C H A P T E R 3 Polynomial Functions Section 3.1 Quadratic Functions and Models . . . . . . . . . . . . . 296 Section 3.2 Polynomial Functions of Higher Degree . . . . . . . . . 311 Section 3.3 Polynomial and Synthetic Division . . . . . . . . . . . . 328 Section 3.4 Zeros of Polynomial Functions . . . . . . . . . . . . . . 340 Section 3.5 Mathematical Modeling and Variation Review Exercises . . . . . . . . . .358 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381 Practice Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387 C H A P T E R 3 Polynomial Functions Section 3.1 Quadratic Functions and Models You should know the following facts about parabolas. ■ f x ax2 bx c, a 0, is a quadratic function, and its graph is a parabola. ■ If a > 0, the parabola opens upward and the vertex is the point with the minimum y-value. If a < 0, the parabola opens downward and the vertex is the point with the maximum y-value. ■ The vertex is b2a, f b2a. ■ To find the x-intercepts (if any), solve ax2 bx c 0. ■ The standard form of the equation of a parabola is f x ax h2 k where a 0. (a) The vertex is h, k. (b) The axis is the vertical line x h. Vocabulary Check 1. nonnegative integer; real 2. quadratic; parabola 4. positive; minimum 5. negative; maximum 3. axis or axis of symmetry 1. f x x 22 opens upward and has vertex 2, 0. Matches graph (g). 2. f x x 42 opens upward and has vertex 4, 0. Matches graph (c). 3. f x x2 2 opens upward and has vertex 0, 2. Matches graph (b). 4. f x 3 x2 opens downward and has vertex 0, 3. Matches graph (h). 5. f x 4 x 22 x 22 4 opens downward and has vertex 2, 4. Matches graph (f). 6. f x x 12 2 opens upward and has vertex 1, 2. Matches graph (a). 7. f x x 32 2 opens downward and has vertex 3, 2. Matches graph (e). 8. f x x 42 opens downward and has vertex 4, 0. Matches graph (d). 296 Section 3.1 1 9. (a) y 2x2 Quadratic Functions and Models 1 (b) y 8 x2 y y 5 6 4 4 3 2 2 −6 x −4 −3 −2 −1 2 3 −6 Vertical shrink and reflection in the x-axis Vertical shrink (c) y 6 −4 x 1 −1 4 −2 1 3 2 2x (d) y 3x2 y y 5 6 4 4 3 2 2 −6 −4 x −2 2 4 6 1 −3 −2 −1 x 1 −1 2 3 Vertical stretch and reflection in the x-axis Vertical stretch 10. (a) y x 2 1 (b) y x2 1 y y 5 4 4 3 3 2 2 1 −3 −3 −2 −1 1 −1 2 3 (c) y 2 3 Vertical translation one unit downward (d) y x2 3 y y 10 8 8 6 6 4 −6 −6 −4 −2 3 −2 Vertical translation one unit upward x2 x −2 x x –4 4 6 x −2 2 4 6 Vertical translation three units upward −4 Vertical translation three units downward 297 298 Chapter 3 Polynomial Functions (b) y 3x2 1 11. (a) y x 12 y −2 −1 y 5 5 4 4 3 3 x 1 −1 2 3 −3 4 Horizontal translation one unit to the right (c) y 1 2 3x −2 −1 x 2 1 3 −1 Horizontal shrink and a vertical translation one