ŒY“KŽ ˆ œ5'“K‹—“DŸM™‹I’o”o—V‰&'¡¶Ÿ
‹1”o—“KŽ “^‹I”o‡•J‡ 5·¯ ¤ ± ¥ “K”gŸ
ZŽ ˆV]
¨V‰1Ÿ<Ž|‡ ‹IŠ^’Ž'“K‹1”®“D‡”o‹&Ž
”V‹RŒY”d
¨œVŠ^“^Ÿ5“9Ž'ŠK¡ –P‹IZŽ ˆo“^‡[Ÿ5‰1‡71•`Œb¸’o‡  Ž ˆo V–¢Ž'ˆd‹I—Oo”V“KŽ ·žI‹1ŠK’o˜| ¬ ‡'ŸˆV˜|ŒY“9Ž'ˆ N = 12, 800 Ÿ
ŠKŠD‡YŽ'‹ZŸ5‹I˜iœV’Ž'_‰O'
–P ”oŸ
c‡ ‹IŠ^’Ž “^‹I”"•‰I”o—]Ž '‰&Ž`Ž ˆo“^‡
'
–P ”oŸ
·‡7‹1ŠK’VŽ “^‹I”d‰1‡OŽ'ˆVy
¨V‰IŸ
Ž[‡ ‹IŠ^’Ž “^‹I” “^” Ÿ5‹I˜iœV’Ž'“K”oš Ž ˆo·”’V˜i “DŸ5‰IŠ5''‹I‡ ¥
MŸ5‹I˜iœV’Ž'p’Vœ·Ž ‹ t = 0.1 ŒYˆV”¸Ž'ˆVO‡ ‹IŠ^’Ž “^‹I”·“^‡_‡Ž'“KŠ^ŠJ‡ ˜|‹‹IŽ ˆ £ ‡ ˆV‹Ÿ ‡,—5ž15Š^‹Iœ
ŠD‰RŽ'5,“^”·Ž “^˜|i–P‹1CŽ ˆV“D‡,œV'‹I™VŠ^5˜ ¦
¥ ©#‰&™oŠK‡ ‰I”o— Ÿ5‹I”Ž'‰I“K”¸Ž ˆo L1 5' ‹1'‡–P‹I0Ž'ˆV
Ÿ55Š^ŠC‰Wž15‰&š1‡|–P‹I 2 › • 2 ² › ‰I”o— •`‰I”o—@–P‹IMŽ ˆV¸œg‹1“K”Ž[žW‰IŠK’o‡M–P‹I
2 0² •‰I”o—”’V˜i5'“^Ÿ‰&Š#‹I—5‡`‹I–J‰IŸŸ
’V‰IŸ5¡ ¥ iŸ5‰&”¸Ÿ
Š^‰&'Š^¡]‡ 5_Ž ˆo‰&ŽFŽ'ˆVi—‡ “Kš1”V—
‹1'—V5?‹&–G‰1Ÿ5Ÿ5’V'‰1Ÿ
¡i“D‡Y‰IŸˆV“^5ž1— ¥ 2 ‹1bŽ'ˆV ‡'ŸˆV5˜iI•Ž'ˆV,©
Ÿ5‹I”o‡7Ž'‰I”1Ž M “D‡
މ 15”(‰1‡ ° ¥ ‹&Ž “DŸ
_Ž ˆo‰&ŽFŽ'ˆV µ 2 1®”’o˜_™5CŒbˆo‰WžIc’g‡7—]–P‹IFŽ ˆV_o”V“KŽ |žI‹1ŠK’V˜i
‡'ŸˆV˜|O—VŸ
'‰1‡7‡0ŒY“9Ž'ˆyŽ ˆVM˜|‡7ˆ ‡ “^³5O‰&”g—¸“D‡,'Ÿ5‹I——¸“K” ©#‰&™oŠK‡ ‰&”o— ¥ 2 ‹I
Ž'ˆV ˜i
Ž ˆo‹—•1Ž'ˆV µ 2 1 ”’V˜_™5?“D‡bV¨—O‰&Ž o¥K¤ V¥ C”V‹&Ž'Ž'ˆo‰RŽaV–¢Ž'ˆ›‹1'—V5
‰1Ÿ5Ÿ5’V'‰1Ÿ
¡F“^‡"‹I™o‡ 5'žI—`–P‹1 2 › ¥ ©?ˆofV–¢Ž ˆV›‹1'— ¬ { Ÿ
‹I”g‡Ž' ’oŸ
Ž “^‹I”Cˆo‰I‡"™g5”
’o‡7—M“^”Z‡ œo‰1Ÿ
I•™o’Ž?Ž ˆV,‡ ‹I’VŸ
Ž 5'˜ª“D‡?‰&œVœV'‹W¨“K˜p‰&Ž —O™¡Z‰c–P‹1’V7Ž'ˆZ‹1'—V5?‰IŸ5Ÿ5’V‰RŽ 

¨Ž ‰&œ‹IŠD‰RŽ'“K‹1” ¥ ”oŸ
iŽ'ˆVM‰&œoœV ‹W¨“^˜p‰RŽ “^‹I”¸‹&–aŽ ˆVO‡ ‹I’o'Ÿ5Ž'5'˜ “^”·Ž ˆVM‰IŠKš1‹I'“9Ž'ˆV˜
Ÿ
‹I”Ž' “^™V’Ž'‡?Š^‡'‡aŽ ‹iŽ ˆo,‹RžI5‰&Š^Š­5' ‹1 ¥ ©?ˆV“D‡YœVˆo5”V‹1˜|”o‰|ˆo‰I‡`™g5”]“K”ž1‡7Ž “^š1‰RŽ'—M“K”
¯° ± ¥
!-' $&0"#!($&J!-'I&L3$&!!-$& 0LMT
1 K$&"#A 5 (- 4 L1
¥ ‹&– µ 2 1
Ÿ
ŠKŠD‡
V¥ °²
²
V¥ ¤
V¥
V¥
°
V¥ °
V¥^¤
2
`‹
1¤L¥
°¥
°¥
°¥
¤1¥
¥
1
µ 2 1
°²
°
¤
²
V¥ V¥ V¥
V¥
V¥ °
V¥^¤
L1
¤1¥
°¥
°¥
°¥
¤1¥
¥°
›
 '‹Ih I‹ —
¬f› °
¤ ¬f›
° ¥ ¬f›
¥ °
1²
¥ ¤
¬f›
¥² ¬f› ¥
¬f› 2 ² ›
hu
5

'


1
‹

L
¥ ¬f› °
¤I¥ ¬f› °
° ¥:² ¬f›
° ¥^¤ ¬f›
V¥ ¬f› ° ¥ ² ¬f› ‹I—5
 '‹Ih I‹ —
¬f› °
¬f›
° ¥ 1
¬f›
¥ o¤
1²
¥ ¤
¬f›
¥² °R¬f› ¬f› ¥ 5' ‹1hu

¥ ² ¬f› °
¤I¥ ¬f› °
° ¥:² ¬f›
° ¥^¤ ¬f›
V¥ ¬f› ° ¥ 1² ¬f› ‹I—5
1
L1
°¥ ¤
° ¥I
¥
¥:² ¥I
° ¥° ° ¥I
¥
¥:² ¥ $# # … 0 -- J ~ƒ + ƒ /(0 , ‚ ‚ 0 … ~ 0 „G€ … 0 ~ 0 ~ƒ
?© ˆob–P‹1ŠKŠ^‹RŒY“^”Vš`Ž'‡7ŽfŸ‰I‡ ‡#‰&'aŸˆo‹1‡ 5”,Ž'‹0—V5˜i‹I”o‡7Ž ‰RŽ'LŽ'ˆVYŸ5‰&œg‰&™V“^ŠK“KŽ¡,‹&–oŽ ˆV?œV'‹&›
œg‹‡7—|‡'ŸˆV˜|‡$–P‹IaŸ
‹1˜|œo’Ž'‰&Ž “^‹I”o‡f‹1”|Ž ˆV`œ5 Ž ’o ™o‰&Ž “^‹I”i‹&–‰,‡7Ž ‰I—¡i‡Ž‰RŽ'`‡7‹1ŠK’Ž'“K‹1”•
ŒYˆV“^Ÿˆ·Ÿ5‰I”V”V‹&ŽC™gpŸ‰&œŽ'’V — Œa5Š^ŠG™¡ ‰Z”V‹I”¸ŒbŠKŠK›A™o‰&ŠD‰&”oŸ5—‡'ŸˆV5˜i ¥ 2 ‹ICŽ'ˆV|‡'‰&˜i
 ‰I‡ ‹I”Z‰1‡?“K” Ÿ<Ž'“K‹1” ²V¥K¤ •ŽŒb‹|Ž ‡Ž`Ÿ‰I‡ ‡Y‰&'CœV ‹1œg‹‡7—O–P‹1`—“K» ”1މIŠKš1‹I'“9Ž'ˆV˜p‡ ¥
!-'2$&:"#(($&J!-' &L $&(!-$& 0LM;
12K$&"#A205!!- 4 L1
¥ ‹&– µ 2 1
`‹
V¥ V¥ V¥ V¥ V¥ V¥ °²
²
¤
°
µ 2 1
V¥ V¥ V¥
V¥
V¥ °
V¥^¤
°²
²
°
¤
2 0 ²
5''‹Ih I‹ —5
¤I¥ ¬f› °
° ¥^¤ ¬f›
°¥ ¥ I ¬f›
° ¥ ¤
¥ °
° ¥ ¬f› 1²
¥ ¬f› ¥ ¤
¥ ¬f› ¥
5' ‹1hu