unit upward (d) y x 32 3 y y 8 10 6 8 4 2 −6 −2 x 2 −2 2 6 −8 −6 −4 −2 −4 Horizontal stretch and a vertical translation three units downward x 2 −2 4 Horizontal translation three units to the left 1 (b) y 2x 1 3 12. (a) y 12 x 22 1 2 y y 8 10 6 8 4 6 4 − 6 −4 − 2 x 2 6 8 10 x −8 − 6 − 4 2 6 8 −4 −6 Horizontal translation two units to right, vertical shrink each y-value is multiplied by 12 , reflection in the x-axis, and vertical translation one unit upward 1 (c) y 2x 22 1 Horizontal translation one unit to the right, horizontal stretch (each x-value is multiplied by 2), and vertical translation three units downward (d) y 2x 12 4 y y 6 7 4 2 x −8 −6 −4 2 4 6 4 3 2 −4 −6 −8 Horizontal translation two units to left, vertical shrink each y-value is multiplied by 12 , reflection in x-axis, and vertical translation one unit downward 1 − 4 − 3 − 2 −1 −1 x 1 2 3 4 Horizontal translation one unit to left, horizontal shrink each x-value is multiplied by 12 , and vertical translation four units upward Section 3.1 13. f x x2 5 Vertex: 0, 25 Axis of symmetry: x 0 or the y-axis Axis of symmetry: x 0 y Find x-intercepts: − 4 −3 x −1 x ± 5 1 3 x2 25 4 −2 x ±5 −3 x-intercepts: ± 5, 0 x-intercepts: x − 10 10 20 1 1 16. f x 16 4 x2 4 x2 16 Vertex: 0, 4 Vertex: 0, 16 Axis of symmetry: x 0 or the y-axis Axis of symmetry: x 0 y Find x-intercepts: 40 3 x2 8 1 x ± 8 ± 22 − 20 −6 15. f x 12 x2 4 12x 02 4 1 2 2x 30 25 x2 0 1 x2 5 y Find x-intercepts: 2 x2 5 0 299 14. hx 25 x2 Vertex: 0, 5 5, 0 , 5, 0 Quadratic Functions and Models x −1 1 2 3 4 −3 22, 0, 22, 0 −5 9 6 3 x −9 − 6 − 3 −3 18. f x x 62 3 y 20 16 Axis of symmetry: x 5 12 x-intercepts: ± 8, 0 17. f x x 52 6 Vertex: 5, 6 x2 64 x ±8 −2 x-intercepts: 18 16 14 x2 0 2 − 4 −3 y Find x-intercepts: 12 3 6 9 y Vertex: 6, 3 50 Axis of symmetry: x 6 40 30 Find x-intercepts: x 52 6 0 Find x-intercepts: − 20 x − 12 4 x 52 6 8 x 62 3 −8 x 5 ± 6 20 x 62 3 0 10 x − 20 − 10 10 20 30 1 2 Not possible for real x x 5 ± 6 No x-intercepts x-intercepts: 5 6, 0, 5 6, 0 19. h x x2 8x 16 x 42 20. gx x2 2x 1 x 12 Vertex: 4, 0 Vertex: 1, 0 y Axis of symmetry: x 4 20 Axis of symmetry: x 1 x-intercept: 4, 0 16 x-intercept: 1, 0 y 6 5 4 12 3 8 2 4 −4 1 x 4 8 12 16 −4 −3 −2 −1 x 300 Chapter 3 Polynomial Functions 21. f x x 2 x 5 4 x2 x x Vertex: 1 2 1 4 22. f x x 2 3x 1 1 5 4 4 4 x 2 3x 1 2 x 12, 1 Vertex: Axis of symmetry: x 1 2 3 2 9 9 1 4 4 4 2 2 23, 2 y 4 Axis of symmetry: x y 3 2 3 2 1 5 Find x-intercepts: x2 x Find x-intercepts: 4 5 0 4 x 2 3x 3 1 ± 1 5 x 2 −1 x 1 2 1 0 4 x 1 2 −2 −3 3 ± 9 1 x 2 1 −2 − 5 − 4 − 3 −2 − 1 3 Not a real number No x-intercepts x-intercepts: 3 ± 2 2 23 ± 2, 0 24. f x x2 4x 1 x2 4x 1 23. f x x2 2x 5 x2 2x 1 1 5 x2 4x 4 4 1 x 12 6 x 22 5 Vertex: 1, 6 Vertex: 2, 5 Axis of symmetry: x 1 Axis of symmetry: x 2 Find x-intercepts: Find x-intercepts: x2 4x 1 0 x2 4x 1 0 x2 2x 5 0 x2 2x 5 0 x x 2 ± 4 20 2 1 ± 6 2 ± 5 x-intercepts: 2 ± 5, 0 x-intercepts: 1 6, 0, 1 6, 0 y 5 y 4 6 2 1 −6 −5 x −4 2 −2 −4 6 4 ± 16 4 2 − 3 −2 − 1 −2 −3 x 1 2 Section 3.1 4 x Vertex: 1 2 1 2 x2 x 1 2 1 1 4 21 4 4 20 2 12, 20 2 x 1 4 2 1 4 2 2 x Axis of symmetry: x 301 26. f x 2x2 x 1 25. h x 4x2 4x 21 4 x2 x Quadratic Functions and Models 1 2 Vertex: Find x-intercepts: 2 161 1 7 8 14, 78 Axis of symmetry: x 4x2 4x 21 0 1 4 Find x-intercepts: 2x2 x 1 0 4 ± 16 336 x 24 x Not a real number ⇒ No x-intercepts 1 ± 1 8 22 y Not a real number y 6 No x-intercepts 5 4 3 20 1 10 −8 −4 −3 x 4 1 2 3 1 28. f x 3 x2 3x 6 14x2 8x 16 1416 12 13 x2 9x 6 14x 42 16 1 81 13 x2 9x 81 4 3 4 6 13 x 92 34 2 Vertex: 4, 16 Axis of symmetry: x 4 Vertex: 2x 12 0 x2 8x 48 0 4 4 8 16 x 4x 12 0 − 12 or x 12 − 16 x-intercepts: 4, 0, 12, 0 29. f x x2 2x 3 x 12 4 x 4 6 8 10 −2 x2 9x 18 0 −4 x 3x 6 0 −6 30. f x x2 x 30 x2 x 30 5 x2 x 14 14 30 Axis of symmetry: x 1 x-intercepts: 3, 0, 1, 0 −2 13 x2 3x 6 0 x-intercepts: 3, 0, 6, 0 − 20 Vertex: 1, 4 y 2 Find x-intercepts: x −8 92, 34 Axis of symmetry: x 92 y Find x-intercepts: x 4 x −1 8 1 27. f x 4x 2 2x 12 1 2 4x −2 −8 7 −5 x 12 121 4 2 35 1 121 Vertex: 2, 4 Axis of symmetry: x − 10 10 12 x-intercepts: 6, 0, 5, 0 − 80 302 Chapter 3 Polynomial Functions 31. gx x2 8x 11 x 42 5 32. f x x2 10x 14 Vertex: 4, 5 x2 10x 25 25 14 14 x 52 11 Axis of symmetry: x 4 x-intercepts: 4 ± 5, 0 −18 12 Vertex: 5, 11 5 −20 10 Axis of symmetry: x 5 −6 x-intercepts: 5 ± 11, 0 33. f x 2x2 16x 31 34. f x 4x2 24x 41 48 4x2 6x 41 2x 42 1 Vertex: 4, 1 −6 Axis of symmetry: x 4 x-intercepts: 4 ± 1 2 2, − 15 12 4x2 6x 9 36 41 4x 32 5 −12 0 0 0 6 Vertex: 3, 5 Axis of symmetry: x 3 No x-intercepts 35. gx 12x2 4x 2 12x 22 3 Vertex: 2, 3 36. f x 35 x2 6x 5 35 x2 6x 9 27 5 3 4 35 x 32 42 5 Axis of symmetry: x 2 −8 x-intercepts: 2 ± 6, 0 −20 4 −4 42 Vertex: 3, 5 6 − 14 x-intercepts: 3 ± 14, 0 37. 1, 0 is the vertex. 38. 0, 1 is the vertex. y ax 1 0 a x 1 f x ax 02 1 ax2 1 Since the graph passes through the point 0, 1, we have: Since the graph passes through 1, 0, 2 2 1 a0 12 0 a12 1 1a 1 a. y 1x 12 x 12 So, y x2 1. 39. 1, 4 is the vertex. 40. 2, 1 is the vertex. y ax 1 4 f x a x 22 1 Since the graph passes through the point 1, 0, we have: Since the graph passes through 0, 3, 2 0 a1 12 4 3 a 0 22 1 4 4a 3 4a 1 1 a 4 4a y 1x 12 4 x 12 4 10 Axis of symmetry: x 3 1 a. So, y x 22 1. − 10 Section 3.1 41. 2, 2 is the vertex. Quadratic Functions and Models 42. 