¬f› o¤
² ¬f› °
¬f›
¬f›
¬f› ¬f› ‹I—5
5''‹Ih I‹ —5 L1 5' ‹1hu

° ¥ ² ¬f›
° ¥^¤ °&¬f› °
¤I¥^¤² ¬f›
¥ I¤ ¥ V¤ ¬f›
¤I¥ ° ¬f› 1²
¥°
I¤ ¥ ¬f›
¤I¥ °&¬f› :¥ ²
V¥ ¬f› ¤I¥^¤I¤ ¬f› ^¥ ¤
¥ ¬f› ¤I¥ ¬f› ¥
¤I^¥ ¤ ¬f› ‹I—5
L1
L1
¤I¥
I¤ ¥
° ¥
°¥
V¥
°¥
°¥ ²
° ¥ ¥
¥ ¤
¥
L1
¥
¥° ¤
¥
^¥ ¤
¥ # #.% # F~ƒ + ƒ / 0 , ‚ ‚ 0 -.0 g~ 0 ƒR~… ~ )$+(,.-.,./ ƒ ,+ ©?ˆo0–P‹IŠ^ŠK‹RŒY“^”Vši‘1’g‰I‡ “9›*‡Ž‰RŽ'“K‹1”o‰&'¡|Ž ‡7ŽŸ5‰1‡7CŒ?‰I‡?œV'‹Iœ‹1‡ —M™¡ 1 f‘’Vi¯ ¤ ± ¥ AŽ`Œ?‰I‡
Ÿˆo‹1‡ 5”pŽ'‹_—5˜i‹1”o‡Ž''‰&Ž Ž ˆVCŸ5‰&œg‰&™V“^ŠK“KŽ¡|‹&–.Ž ˆoFœV'‹Iœ‹1‡ —p‡'ŸˆV˜|`–P‹I?Ÿ
‹I˜iœV’VŽ'‰RŽ'“K‹1”o‡
‹1” ‰]'‰IœV“D—ŠK¡¸žR‰&'¡“^”Vš[§o‹RŒ ‹RžIc‰‡7˜i‹‹&Ž'ˆ¶™g—.•#‰I”o—·Ž ˆoOœg7Ž'’V'™o‰RŽ'“K‹1”·‹I–`‰‡Ž‰R›
Ž'“K‹1”o‰&'¡M‡7Ž'‰&Ž  ¥ 0Ž ‡Ž`“KŽ`‹I” 2 ² › • 2 C² ‰I”o— ˜i
Ž'ˆV‹—V‡ ¥
©?ˆo,™g‹IŽ7Ž ‹1˜«Ž ‹1œg‹1šI‰&œVˆ¡OŸ5‹I”o‡ “^‡7Ž'‡?‹I–G‹1”V0ˆ’o˜|œ"º
£²¥ &¦
b(x) =
(
0.25(cos(10π(x − 1.5)) + 1)
0
“9– 1.4 ≤ x ≤ 1.6,
‹IŽ ˆV ŒY“D‡71•
1.4
1.2
initial surface level
bottom b
1.2
initial surface level
bottom b
1
surface level h+b
surface level h+b
1
0.8
0.6
0.8
0.6
0.4
0.4
0.2
0.2
0
0
0.5
1
1.5
0
2
0
0.5
1
x
1.5
2
x
1> -.$&;'
L$&(>!
$&-1:,@&-"
LD$ ' " &$ TAB!-,%$C-
h+b
b
'
($& <'7$C-P9;$C
!! L )$D, A'-
1 )3$D'
" $&@A'-
&L $
©?ˆo,“K”V“KŽ “D‰&ŠGŸ
‹I”g—“9Ž'“K‹1”o‡Y‰&'CšI“^žI5”[ŒY“KŽ ˆ
“9– 1.1 ≤ x ≤ 1.2,
‹&Ž ˆo5'ŒY“^‡ I•
ŒYˆV5' “D‡_‰ ”V‹I”›A³5 ‹]œ5 Ž ’V'™o‰&Ž “^‹I” Ÿ
‹1”o‡7Ž'‰&”Ž ¥ ©GŒb‹ Ÿ‰I‡ ‡,ˆg‰WžIp™55”® ’V”"º V¥ ° £ ™V“KšyœV’oŠ^‡  ¦ ‰&”g— o¥ V¤·£ ‡ ˜i‰IŠKŠYœo’VŠ^‡  ¦
¥ ©?ˆo5‹I'
Ž'“^Ÿ‰&Š^ŠK¡1•f–P‹Ip‡ ˜p‰&Š^Š •LŽ'ˆV “D‡
—“^‡7Ž ’o ™o‰I”oŸ
`‡ ˆV‹1’VŠ^—p‡ œVŠ^“9 Ža“K”Ž'‹,ŽŒb‹,Œ?‰WžI‡5•IœV ‹1œo‰&š‰RŽ'“K”Vš0Š^
–¢Žb‰I”o—i'“Kš1ˆ1Ža‰RŽLŽ'ˆVŸˆo‰I7›
‰IŸ<Ž'5'“^‡7Ž “DŸ(‡ œ5—o‡ ±√gh ¥ 3 ‰&”¡@”’V˜i5'“^Ÿ‰&ŠC˜|5Ž ˆV‹—V‡[ˆo‰Wž1(—“K¹OŸ
’VŠKŽ¡ ŒY“9Ž'ˆ Ž'ˆV
Ÿ5‰&ŠDŸ
’oŠ^‰&Ž “^‹I”o‡b“K”ž1‹IŠ^ž“^”Vš|‡7’oŸˆ[‡7˜p‰IŠKŠ­œ5 Ž ’V'™o‰RŽ'“K‹1”o‡a‹&–Ž'ˆV0Œa‰&Ž ?‡ ’V –4‰IŸ5_¯ ¤ ± ¥ ‹&Ž ˆ
‡75Ž'‡f‹I–­“^”V“KŽ “D‰&ŠŸ
‹I”g—“9Ž'“K‹1”o‡L‰I `‡ ˆV‹RŒY”i“K” 2 “^šI’V' ²¥ ©?ˆV‡ ‹IŠ^’Ž'“K‹1”i‰&ŽLŽ “^˜i t V¥ ° s –P‹1
Ž ˆVi™V“^šZœo’VŠ^‡  o¥ °V•.‹I™Ž‰&“^”V—(‹I”¸‰° Ÿ55Š^Š$’V”V“K–P‹I'˜SšI'“^—(ŒY“9Ž'ˆ·‡ “^˜|œo ŠK|Ž ‰&”g‡›
˜|“D‡'‡7“^žI`™‹I’o”o—V‰&' ¡iŸ
‹I”g—“9Ž'“K‹1”o‡•‰I”o—pŸ
‹1˜|œg‰&'—iŒY“KŽ ˆM‰
Ÿ
5Š^Š­‡7‹1ŠK’Ž'“K‹1”•“^‡b‡7ˆV‹RŒY”
“K” 2 “^šI’V' –P‹1cŽ'ˆV 2 0² •$“K” 2 “^šI’o  –P‹IcŽ'ˆV 2 ² › ‰I”o—y“K” 2 “^šI’o  –P‹IcŽ'ˆV
¥ ©?ˆo, ‡7’VŠKŽ'‡Y–P‹IYŽ'ˆV_‡ ˜i‰IŠKŠ"œV’VŠD‡7
V¥ V¤ ‰&'c‡ ˆV‹RŒY”]“K” 2 “Kš1’V'‡ • ¤
‰&”o— ¤1¤I¥ ŽJŽ ˆo“^‡LŽ “^˜|1•Ž ˆVC—‹RŒY”o‡7Ž '‰&˜|›Ž ‰WžI  ŠK“^”VšŒ?‰RŽ'5Lœo’VŠ^‡ ˆg‰I‡J‰IŠK'‰1—¡cœo‰1‡ ‡ —
Ž ˆV`™o’V˜iœ ¥ Ÿ‰&”pŸ
Š^‰I Š^¡_‡ 5?Ž'ˆo‰RŽLŽ'ˆV5'`‰&'Y”V‹c‡ œV’V'“K‹1’o‡$”’V˜i5'“^Ÿ‰&ŠV‹‡ Ÿ5“KŠ^ŠD‰RŽ “^‹I”g‡ ¥
£e²¥ 1¦
(hu)(x, 0) = 0
‰&”o—
h(x, 0) =
(