2, 0 is the vertex. y ax 22 2 f x a x 22 0 a x 22 Since the graph passes through the point 1, 0, we have: Since the graph passes through 3, 2, 2 a 3 22 0 a1 2 2 2 2 a. 2 a So, y 2x 22. y 2x 22 2 43. 2, 5 is the vertex. 44. 4, 1 is the vertex. f x ax 22 5 f x a x 42 1 Since the graph passes through the point 0, 9, we have: Since the graph passes through 2, 3, 9 a0 2 5 3 a 2 42 1 4 4a 3 4a 1 1a 4 4a 2 1 a. f x 1x 22 5 x 22 5 So, f x x 42 1. 45. 3, 4 is the vertex. 46. 2, 3 is the vertex. f x ax 3 4 f x a x 22 3 Since the graph passes through the point 1, 2, we have: Since the graph passes through 0, 2, 2 2 a 0 22 3 2 a1 32 4 2 4a 3 2 4a 12 1 4a a f x 12x 14 a. 32 4 1 So, f x 4 x 22 3. 47. 5, 12 is the vertex. 48. 2, 2 is the vertex. f x ax 5 12 f x a x 22 2 Since the graph passes through the point 7, 15, we have: Since the graph passes through 1, 0, 2 0 a 1 22 2 15 a7 52 12 3 4a ⇒ a 34 f x 3 4 x 0a2 2 a. 5 12 2 So, f x 2x 22 2. 1 3 49. 4, 2 is the vertex. 50. f x ax 14 32 2 Since the graph passes through the point 2, 0, we have: 0 a2 32 f x 1 2 4 49 16 a ⇒ a 24 49 x 1 2 4 3 2 24 49 3 2 52, 34 is the vertex. 2 f x a x 52 34 Since the graph passes through 2, 4, 4 a2 52 34 2 4 81 4a 19 4 81 4a 19 81 a. 34 19 5 3 So, f x 81 x 2 4. 2 303 304 Chapter 3 Polynomial Functions 51. 52, 0 is the vertex. f x ax 52. 6, 6 is the vertex. 5 2 2 f x ax 62 6 Since the graph passes through 10, 2 , Since the graph passes through the point 2, 3 , we have: 7 16 3 a 16 3 a 72 f x 16 3 61 3 16 5 2 2 3 2 a 61 10 6 6 3 2 1 100 a6 2 9 1 2 100 a x 5 2 2 450 a. So, f x 450x 62 6. 53. y x2 16 54. y x2 6x 9 0 x2 16 x-intercepts: ± 4, 0 x-intercept: 3, 0 x2 16 0 x2 6x 9 x ±4 0 x 32 x30 ⇒ x3 55. y x2 4x 5 x-intercepts: 5, 0, 1, 0 0 x2 4x 5 56. y 2x2 5x 3 0 x 5x 1 x5 or x-intercepts: x 1 12, 0, 3, 0 0 2x2 5x 3 0 2x 1x 3 2 x 1 0 ⇒ x 12 x 3 0 ⇒ x 3 57. f x x2 4x 58. f x 2x2 10x 4 x-intercepts: 0, 0, (4,0 0 x2 x-intercepts: 0, 0, 5, 0 −4 4x 0 xx 4) x0 or 14 8 0 2x2 10x −1 0 2xx 5 −4 6 −6 2x 0 ⇒ x 0 x4 The x-intercepts and the solutions of f x 0 are the same. x50 ⇒ x5 The x-intercepts and the solutions of f x 0 are the same. 59. f x x2 9x 18 60. f x x2 8x 20 12 x-intercepts: 3, 0, 6, 0 0 x2 9x 18 0 x 3)x 6 x3 or x-intercepts: 2, 0, 10, 0 −8 16 −4 x6 The x-intercepts and the solutions of f x 0 are the same. 10 −4 12 0 x2 8x 20 0 x 2x 10 −40 x 2 0 ⇒ x 2 x 10 0 ⇒ x 10 The x-intercepts and the solutions of f x 0 are the same. Section 3.1 61. f x 2x2 7x 30 x-intercepts: 52, 0, 6, 0 62. f x 4x2 25x 21 10 −5 10 0 2x 5)x 6 x 10 −9 0 x 74x 3 −40 2 − 70 x 7 0 ⇒ x 7 x6 or x-intercepts: 7, 0, 0 3 4, 305 0 4x2 25x 21 0 2x2 7x 30 52 Quadratic Functions and Models The x-intercepts and the solutions of f x 0 are the same. 4x 3 0 ⇒ x 43 The x-intercepts and the solutions of f x 0 are the same. 63. f x 12x2 6x 7 7 64. f