1 − b(x) + 1 − b(x)
 0 ~1ƒ[~ )$+ ,-.,/ ƒ ,.+ $# #"$# F~ƒ + ƒ / 0 , ‚ ‚ ‚ ,. ¸
*”[‡ ’V™o‡ Ÿ
Ž “^‹I” ²V¥K¤1¥ °V•ŒbCœV'‡ 5”Ž —pŽ ˆo C‡7Ž ‰I—¡O‡7Ž'‰&Ž ,‡7‹1ŠK’VŽ “^‹I”o‡a‰&”o—[‡ ˆV‹RŒb—iŽ ˆg‰RŽ
‹I’Vb”’o˜| “DŸ5‰IЇ'ŸˆV˜|‡J—“D—O˜p‰I“K”Ž'‰I“K”OŽ ˆV˜«
¨V‰IŸ
Ž Š^¡ ¥ *”OŽ ˆo“^‡JŽ ‡ŽYŸ5‰1‡71•1Œa“^˜iœg‹‡7
²
1.2
nx=3000
nx=200
1.15
nx=3000
nx=200
0.4
surface level h+b
1.1
0.2
hu
1.05
1
0
0.95
-0.2
0.9
0.85
0.8
-0.4
0
0.5
'
LF$&! !
1
1.5
2
0
0.5
x
1
1.5
2
x
4)85" $& AB! ,%$C-&L3$ -' -($& <'-
$C
P98$C-(O9O 1 $#,#A'
t s
-1()-12'-71%$& h+b
LM()
hu
1.2
nx=3000
nx=200
1.15
nx=3000
nx=200
0.4
surface level h+b
1.1
0.2
hu
1.05
1
0
0.95
-0.2
0.9
0.85
0.8
-0.4
0
0.5
'
LF$&! !
1
4C<
1.5
2
0
x
0.5
1
1.5
)5" $&AB! ,%$C-0&LJ$2'-- $& <'7$C- 98$C-!39O 1 $ ,PA'
t s
-1()-12'-71%$& h+b
2
x
hu
LM()
²¤
1.2
nx=3000
nx=200
nx=3000
nx=200
0.4
surface level h+b
surface level h+b
1.1
1
0.2
0
-0.2
0.9
-0.4
0.8
0
0.5
1
J!L ()'- LF$&! (
1.5
2
0
0.5
x
1
1.5
2
x
) 5" &$ A@! -,%$C- &LO$0'--($& <'-
$C
98$C-!P9O -1$0,:A'-
t s
-1 ) - 12'
1%$& h+b
hu
1.001
0.002
nx=3000
nx=200
nx=3000
nx=200
1.0006
surface level h+b
0.001
hu
1.0002
0
0.9998
-0.001
0.9994
0.999
0
'- LF$&!2!
0.5
1
1.5
-0.002
2
x
0
0.5
1
x
1.5
2
4)5" &$ A@! -,%$C->&L $ -' -($& <'-
$C
I98$C
!39O -1 $2'
" $&A'
J!L ()
t s
-1()-1 '
1%$& h+b
hu
²°
1.001
0.002
nx=3000
nx=200
nx=3000
nx=200
1.0006
surface level h+b
0.001
hu
1.0002
0
0.9998
-0.001
0.9994
0.999
0
0.5
1
x
1.5
-0.002
2
0
0.5
1
1.5
2
x
4C< )@5" &$ AB! ,%$C-6&L3$#'-- &$ <'7$C-D98$C-! 9O 1 $#'-" $&JA'-
t s
LM()3'- LF$&!2!
- 1()-1 '
1%$& h+b
hu
0.002
1.001
nx=3000
nx=200
nx=3000
nx=200
1.0006
surface level h+b
0.001
hu
1.0002
0
0.9998
-0.001
0.9994
0.999
0
0.5
LM()3'- LF$&!2!
1
1.5
-0.002
2
0
0.5
1
x
x
1.5
2
)35" &$ %AB!-,%$C
&L $/'--($& <'-
$C
9;$C
!;9O 1:$P'-" $&BA'
t s
-1()-1 '
1%$& h+b
hu
²
Ž ‹cŽ'ˆV5˜ª‰|‡ ˜i‰IŠKŠœ5 Ž ’V'™o‰RŽ'“K‹1” 0.01 ‹1”pŽ ˆoFˆV“Kš1ˆŽa“^”pŽ ˆoF“^”Ž 5'žR‰&Š#¯ ²V¥ I² • ¥ ° ² ±•‰&”o—
ŸˆVŸ ŒYˆo
Ž ˆo5,Ž'ˆV 2 › ª˜i
Ž ˆo‹—yŸ‰&œŽ'’V ‡,“KŽ_ŒbŠKŠ ¥ O'5˜p‰&Ž ˆg‰RŽ 2 ² › •
2 0² ‰I”o— ‰&'Y”V‹&ŽbŒbŠKŠV™g‰&ŠD‰&”oŸ5—|–P‹ILŽ ˆV‡7‡7Ž ‰I—¡|‡Ž‰RŽ'‡J‰I”o—|Ž ˆo5¡i‰&Š^ŠV–4‰&“^Š
Ž ‹pŸ5‰IœŽ ’V'CŽ ˆV“D‡Yœ5 Ž ’V'™o‰&Ž “^‹I”[‹I”]Ÿ
‹1‰I'‡ C˜|‡7ˆo‡ ¥
©?ˆo5‹I'
Ž'“^Ÿ‰&Š^ŠK¡1•YŽ ˆo“^‡—“D‡7Ž ’V'™o‰&”gŸ
¸‡ ˆV‹1’VŠ^— ‡7œoŠK“KŽ[“^”Ž ‹®ŽŒb‹ Œa‰Wž1‡•YœV'‹Iœo‰Iš1‰RŽ'“K”oš
Ž ‹ Ž'ˆV(Š^
–¢Ž]‰&”o—  “^šIˆŽM'‡ œgŸ<Ž'“Kž15Š^¡ ¥ 3 ‰I”¡{”’V˜i5'“DŸ5‰&ŠF˜i
Ž ˆo‹—o‡Mˆo‰Wž1 —“K¹pŸ5’VŠKŽ¡
ŒY“9Ž'ˆ Ž ˆo|Ÿ‰&ŠDŸ
’VŠD‰RŽ'“K‹1”o‡`“^”žI‹IŠ^ž“K”ošM‡7’gŸˆ¸‡ ˜i‰IŠKŠ#œ5 Ž ’V'™o‰RŽ'“K‹1”o‡F‹&–fŽ ˆoŒ?‰RŽ'50‡7’V –4‰IŸ5 ¥
©?ˆV·‡ ‹IŠ^’Ž'“K‹1”d‹I™VŽ'‰&“^”V— ‹I” ‰ ° Ÿ55Š^Š,’V”V“K–P‹I'˜ šI'“^— ŒY“9Ž'ˆ ‡ “K˜iœVŠ^¸Ž ‰&”o‡ ˜i“^‡'‡7“^žI