x 10 x2 12x 45 10 x-intercepts: 15, 0, 3, 0 x-intercepts: 1, 0, 7, 0 0 12x2 6x 7 0 x2 6x 7 −10 14 −6 or 7 2 0 10 x 12x 45 0 x 15x 3 The x-intercepts and the solutions of f x 0 are the same. opens upward The x-intercepts and the solutions of f x 0 are the same. 66. f x x 5x 5 x 1x 3 x 5x 5 x2 2x 3 x2 25, opens upward gx x 1x 3 − 60 x30 ⇒ x3 x7 65. f x x 1x 3 4 x 15 0 ⇒ x 15 0 x 1x 7 x 1 10 −18 opens downward gx f x, opens downward x 1x 3 gx x2 25 x2 2x 3 Note: f x a x2 25 has x-intercepts 5, 0 and 5, 0 for all real numbers a 0. x2 2x 3 Note: f x ax 1x 3 has x-intercepts 1, 0 and 3, 0 for all real numbers a 0. 67. f x x 0x 10 opens upward x2 12x 32, opens upward x2 10x gx x 0x10 x2 opens downward gx f x, opens downward gx x2 12x 32 10x Note: f x ax 0x 10 axx 10 has x-intercepts 0, 0 and 10, 0 for all real numbers a 0. 1 69. f x x 3x 2 2 68. f x x 4x 8 opens upward Note: f x a x 4x 8 has x-intercepts 4, 0 and 8, 0 for all real numbers a 0. 5 70. f x 2x 2 x 2 x 3x 12 2 2x 52 x 2 x 32x 1 2x2 12 x 5 2x2 7x 3 2x2 x 10, opens upward gx 2x2 7x 3 opens downward 2x2 7x 3 Note: f x ax 32x 1 has x-intercepts 3, 0 and 12, 0 for all real numbers a 0. gx f x, opens downward gx 2x2 x 10 5 5 Note: f x ax 2 x 2 has x-intercepts 2, 0 and 2, 0 for all real numbers a 0. 306 Chapter 3 Polynomial Functions 71. Let x the first number and y the second number. Then the sum is 72. Let x first number and y second number. Then, x y S, y S x. The product is x y 110 ⇒ y 110 x. Px xy xS x. The product is Px xy x110 x 110x x2. Px Sx x2 Px x 110x 2 x2 Sx x2 110x 3025 3025 x2 Sx x 552 3025 x 552 3025 x The maximum value of the product occurs at the vertex of Px and is 3025. This happens when x y 55. 73. Let x the first number and y the second number. Then the sum is 1 1 x 212 441 x 212 147 3 3 The maximum value of the product occurs at the vertex of Px and is 147. This happens when x 21 and 42 21 y 7. Thus, the numbers are 21 and 7. 3 (b) y 4 8 8x50 x 50 x x50 x 3 3 3 2000 0 60 0 This area is maximum when x 25 feet and 1 y 100 3 33 3 feet. —CONTINUED— This area is maximum when 1 x 25 feet and y 100 3 33 3 feet. x A 5 600 10 10663 15 1400 20 1600 25 16663 30 1600 x 1 4 4x 3y 200 ⇒ y 200 4x 50 x 3 3 42 3 x. 1 x2 42x 441 441 3 The maximum value of the product occurs at the vertex of Px and is 72. This happens when x 12 and y 24 122 6. Thus, the numbers are 12 and 6. 75. (a) 42 x . 3 1 Px x2 42x 3 1 1 x 122 144 x 122 72 2 2 (c) S2 4 The product is Px xy x 1 x2 24x 144 144 2 Then the sum is x 3y 42 ⇒ y 1 Px x2 24x 2 A 2xy 2x 2 74. Let x the first number and y the second number. 24 x The product is Px xy x . 2 x The maximum value of the product occurs at the vertex of Px and is S 24. This happens when x y S2. 