™g‹1’V”o—V‰I ¡¶Ÿ
‹1”o—“KŽ “^‹I”o‡•LŸ
‹1˜iœo‰&'—yŒY“KŽ ˆ{Ž ˆV['‡ ’VŠ9އ_’g‡7“^”Vš·° ’V”V“K–P‹I'˜ Ÿ
5Š^ŠD‡5•L“D‡
‡7ˆV‹RŒY”[“^” 2 “^šI’o  ¤ °c–P‹1YŽ ˆo0Ž ‰&”o‡'Ÿ
'“9Ž'“^Ÿ‰&Š­§o‹RŒ ŒY“KŽ ˆV‹1’މp‡7ˆo‹Ÿ ­•V“^” 2 “Kš1’V  ¤ –P‹I
Ž ˆVMŽ ‰&”o‡'Ÿ
'“9Ž'“^Ÿ‰&ŠJ§o‹RŒ ŒY“9Ž'ˆ{‰ ‡ ˆV‹Ÿ ·‰I”o—¶“^” 2 “Kš1’V' ¤ –P‹IcŽ'ˆV]‡7’V™­Ÿ
'“KŽ “DŸ5‰&ŠJ§o‹RŒ ¥
©?ˆVc‡Ž'‹IœVœo“K”VšiŽ'“K˜i T “D‡`‡ 
ŽF‰1‡ 1.5 –P‹1YŽ ˆo,o‡Ž‰I”o—[Ž ˆV“^—M§g‹RŒ,• 3 –P‹I?Ž'ˆV_‡ Ÿ5‹I”o—
§o‹RŒ ¥ ŽcŽ ˆo“^‡0Ž'“K˜i1•"Ž'ˆVO—‹RŒY”o‡7Ž '‰I˜›Ž ‰WžIŠK“^”VšZŒa‰&Ž 5,œo’VŠ^‡ pˆo‰1‡,‰&Š^ ‰I—¡œo‰1‡ ‡ —
Ž ˆVC™V’V˜iœ ¥ FŸ‰&”ZŸ5ŠK‰&'ŠK¡i‡ 5`Ž'ˆo‰RŽaŽ ˆo5'F‰&'”o‹‡ œV’V'“K‹1’o‡L”’V˜i5'“DŸ5‰&Š‹1‡'Ÿ
“^Š^Š^‰&Ž “^‹I”o‡
‰&”o—MŽ ˆV,'‡ ‹IŠ^’Ž'“K‹1”M–P‹1?Ž ˆV,œV'‹Iœg‰&š1‰&Ž —O‡7˜p‰IŠKŠœ5 Ž ’o ™o‰&Ž “^‹I”Z“^‡Yž15'¡pšI‹‹— ¥
~ „ 0 / Rƒ ~ 0 ,. # ƒR‚ / - ~ ‚ ~1ƒ 0 Rƒ ~ 3
0 (+ -.0 ƒ /(+ $# # (
* ”®Ž ˆV“D‡|
¨V‰&˜iœVŠ^MŒa]‡7“^˜_’VŠD‰RŽ'OŽ'ˆV[—o‰&˜ ™V'‰ “^”Vš œo ‹1™VŠK˜ ‹RžI5|‰ 'Ÿ
Ž'‰&”ošI’›
Š^‰IC™o’V˜iœ•"ŒYˆV“DŸˆ·“K”žI‹1ŠKž1‡0‰Z'‰IœV“^—VŠK¡ žR‰I ¡“^”VšM§g‹RŒ ‹RžI0‰[—“D‡ Ÿ5‹I”Ž “^”’V‹I’g‡F™‹&Ž Ž ‹1˜
Ž ‹Iœ‹Iš1'‰IœVˆ¡ ¥ ©?ˆV“D‡?
¨V‰&˜iœVŠ^0Œa‰1‡?’o‡7—[“K”·¯ ± ¥
©?ˆo,™g‹IŽ7Ž ‹1˜ªŽ'‹Iœ‹IšI‰&œoˆ¡|މ I‡aŽ ˆV0–P‹1 ˜]º
(
“K– |x − 750| ≤ 1500/8,
£e²¥ ¦
8
b(x) =
‹IŽ ˆV ŒY“D‡71•
0
–P‹I x ∈ [0, 1500] ¥ ©?ˆV,“^”V“KŽ “D‰&Š"Ÿ5‹I”o—V“9Ž'“K‹1”o‡Y‰&'
(
“K– x ≤ 750,
£e²¥^¤ ¦
I
‰
o
”
—
20 − b(x)
(hu)(x, 0) = 0
h(x, 0) =
‹IŽ ˆV ŒY“D‡7 ¥
15 − b(x)
©?ˆo_”’V˜i5'“^Ÿ‰&А'‡ ’VŠKŽ'‡‹I™Ž‰&“^”V—]™¡ZŽ ˆV 2 › ŒY“KŽ ˆ
’V”o“9–P‹1 ˜ Ÿ
ŠKŠD‡ £ ‰&”o—
‰ZŸ5‹I˜iœo‰&'“D‡7‹1”ŒY“9Ž'ˆ Ž ˆo|'‡ ’VŠKŽ'‡F’o‡ “K”Vš
’o”V“9–P‹1 ˜SŸ55Š^Š^‡ ¦ ‰&'‡ ˆV‹RŒY” “^” 2 “^šI’V'‡
¤² ‰&”o— ¤ •ŒY“KŽ ˆ·ŽŒb‹—“K»­5'5”Žc5”o—V“K”Vš]Ž'“K˜i t ¤W² s ‰&”o— t s ¥ 2 “^šI’V'‡ ¤ ‰&”o—
¤ • 2 “Kš1’V'‡ ¤ ‰&”g— ° • 2 “^šI’V'‡_° ¤ ‰&”g— °I°— ˜i‹I”o‡7Ž ‰RŽ'p Ž ˆVZ”’V˜i5'“^Ÿ‰&ŠL'‡ ’VŠKŽ'‡
™¡ 2 C² • 2 ² › • '‡ œgŸ<Ž “^žIŠK¡ ¥ *”[Ž ˆo“^‡
¨V‰&˜iœVŠ^I•Ž'ˆVcŒ?‰RŽ'5YˆV“Kš1ˆ1Ž h(x)
²
1.2
1.1
1
0.409
0.408
V2
0.407
0.8
0.406
0.405
0.7
0.404
12
13
14
15
V1
0.6
1.025
0.5
1.02
V2
surface level, bottom
0.9
0.4
1.015
0.3
1.01
1
2
3
4
5
6
V1
nx=2000
nx=200
bottom
0.2
0.1
0
0
5
10
15
20
25
x
G </)B5" $&@AB!-,%$C
&L*-1 -
$&'-!- -($& 9
9O 1I$D'
1 B
“D‡p—“D‡ Ÿ5‹I”Ž “^”’V‹I’g‡|‰&ŽiŽ ˆV]œ‹I“^”1އ|¨ ² ° ¥ ² ‰&”o—®¨ I ¥ ² •$ŒYˆV“KŠ^[Ž ˆV ‡ ’V –4‰IŸ5ZŠ^5ž15Š
“D‡|‡7˜i‹‹&Ž'ˆ¸Ž'ˆV5' ¥ ŠKŠa‡ Ÿˆo5˜i‡_Œb‹1
¸ŒbŠKŠJ–P‹I,Ž'ˆV“^‡
¨V‰I˜|œoŠK1•Gš1“Kž“^”Vš
h(x) + b(x)
Œa5Š^Š`'‡ ‹IŠ^žI—.•J”V‹1”›A‹1‡'Ÿ
“^ŠKŠD‰RŽ'‹I'¡ ‡7‹1ŠK’Ž'“K‹1”o‡i’o‡ “K”oš
Ÿ55Š^Š^‡pŒYˆo“^Ÿˆ ‰&š1 ZŒY“KŽ ˆ@Ž'ˆV
Ÿ5‹I”žI š1—M ‡7’VŠKŽ'‡?’g‡7“^”Vš
Ÿ
5Š^ŠD‡ ¥
# # _‚ „ , ®~ … , ‚ 0- ~ 0 - ~
©?ˆoc‡7ˆo‰IŠKŠ^‹RŒ Œ?‰RŽ'5Y‡7¡‡7Ž ˜“^”MŽŒa‹p‡7œo‰1Ÿ
,—“^˜i5”o‡ “K‹1”o‡aŽ'‰ I‡aŽ ˆV0–P‹1 ˜]º
£²¥^¤I¤W¦