24 x x 2y 24 ⇒ y . 2 S 2 S2 S2 4 4 2 2 Section 3.1 Quadratic Functions and Models 75. — CONTINUED — 8 (d) A x50 x 3 (e) They are all identical. x 25 feet and y 3313 feet 8 x2 50x 3 8 x2 50x 625 625 3 8 x 252 625 3 8 5000 x 252 3 3 The maximum area occurs at the vertex and is 50003 square feet. This happens when x 25 feet and y 200 4253 1003 feet. The dimensions are 2x 50 feet by 3313 feet. 1 76. (a) Radius of semicircular ends of track: r 2 y Distance around two semicircular parts of track: (c) Area of rectangular region: A xy x 1 d 2 r 2 y y 2 (b) Distance traveled around track in one lap: d y 2x 200 1 200x 2x2 2 x2 100x y 200 2x y 200 2x 2 x2 100x 2500 2500 200 2x 2 5000 x 502 The area is maximum when x 50 and y 200 250 100 . 4 24 77. y x2 x 12 9 9 The vertex occurs at 78. y b 4 24 249 3. The maximum height is y3 32 3 12 16 feet. 2a 249 9 9 16 2 9 x x 1.5 2025 5 (a) The ball height when it is punted is the y-intercept. y 16 9 02 0 1.5 1.5 feet 2025 5 (b) The vertex occurs at x The maximum height is f b 95 3645 . 2a 2162025 32 16 3645 3645 32 2025 32 —CONTINUED— 2 9 3645 1.5 5 32 6561 13,122 96 6657 6561 6561 1.5 feet 104.02 feet. 64 32 64 64 64 64 307 308 Chapter 3 Polynomial Functions 78. —CONTINUED— (c) The length of the punt is the positive x-intercept. 0 x 16 2 9 x x 1.5 2025 5 95 ± 952 41.5162025 1.8 ± 1.81312 322025 0.01580247 x 0.83031 or x 228.64 The punt is approximately 228.64 ft. 79. C 800 10x 0.25x2 0.25x2 10x 800 The vertex occurs at x 10 b 20. 2a 20.25 The cost is minimum when x 20 fixtures. 81. P 0.0002x2 140x 250,000 The vertex occurs at x 140 b 350,000. 2a 20.0002 The profit is maximum when x 350,000 units. 83. R p 25p 2 1200p 80. C 100,000 110x 0.045x2 The vertex occurs at x 110 1222. 20.045 The cost is minimum when x 1222 units. 82. P 230 20x 0.5x2 The vertex occurs at x b 20 20. 2a 20.5 Because x is in hundreds of dollars, 20 100 2000 dollars is the amount spent on advertising that gives maximum profit. 84. R p 12p2 150p (a) R20 $14,000 thousand (a) R$4 12$42 150$4 $408 R25 $14,375 thousand R$6 12$62 150$6 $468 R30 $13,500 thousand R$8 12$82 150$8 $432 (b) The revenue is a maximum at the vertex b 1200 24 2a 225 (b) The vertex occurs at p b 150 $6.25 2a 212 R24 14,400 Revenue is maximum when price $6.25 per pet. The unit price that will yield a maximum revenue of $14,400 thousand is $24. The maximum revenue is f $6.25 12$6.252 150$6.25 $468.75. 