ht + (hu)
0


x + (hv)y = 

1

(hu)t + hu2 + gh2
+ (huv)y = −ghbx
2
x


1 2

2

 (hv)t + (huv)x + hv + gh
= −ghby
2
y
²I²
0.5
nx=2000
nx=200
bottom
0.425
0.3
0.42
V2
0.415
0.338
0.336
0.2
0.41
0
0.5
1
1.5
2
2.5
0.334
3
V1
0.332
V2
surface level, bottom
0.4
0.33
0.328
0.326
0.1
0
12
12.5
13
13.5
14
14.5
15
V1
0
5
10
15
20
25
x
G </)5" $&@AB( --,$C
&L -12
-$&'
! ($& %
(9
9O 10$D'
1 B
ŒYˆV5'`‰&š‰&“^” h “D‡fŽ'ˆVYŒ?‰RŽ LˆV“Kš1ˆ1Ž• (u, v) “D‡$Ž ˆo`žIŠK‹Ÿ
“KŽ¡c‹I–gŽ'ˆVY§o’V“D—.• b  œV ‡7”Ž'‡
Ž ˆVb™g‹IŽ7Ž ‹1˜dŽ'‹Iœ‹Iš1'‰IœVˆ¡‰&”o— g “^‡Ž ˆVbšI‰Wž“9މRŽ “^‹I”g‰&Š&Ÿ
‹1”o‡7Ž'‰&”Ž ¥ AŽG“D‡"‡7Ž ‰&“^šIˆŽ7–P‹1 Œ?‰&—
Ž ‹išI”V5‰&Š^“K³Ž'ˆV‡ ,‡ Ÿˆo5˜i‡ 2 ›• 2 ² › • 2 0² ‰&”o— •Ž ‹i‹1™Ž'‰I“K”[ŒbŠKŠK›
™o‰&ŠD‰&”oŸ5— ‡'ŸˆV˜|‡`–P‹1Ž'ˆV|Š^‰ I_‰&ŽC'‡7ŽF‘1’o“KŠ^“K™o “^’V˜ “K”y° Ÿ5‰1‡7 ¥ ©?ˆo—5Ž'‰&“^ŠD‡C‰I 
”V5š1ŠKŸ<Ž —,ˆV  ¥ *”cŽŒa‹‡ œo‰RŽ'“^‰IŠ1—“^˜i5”o‡ “K‹1”o‡"Ž ˆV b“^‡#‰&”c‰I™V’V”o—V‰I”oŸ
b‹&–o‡7Ž ‰I—¡0‡Ž‰RŽ'‡
™g‡7“D—‡,Ž ˆVpŠD‰ 1i‰&Žc ‡Žc‘’V“KŠ^“^™V “^’V˜]•G‰I”o—·“9Ž“^‡,˜’oŸˆ·˜|‹1 p—“K¹OŸ
’VŠKŽcŽ'‹“^—”Ž “K–P¡
Ž ˆV “^”Ž  ‡Ž'“K”Vš¶‹1”V‡ ¥ AŽZ“^‡M“K”@œV'“K”gŸ
“^œVŠK(œg‹‡ ‡ “K™oŠK]Ž'‹ 
¨Ž ”o—{Ž ˆV Ž Ÿˆo”V“^‘’V‡O‹I–
2 › “K” Ÿ
Ž “^‹I” Ž ‹ ‹I™VŽ'‰&“^”dŒa5Š^ŠK›™o‰IŠ^‰I”oŸ
— ‡ Ÿˆo5˜i‡M–P‹I]‡7‹1˜i¸‹I–cŽ ˆV¸Ž '’VŠ^¡
ŽŒb‹|—“K˜i”o‡7“^‹I”g‰&Š˜|‹Rž“^”Vš_Œ?‰RŽ'5?‡Ž'‰1—¡p‡Ž‰RŽ ‡5•™V’VŽaŽ'ˆVCœV ‹Ÿ5—’V'“D‡?‡7“^šI”o“9gŸ‰&”Ž Š^¡
˜|‹1 [Ÿ
‹1˜|œoŠK“DŸ5‰&Ž —®‰&”o—¶Œa[ŒY“KŠ^Šb”o‹&Žp—“^‡'Ÿ
’g‡ ‡|‡7’gŸˆ 
¨Ž ”o‡ “K‹1”o‡_“^” Ž'ˆV“D‡œg‰&œ5 ¥ *”
Ž ˆV“D‡]‡7’V™g‡7Ÿ<Ž “^‹I”dŒb¸‹I”VŠ^¡ Ÿ5‹I”o‡ “D—5[‹I’VZ‹I”V·—“^˜|”o‡ “K‹1”o‰&ŠCŒbŠKŠK›A™o‰&ŠD‰&”oŸ5— ‡'ŸˆV5˜i
2 › ª—V‡ “Kš1”V—y“^”¶œV'5ž“K‹1’o‡c‡ Ÿ
Ž “^‹I”o‡•#Ž '“Kž“D‰&Š^ŠK¡¸šI5”o5‰&Š^“K³—¸Ž ‹ŽŒa‹ —“^˜i5”o‡ “K‹1”o‡
²
3
nx=2000
nx=200
bottom
2
1.5
2.01
2.004
1
2.002
V2
2.003
2.005
V2
surface level, bottom
2.5
2.001
2
2
1.999
1.995
0.5
0
0
1
2
3
4
1.998
14
5
V1
0
5
14.5
15
15.5
16
16.5
17
17.5
18
V1
10
15
20
25
x
G </)5" $&@A@! -,%$C- &L 1P'-,B!- -($& %
9 ™¡ ’g‡7“^”Vš[‹I’V0Œa5Š^Š9›A™o‰&ŠD‰&”gŸ
— ¬ ‰&Š^šI‹1 “KŽ ˆV˜ “^”¸™‹&Ž'ˆ·—V“K'Ÿ
Ž “^‹I”o‡ ¥ |'
–PCŽ ‹
¯:° ¤ ±Y–P‹I|Ž ˆV—5Ž'‰I“KŠD‡i‹&–“^˜iœVŠ^5˜i5”Ž'‰&Ž “^‹I” ¥ [މ I]‰¸”’o˜| “DŸ5‰IŠ?
¨V‰&˜iœVŠ^ZŒYˆo“^Ÿˆ
“D‡0‰pŽŒa‹Z—“^˜i5”o‡ “^‹I”o‰IŠGœ5 Ž ’V'™o‰&Ž “^‹I” ‹I–J‰O‹I”o|—“^˜i5”o‡ “^‹I”o‰IŠG˜i‹Rž“K”ošM‡Ž'‰1—¡]Œa‰&Ž 5•
‰I”o— Ÿ5‹I˜iœo‰&',‹I’o‡ Ÿˆo5˜icŒY“KŽ ˆ(‰pš15”V'‰IŠK“^³‰&Ž “^‹I”[‹&– 2 ² › Ž ‹Z° Ÿ‰I‡ I•oŒYˆo“^Ÿˆ“D‡
”o‹I”›AŒbŠKŠK›A™o‰&ŠD‰&”oŸ5—O–P‹I?Ž ˆo,˜|‹Rž“^”Vš|Œa‰&Ž 5 ¥
F‡ ‹IŠ^žI?Ž'ˆVF‡ ¡‡Ž'5˜ “K”OŽ ˆVF Ÿ<Ž'‰I”VšI’oŠ^‰IJ—‹I˜p‰I“K” [0, 25] × [0, 25] ¥ ©?ˆVF™g‹IŽ7Ž'‹I˜
Ž'‹Iœ‹Iš1'‰IœVˆ¡p“^‡?š1“Kž15”[™¡­º
£²¥^¤ ° ¦
b(x, y) =
‹&Ž'“^Ÿ50Ž ˆo‰&ŽaŽ'ˆV,™‹&Ž7Ž'‹I˜
(
0.2 − 0.05(x − 10)2
0
“K– 8 ≤ x ≤ 12,
‹IŽ ˆV ŒY“D‡  ¥
“^‡Y‰–P’V”oŸ
Ž “^‹I”]‹&– x ‹I”oŠK¡ ¥ ‡7Ž ‰I—¡Z‡Ž‰RŽ ,‡ ‹IŠ^’Ž “^‹I”]Ÿ5‰I”Z™
²
22
21
h+b
initial h+b
bottom b
20
16
19
surface level h+b
surface level h+b, bottom b
18
nx=4000
nx=400
20
14
12
10
8
18
17
16
6
4
15
2
0
0
250
500
750
1000
1250
14
1500
0
500
1000
x
1500
x
G </) 1#'-L$&!#(
LM2
1#$&" ,($ A -,!" $C -"#
(4 h+b
t
s
J!L ()I-1D "#! $&*'-
'- G
!('@A&--!9O -1 1 -.$& ( $& -1
,B&
" AB-$&A1 1() -1 "#!-($&J'--0'- G
$& G
-:!('(
22
20
h+b
initial h+b
bottom b
20
18
nx=4000
nx=400
19
16
surface level h+b
surface level h+b, bottom b
14
12
10
8
18
17
6
16
4
2
0
0
250
500
750
1000
1250
1500
15
0
500
1000
x
x
1500
G </) 1#'-L$&!#(
LM2
1#$&" ,($ A -,!" $C -"#
R
h+b
t s
J!L ()I-1D "#! $&*'-
'- G
!('@A&--!9O -1 1 -.$& ( $& -1
,B&
" AB-$&A1 1() -1 "#!-($&J'--0'- G
$& G
-:!('(
²
22
21
h+b
initial h+b
bottom b
20
16
19
surface level h+b
surface level h+b, bottom b
18
nx=5000
nx=500
20
14
12
10
8
18
17
16
6
4
15
2
0
0
250
500
750
1000
1250
14
1500
0
500
x
1000
1500
x
4) 1 '- LF$&! ! h + b LM3-1 %$&" ,($ DA-,(" $C;-"# t (4 s LM()
1 "#!($&@'--#'
/4
-#!!' A&
! 9O 1#-1 -.$&%! -0$& 1 ,@& -"
AB-$&A1 1()-12 "#!-($& '-
:'
4
$&04
-:!('(
22
20
h+b
initial h+b
bottom b
20
18
nx=5000
nx=500
19
16
surface level h+b
surface level h+b, bottom b
14
12
10
8
18
17
6
16
4
2
0
0
500
1000
15
1500
0
500
x
1000
x
1500
4) 1 '- LF$&! ! h + b LM3-1 %$&" ,($ DA-,(" $C;-"# t R s LM()
1 "#!($&@'--#'
/4
-#!!' A&
! 9O 1#-1 -.$&%! -0$& 1 ,@& -"
AB-$&A1 1()-12 "#!-($& '-
:'
4
$&04
-:!('(
²
22
21
h+b
initial h+b
bottom b
20
nx=4000
nx=400
20
16
19
surface level h+b
surface level h+b, bottom b
18
14
12
10
8
6
18
17
16
4
15
2
0
0
250
500
750
1000
1250
14
1500
x
0
500
1000
1500
x
4C< ) 1#'- LF$&! (
LM2
1#$&" ,($ A -,!" $C/-"#
(4 h+b
t
s
J!L ()I-1D "#! &$ *'-
'- G
!('@A&--!9O -1 1 -.$& ( $& -1
,B&
" AB-$&A1 1() -1 "#! -($&J'--0'- G
$& G
-:!('(
22
20
nx=4000
nx=400
h+b
initial h+b
bottom b
20
18
19
16
surface level h+b
surface level h+b, bottom b
14
12
10
8
18
17
6
16
4
2
0
0
250
500
750
x
1000
1250
1500
15
0
500
1000
x
1500
4C< ) 1#'- LF$&! (
LM2
1#$&" ,($ A -,!" $C/-"#
R
h+b
t s
J!L ()I-1D "#! &$ *'-
'- G
!('@A&--!9O -1 1 -.$& ( $& -1
,B&
" AB-$&A1 1() -1 "#! -($&J'--0'- G
$& G
-:!('(
22
21
h+b
initial h+b
bottom b
20
16
19
surface level h+b
surface level h+b, bottom b
18
nx=4000
nx=400
20
14
12
10
8
18
17
16
6
4
15
2
0
0
250
500
750
1000
1250
14
1500
0
500
1000
x
1500
x
) 1P'
LF$&!P( h + b LMI-1D$&" , $ :A-,(" $CI
"# t (4 s LM()I-1/"#!($&'-
'
G
!('@A&--!9O -1 1D -.$&*( $& -1
,@&-" AB-$&A1 1 ()-12 "#!-($& '--0'- G
$& G
0!!' 22
20
h+b
initial h+b
bottom b
20
18
nx=4000
nx=400
19
16
surface level h+b
surface level h+b, bottom b
14
12
10
8
18
17
6
16
4
2
0
0
250
500
750
1000
1250
1500
15
0
500
1000
x
x
1500
) 1P'
LF$&!P( h + b LMI-1D$&" , $ :A-,(" $CI
"# t R s LM()I-1/"#!($&'-
'
G
!('@A&--!9O -1 1D -.$&*( $& -1
,@&-" AB-$&A1 1 ()-12 "#!-($& '--0'- G
$& G
0!!' ¤
20
20
15
15
10
10
5
5
5
10
15
20
25
5
10
15
20
25
12! -' &L*
1P ? !!!/,B9;!! 1 1!1
$&0-1 .$& '--($&0'7$C-
h
4(LM3
1 A,!" >5 (-04 4P$CT-"#
L"# '-A%$&!( !
8!'3LM"
t = 0.5 < Q2- ( J!L ()*-!'
'T9O -1 $
LM" "#!'-1J 1 ()*-!'- 'T9O -1 $
100 × 100
200 × 200
L" "#!'-1J
Ÿ
‹I˜iœV’VŽ —Z–P'‹I˜]º
£e²¥^¤ ¦
1 2
u + g(h + b) = 22.06605,
2
hu(x, y, 0) = 4.42,
hv(x, y, 0) = 0.