85. C 4299 1.8t 1.36t 2, 0 ≤ t ≤ 43 (a) (b) Vertex 0, 4299 5000 0 43 0 (c) C 40 2051 Annually: Daily: 209,128,0942051 8879 cigarettes 48,308,590 8879 24 cigarettes 366 The vertex occurs when y 4299 which is the maximum average annual consumption. The warnings may not have had an immediate effect, but over time they and other findings about the health risks and the increased cost of cigarettes have had an effect. Section 3.1 86. (a) and (c) 87. (a) Quadratic Functions and Models 309 25 950 0 100 −5 4 650 12 (b) 0.002s2 0.005s 0.029 10 (b) y 4.303x 49.948x 886.28 2 2s2 5s 29 10,000 (d) 1996 2s2 5s 10,029 0 (e) Vertex occurs at a 2, b 5, c 10,029 b 49.948 x 5.8 2a 24.303 Minimum occurs at year 1996. (f) x 18 s 5 ± 52 4210,029 22 s 5 ± 80,257 4 y 4.303182 49.94818 886.28 1381.388 s 72.1, 69.6 There will be approximately 1,381,000 hairdressers and cosmetologists in 2008. The maximum speed if power is not to exceed 10 horsepower is 69.6 miles per hour. (b) y 0.0082x2 0.746x 13.47 88. (a) and (c) (d) The maximum of the graph is at x 45.5, or about 45.5 mi/h. Algebraically, the maximum occurs at 31 x 10 0.746 b 45.5 mi/h. 2a 20.0082 80 20 90. True. The vertex of f x is 4, 5 71 is 4, 4 . 5 53 4 89. True. The equation 12x2 1 0 has no real solution, so the graph has no x-intercepts. 91. f x ax2 bx c b a x2 x c a b b2 b2 a x2 x 2 2 c a 4a 4a a x b 2a a x f 2 b 2a b2 c 4a 2 4ac b2 4a b2 b b a b c 2a 4a2 2a b2 b2 c 4a 2a b2 2b2 4ac 4ac b2 4a 4a So, the vertex occurs at b 4ac b2 b b , , f 2a 4a 2a 2a . and the vertex of gx 310 Chapter 3 Polynomial Functions 92. Conditions (a) and (d) are preferable because profits would be increasing. 93. Yes. A graph of a quadratic equation whose vertex is 0, 0 has only one x-intercept. 94. If f x ax2 bx c has two real zeros, then by the Quadratic Formula they are x b ± b2 4ac . 2a The average of the zeros of f is 2b b b2 4ac b b2 4ac 2a 2a 2a b . 2 2 2a This is the x-coordinate of the vertex of the graph. 95. 4, 3 and 2, 1 m 96. 1 13 2 2 4 6 3 72, 2, m 23 y2 1 y 1 x 2 3 3 7 x 2 2 3 21 y2 x 2 4 1 2 y1 x 3 3 3 13 y x 2 4 1 5 y x 3 3 97. 4x 5y 10 ⇒ y 45x 2 and m 45 98. y 3x 2 The slope of the perpendicular line through 0, 3 is m 54 and the y-intercept is b 3. m 3 For a parallel line, m 3. So, for 8, 4, the line is y 54x 3 y 4 3x 8 y 4 3x 24 y 3x 20. For Exercises 99–104, let f x 14x 3, and gx 8x2. 99. f g3 f 3 g3 100. g f 2 822 142 3 32 28 3 7 143 3 832 27 74 f 74g 74 101. fg 102. 3 24 4 g 1.5 1481.5 1.5 18 3 f 2 74 3 8 74 14 11 2 1408 128 49 49 103. f g1 f g1 f 8 148 3 109 104. g f 0 g f 0 g140 3 g3 832 72 Section 3.2 Section 3.2 Polynomial Functions of Higher Degree 311 Polynomial Functions of Higher Degree You should know the following basic principles about polynomials. ■ f x a xn a xn1 . . . a x2 a x a , a 0, is a polynomial function of degree n. n ■ n1 2 1 (a) an > 0, then ■ n (b) an < 0, then 1. f x → as x → . 1. f x → as x → . 2. f x → as x → . 2. f x → as x → . If f is of even degree and (a) an > 0, then ■ 0 If f is of odd degree and (b) an < 0, then 1. f x → as x → . 