©?ˆV‡ a—o‰RŽ'‰0Ÿ5‹I' ‡7œ‹I”o—cœV Ÿ
“D‡7ŠK¡0Ž'‹CŽ ˆV?‹I”o
›*—“K˜i”o‡7“^‹I”g‰&Ї7’V™­Ÿ
'“KŽ “DŸ5‰&ŠV‡7Ž ‰I—¡c‡7Ž'‰&Ž 
‹&– £e²¥ ¦ •I‰&”g—,Ž ˆo?Ÿ5 ‹‡ ‡#‡ Ÿ<Ž'“K‹1”‹I–VŽ ˆoa’o”Vœg7Ž'’V'™g—‡ ‹IŠ^’Ž “^‹I”iŸ5‰I”_™Y‡75”_“^” 2 “^šI’o 
¥ F’o"“^”V“9Ž'“^‰IŠŸ
‹I”g—“9Ž'“K‹1”c“D‡"š1“Kž15”,™¡,‰YŽŒa‹—“^˜|”o‡ “K‹1”o‰&Ї7˜p‰IŠKŠœg7Ž'’V'™o‰RŽ'“K‹1”,‹&–Ž ˆg‰RŽ
‡Ž'‰I—V¡ ‡Ž‰RŽ 1•.ŒYˆV5' h “D‡Cœg7Ž'’V'™g—(’VœŒ?‰&—™¡ V¥ 1² “K”¸Ž ˆV|™‹W¨ 6.5 ≤ x ≤ 7.5 •
¥ 2 “Kš1’V ‡c° ‰&”g—y° —“^‡ œVŠD‰W¡Ž ˆoM—“D‡Ž'’V ™g‰&”oŸ5i‰1‡,“KŽc“K”Ž '‰1Ÿ<އ0ŒY“9Ž'ˆ
12 ≤ y ≤ 13
Ž ˆV0ˆ’V˜iœ•‹I”ZŽŒa‹—“K» ”Ž?’o”V“9–P‹1 ˜˜|‡7ˆo‡aŒY“9Ž'ˆ 100 × 100 Ÿ
5Š^ŠD‡a‰I”o— 200 × 200
Ÿ
5Š^ŠD‡#–P‹IJŸ5‹I˜iœo‰&'“D‡7‹1” ¥ ©?ˆV`—“K»­5'5”oŸ5Y™g5ŽŒb5”|Ž ˆVYˆo5“^šIˆŽ h ‰&”o—Ž'ˆVY“K”o“9Ž'“^‰IŠo‡Ž'‰1—¡
‡Ž‰RŽ  £e²¥^¤ ° ¦ “^‡œV'‡ 5”Ž —[‰&ŽF—“K» ”Ž`Ž “^˜i‡ t = 0.5 ‰I”o— t = 1 ¥ |‰&ŠD‡7‹i'’V”]Ž ˆV
‡ ‰I˜|Z”’V˜i5'“^Ÿ‰&ŠaŽ ‡ŽiŒY“9Ž'ˆ 2 ² › _¥ `‹IŽ ZŽ ˆo‰&Ž 2 ² › “D‡|”V‹&ŽpŒa5Š^Š9›A™o‰IŠ^‰I”oŸ
—·–P‹I
˜|‹Rž“^”Vš‘’V“^Š^“K™V'“D‰ ¥ ©?ˆoMŸ
‹1˜|œg‰&'“^‡ ‹I”·‹&–?Ž ˆoO”’V˜i5'“^Ÿ‰&Šf'‡ ’VŠ9އ_‰I iœV'‡ 5”Ž —·“K”
2 “^šI’o ‡C° ² ‰I”o—¸° ¥ ©?ˆV|'‡ ’VŠ9އC“K”o—V“^Ÿ‰RŽ Ž ˆg‰RŽ 2 › Ÿ‰&”('‡ ‹IŠ^žIcŽ ˆVpŸ
‹1˜iœVŠK5¨
‡7˜p‰&Š^Šg–P‰RŽ'’V'‡L‹I–Ž ˆo`§o‹RŒ ž15'¡Œa5Š^Še•ŒY“KŽ ˆV‹1’Ž?‡ œV’V'“^‹I’o‡L–P‰RŽ'’V'‡bŒYˆV“^ŸˆZ—‹‰IœVœg‰&
“K”[Ž ˆo, ‡7’VŠKŽ'‡?‹1™Ž'‰I“K”o—ZŒY“9Ž'ˆ 2 ² › _¥
°
20
20
15
15
10
10
5
5
5
10
15
20
25
5
10
15
20
25
12!
'2&L -1 ?@(!!/,B9;!! 1P1(1 h $&:-1 -.$&J'--($& '7$C-
F4(OLM8
1PA,!" 5!- 4 4#$C -"#
O LM-"# '-A%$&!! (-2!'OLM"
t=1 < 4 - LM()*-!'- 'T9O -1 $
LM" "#('-1J 1 () -!'- '9I -1>$
100 × 100
200 × 200
LM-" "#('-1J
Z
Z
Y
Y
X
X
0.02
0.02
0.01
0.01
Height h
Height h
0
0
25
-0.01
5
10
X
20
0
5
15
10
25
-0.01
20
0
15
10
Y
10
X
15
5
20
25
5
20
0
Y
15
25
0
12 = 2&L -1 ?@!-!! ,B9;!(>
121!1 h $&:-1 -.$&@'-- $& :'7$C-
F 4(OLMI-1/A-,(" 5 (-4 4>$CI
"#
9O 1 $
L" "#!'
1J L )
t = 0.5
200 × 200
G </ 1 ) !'
-'I,$&'
! -!'
'I,%$&'
!0
4C< I
Z
Z
Y
Y
X
X
0.02
0.02
0.01
0.01
Height h
Height h
0
0
25
-0.01
20
0
5
10
X
20
0
5
15
10
25
-0.01
15
10
Y
10
X
15
5
20
25
Y
15
5
20
0
25
0
12 = 2&L -12 ?@!-!!2,B9;!(:
1 1!1 $&>-12 -.$&B'-- $& :'7$C-
h
4( L2-1#A,!" 65!
4 4:$C "#
9O 1$
L" "#!'-1J
LM()
t = 1
200 × 200
G </ 1 )('- -'I,%$&'-!0
!'
-'O,%$&'
! 4C< 6. Conclusion
*” Ž ˆV“D‡cœo‰IœgcŒaOš1‰Wž1i‰I”¶‹RžI ž“^5Œ´‹I–`‡7‹1˜|p'Ÿ55”Ž Š^¡¸—V5žIŠK‹1œg—yˆV“^šIˆ›A‹I—5
ŒbŠKŠK›™g‰&ŠD‰&”oŸ5—p‡'ŸˆV5˜i‡•I“^”oŸ5ŠK’o—V“K”Vš–P‹I’o7Ž'ˆM‰&”o—pV–¢Ž ˆZ‹I—5a‡ ŸˆV˜i‡ ¥ ©?ˆVF
¨VŸ
ŠKŠ^5”Ž
 ‡7‹1ŠK’Ž'“K‹1”(‹I–bŽ'ˆVp‡ ŸˆV˜i‡0“D‡,—5˜i‹I”g‡Ž''‰&Ž —¸™¡(‰[”’V˜_™5,‹I–aŸˆo‰IŠKŠ^5”Vš1“K”ošZ5¨œ5 ›
“K˜i5”އ|–P‹I|Ž ˆV ‡ ˆo‰IŠKŠ^‹RŒ«Œa‰&Ž |‘’o‰RŽ'“K‹1”o‡ ¥ ©?ˆV]œV'‡ 5”Ž'‰&Ž “^‹I”{‰I”o— —“^‡'Ÿ
’g‡ ‡ “K‹1”®‹I–
Ž ˆV[Ÿ
‹I”g‡Ž' ’oŸ
Ž “^‹I”yœV'“K”gŸ
“^œVŠK‡_‡ ˆV‹I’oŠ^—y”o‰&™VŠ^pŽ'ˆVM'‰1—5,Ž'‹ “^˜|œoŠK˜|”Ž_Ž ˆo5˜ ‰&”o—
—5ž15Š^‹IœŽ ˆV˜´–P’V Ž ˆo5$–P‹Ib‰&”p‰&œVœoŠK“DŸ5‰&Ž “^‹I”i‰RŽLˆo‰I”o— ¥ ©?ˆV`Ÿ
‹1”o‡Ž' ’gŸ<Ž “^‹I”g‡$Œb ?5“KŽ ˆo5
™o‰I‡ —{‹I”@Œa5Š^Š9›A™o‰&ŠD‰&”gŸ
—•JˆV“^šIˆ›A‹I—i‰1Ÿ5Ÿ5’V'‰&Ž 1•J”V‹1”›‹‡ Ÿ5“KŠ^ŠD‰RŽ ‹1 ¡·o”o“9Ž'(—“K» ”oŸ

‹Iœ5‰RŽ ‹1'‡•J‹1O‰&” ŒbŠKŠK›A™o‰&ŠD‰&”oŸ5— ‰&”o—@‰1Ÿ5Ÿ
’o'‰&Ž ]‘1’g‰I—‰RŽ'’V [–P‹1iŽ ˆV '5š1’VŠD‰&p‰&”o—
‡7“^”VšI’oŠ^‰Iaœg‰& Ž'‡?‹&–#Ž ˆocŸ
5Š^ŠK›A‰Wž15‰&šI—p'‡ “^—’g‰&ŠD‡ ¥ ©?ˆV0o”o“9Ž'c—“9»­5'5”gŸ
cŸ
‹1”o‡7Ž '’oŸ<Ž'“K‹1”
˜i‰W¡(™gM‡ ‹I˜iŒYˆo‰RŽ_‡ “K˜iœVŠ^5‰&”o—¸–4‰I‡7Ž •GŒYˆV“DŸˆ·Œa‹I’oŠ^—·œVŠD‰W¡(‰&”yžI5”yš1 ‰RŽ , ‹1ŠK
“K”‡ 5žI'‰IЇ7œg‰IŸ
,—“^˜i5”o‡ “^‹I”o‡ ¥ ’Ž`Ž'ˆVc‘’o‰I—V'‰&Ž ’V',‰&œVœV'‹1‰1ŸˆZŸ‰&”‰&Š^ ‰I—¡Mˆo‰&”o—VŠK
˜|‹Rž“^”Vš|Œa‰&Ž 5Y‘’V“KŠ^“^™V “D‰i‰&”o—Z“D‡Y“K”ZŽ ˆo“^‡`‡ 5”g‡70˜i‹I'0šI5”o5‰&Š ¥
References
¯ ¤ ±
!" $ #%&$('$)*+,.-/0#213'145
6 7$$'
89:<; .* & 3 4 4 & . ! ..4 4& 4 . . 0& & /0& • 3 ¥ Ÿ
“ ¥ µ ‹1˜|œo’Ž ¥ ° ² £ ° ¦ •
° 1² › ° ²¥
¯ °R± 6 '
/- * # '
1)'
1 6* 8<'
1# $):;
& # . 4 . & & . .
-( 3 4*# • 3 ¥ Ÿ
“ ¥ µ ‹1˜|œo’Ž ¥ ° £ ° ° ¦ • ²1² › o¥
¯ ± 9'-/&' ' '
1 ): / 4. $ & / / 4
- 4 & 4 ( ' 444 •
¥ µ ‹1˜|œo’Ž ¥ Jˆ¡‡ ¥¤ Z£ ° 1¦ • 1² › ² ° ¥
¯ ±6' '
-/- ' $ ! 00 ' 7: 54
) 3)! * . .
3 4 & •
3 ¥ `’V˜ ¥ ”o‰&Š ¥ £ ° 1¦ • ¤ V¤ °W› ¤ ¥
¯ ² ±!6' ' $ ! ' 7: 4 .4 4 #" $ *4 4 *.4 . 4 . R• 3 ‰&Ž ˆ ¥ 3‹— ¥
3
Ž'ˆ ¥ œoœ ¥ Ÿ5“ ¥"£ 3 V¦C¤ Z£ ° &¦ •° 1²1² ›° ¤I¤ ¥
¯ ±!!9#211$'%$&$(' (' 0* ) '
1+* ,.-
#21 :"; & 3 4 .4 &4 . # 0&-& !# & 0/ & 4 / /• *”Ž ¥ ¥ 2 “K” ¥ f‹IŠ ¥f¤£ ° ¦ •ŠKŸ<›
Ž '‹I”V“DŸ ¥
¯ ± 1 324 $1):
& ¯
¯
¯¤
4)( ! . 4 4 . •“K”65 7 . .&
8 .4•
© ¥ ¥1 ‰I7Ž'ˆ®‰&”g— c¥ Ÿ5‹I”V“^”oŸ ­•L—V“9Ž'‹I‡5• 1"Ÿ<Ž'’V' ‹&Ž ‡|“K” µ ‹I˜iœV’މRŽ “^‹I”g‰&Š
Ÿ
“^5”oŸ5c‰&”o—Z¬L”Vš1“K”o55'“^”Všo•ž1‹IŠ^’V˜i • œV'“K”ošI5• ¤ • ›°I° ¥
± 324 $1) 9' #21 '
1: ; ): =<?> 3 - #4
A@ 4 . 4 ). ! ( , . / . 4 #
& 7BB;BC/ * 5• ¥ µ ‹I˜iœV’Ž ¥ Lˆ¡‡ ¥ £¤ ¦ • › ¤1¤ ¥
± D 32?4 $1 '1E; ): =<D> 3 - 4
C@4*.! 4)( %, . ) . 4 . & 0B;BC/ &1 ­• 3 ‰&Ž ˆ ¥ µ ‹1˜|œ ¥g² ° £¤ ¦ • ¤I¤ › ²¥
± , 32?4 $1) ; ): 3 - 4 ). (
.24 # & < /D . + * • ¥ µ ‹I˜iœV’Ž ¥
¦ • ¤ ›°I° ¥
Lˆ¡‡ ¥¤ ¤i£¤
²
¯ ¤1¤ ±5 32?4 $1 '
1+; ): 4 ). ! (
. 4 4*. (& • ¥ Ÿ
“ ¥ µ ‹1˜iœV’Ž ¥J¤ £ ° V¤W¦ •
¤ ›° ¤1¥
¯ ¤ °W± '- ' - ) ' : , . 3$ & * / 4 4 • ¥ 3 ‰&Ž ˆ ¥ L’V'‡ œoœVŠ ¥ £¤ ²1¦ • › ² V¥
¯ ¤ ± ' 1 '1 4 1): *.4*# 4$ =< 4 . / 2 * ( .4 4& # & 5• ¥ µ ‹I˜iœV’Ž ¥
Lˆ¡‡ ¥.¤ ° £ ° V¤W¦ •o° ¤ ›° ¥
¯ ¤ ± . -/#24 3 . '
8 : . * * ( 4.#" . !• 3 `5ž ¥ £ ° o¤¦ • › ¤I¤ ° ¥
¯ ¤W² ± . #2-7-/01):D!5 4 2 . 4 2 & . ! ) • 3 ‰RŽ'ˆ ¥ 3‹— ¥
3
Ž'ˆ ¥ œVœ ¥ Ÿ5“ ¥G£ 3 V¦C¤ ° £ ° ° ¦ • ¤ › ¤ ¥
¯ ¤ ± # '
10- '
1 ; ): 4/ ) . & 4 • ¥ µ ‹1˜iœV’Ž ¥ Lˆ¡‡ ¥.¤ ° £7¤ ¦ •o° °W›°I° o¥
¯ ¤ ±! ' % ) : 4. . 4 & . 5•$ *” * / /! 4 %/ œo ‹1™VŠ ˜i‡.”V‹1”0ŠK“^” ‰I“K'‡.‰IœVœVŠ^“^‘’ ‡ <•
$
.4 . •5¬JŸ5‹IŠ^‡ µ ¬ ›A¬ *2 ›A Y Y Y‹Ÿ5‘’V”oŸ
‹1’V7Ž .£ 2 ‰&”gŸ
 ¦ • 3 ‰I'Ÿˆ ¤ o¥ žW‰I“KŠD‰&™oŠK ‹1” ˆŽ7Ž'œº WŒYŒYŒ?›
šI˜ ¥ ’V”V“^ž›˜i‡ ¥ –P 0Š^5'‹I’¨ Wœo’V™VŠ^“^Ÿ‰RŽ “^‹I”g‡ &‰W¡ ¥ ŠK Y ‹1’¨ ¥ ˆŽ ˜iŠ £ “K” 2  ”oŸˆ ¦<¥
¯ ¤ ±*+ : > 3 4 *4 $ ! ) . 3)! ! / ! * & # [• ¥ µ ‹1˜|œo’Ž ¥ Jˆ¡‡ ¥.¤ £7¤ 1¦ • › ! ²V¥
¯ ¤ ± . #2)0 &
'
1
.09$'1): / )/ 4 4 ¥ µ ‹1˜iœV’Ž ¥ Lˆ¡‡ ¥.¤I¤W²M£7¤ ¦ •o° ›° ¤ ° ¥
¯ ° ± * 0-7-/ * '
1&2 ' &0& 9& '
1
*+3*'/ # - : 54
, 4 . 4*4 4- . 0& & /0& • ¥ µ ‹1˜|œo’Ž ¥ Lˆ¡‡ ¥ ° ¤ £ ° ¦ • › ¥
¯ ° ¤ ± D* 0-/-7
?' !5#210-'
1
; ):=5 & 3 4 < 4 1. #0& & !. & 2! ( & • ¥
µ ‹I˜iœV’Ž ¥ L ˆ¡‡ ¥ °1° £ ° I¦ •V° › ² V¥
!
¯:°I°R± ' 7: .4 ! . / 4 . 4 ;
* ..4 & • 3 ¥ ’V˜ ¥ ”o‰IŠ ¥ £ ° ¦ • › ° ¤I¥
¯:° ±*+ '$ $0- '
1
* 4 - '-7-: ; . 3/! . 4 .# $ . /0& • ¥ µ ‹I˜iœV’Ž ¥ Lˆ¡‡ ¥J¤² y£¤ ¦ •
° ² › ¥
¯:° ±
0# "'1 ; ): ; 4 . .. & ( 4 5• ¥ µ ‹I˜iœV’Ž ¥ Lˆ¡‡ ¥"¤ &²Z£ ° ° ¦ • ¤ › ¤ ° ¥
¯:° ² ± ; ,
): =<D> 3 . 4 . 4 # & •
3 ‰RŽ'ˆ ¥ µ ‹I˜iœ ¥ £¤ I¦ • ¤ ² › ¤ ° ¤1¥
¯:° ± ; ): . ( . !4 " .&5• 3 ¥
Ÿ
“ ¥ މRŽ “D‡7Ž ¥ µ ‹1˜|œo’Ž ¥ £7¤ 1¦ • ¤ ¤ ¥
¯:° ± ; ): ).
/ 4 3$ & ) / 4
+ - 4 . .4 4 # & •1“^” ; 54 4
; . %
'5 ( .4 !. • C¥ µ ‹Ÿ ™V’V'”• µ ¥
I‹1ˆV”o‡ ‹I”• µ ¥ › ¥ ˆ’ ‰&”o— ¬ ¥ ©#‰I—V˜|‹1 £ ¬J—“KŽ ‹1º ¥ F’g‰& Ž 5'‹I”o“ ¦ • 1Ÿ<Ž ’o 
`‹&Ž'‡?“^” 3 ‰RŽ'ˆV5˜p‰RŽ'“^Ÿ‡5•ž1‹IŠ^’V˜i ¤ • œV'“^”VšI• ¤ • ° ² › ° ¥
¯:° ± ; '
1 & : 4/ / # ).
/ 4
+ - 4 4 1( 4 • ¥ µ ‹I˜iœV’VŽ ¥ Lˆ¡‡ ¥ £¤ 1¦ • › ¤I¥
¯:° ± '? C901 1): B $! .. )1 *4 & $
4 !. 0& & * .& ( 4 3 & & * .-• ¥ µ ‹I˜iœV’Ž ¥ Lˆ¡‡ ¥¤ [£¤ ¦ • › ² ° ¥
¯ ± 02 #% '
1 9 00 ' : 3$ 4 & 4* 4 . $ (* . #&
0& & !# • ¥
µ ‹I˜iœV’Ž ¥ Lˆ¡‡ ¥.¤ £ ° ° ¦ • ² 1 › ° ¤I¥
¯ ¤ ±,' #210- '
1
; ):5 , 4 4 & . 4 4 # . 0& & .&5• ¥
µ ‹I˜iœV’Ž ¥ Lˆ¡‡ ¥ ° ]£ ° 1²1¦ •V° ›°I° ¥
¯ °R±,' #21- '1 ; ): 5 & !
4 , . 54
4 . 4
.4 & . *4 5• ¥
Ÿ
“ ¥ µ ‹I˜iœV’VŽ ¥ ° O£ ° ¦ • › ¥
¯ 1 ±,' 5
#210-"'
1 ; ):D5 & 3 4 , 4 3$ 4 ). ! ( ! . 4
.4 & *4 • ¥ µ ‹I˜iœV’Ž ¥ Lˆ¡‡ ¥ ° ¤ £ ° ¦ • ² › ² V¥
¯ ±,' !5#210-'
1 ; ): ; & 4 & 3 4 , 4 $ 4). ( ! . 4
4 & . *42 • µ ‹I˜i˜ ¥ µ ‹1˜|œo’Ž ¥ Lˆ¡‡ ¥L¤
£° ¦• ¤ ›¤ ¥