1. f x → as x → . 2. f x → as x → . 2. f x → as x → . The following are equivalent for a polynomial function. (a) x a is a zero of a function. (b) x a is a solution of the polynomial equation f x 0. (c) x a is a factor of the polynomial. (d) a, 0 is an x-intercept of the graph of f. ■ A polynomial of degree n has at most n distinct zeros and at most n 1 turning points. ■ A factor x ak, k > 1, yields a repeated zero of x a of multiplicity k. (a) If k is odd, the graph crosses the x-axis at x a. (b) If k is even, the graph just touches the x-axis at x a. ■ If f is a polynomial function such that a < b and f a f b, then f takes on every value between f a and f b in the interval a, b. ■ If you can find a value where a polynomial is positive and another value where it is negative, then there is at least one real zero between the values. Vocabulary Check 1. continuous 2. Leading Coefficient Test 3. n; n 1 4. solution; x a; x-intercept 5. touches; crosses 6. standard 7. Intermediate Value 1. f x 2x 3 is a line with y-intercept 0, 3. Matches graph (c). 2. f x x2 4x is a parabola with intercepts 0, 0 and 4, 0 and opens upward. Matches graph (g). 3. f x 2x2 5x is a parabola with x-intercepts 0, 0 and 52, 0 and opens downward. Matches graph (h). 4. f x 2x3 3x 1 has intercepts 0, 1, 1, 0, 12 123, 0 and 12 123, 0. Matches graph (f). 1 5. f x 4x4 3x2 has intercepts 0, 0 and ± 23, 0. Matches graph (a). 6. f x 13 x 3 x 2 43 has y-intercept 0, 43 . Matches graph (e). 7. f x x4 2x3 has intercepts 0, 0 and 2, 0. Matches graph (d). 1 9 8. f x 5 x 5 2x 3 5 x has intercepts 0, 0, 1, 0, 1, 0, 3, 0, 3, 0. Matches graph (b). 312 Chapter 3 Polynomial Functions 9. y x3 (a) f x x 23 (b) f x x3 2 y y 4 3 3 2 2 1 1 x −3 −2 2 3 4 x −4 −3 −2 2 3 4 5 −2 −3 −4 −4 −5 Horizontal shift two units to the right (c) f x Vertical shift two units downward (d) f x x 23 2 12x3 y y 4 3 3 2 2 1 1 x −4 −3 −2 2 3 4 x −3 −2 1 2 4 5 −2 −2 −3 −3 −4 −4 −5 Reflection in the x-axis and a vertical shrink Horizontal shift two units to the right and a vertical shift two units downward 10. y x5 (a) f x x 15 (b) f x x5 1 y y 4 4 3 3 2 2 1 x − 4 −3 1 2 3 4 x − 4 − 3 −2 1 −3 −3 −4 −4 Horizontal shift one unit to the left (c) f x 1 2 3 4 Vertical shift one unit upward 1 (d) f x 2 x 15 1 5 2x y y 4 4 3 3 2 2 1 x − 4 − 3 −2 2 3 4 x −5 −4 −3 −2 1 −3 −3 −4 −4 Reflection in the x-axis, vertical shrink each y-value 1 is multiplied by 2 , and vertical shift one unit upward 2 3 Reflection in the x-axis, vertical shrink each y-value is 1 multiplied by 2 , and horizontal shift one unit to the left Section 3.2 Polynomial Functions of Higher Degree 313 11. y x4 (a) f x x 34 (b) f x x4 3 y y 6 4 5 3 4 2 1 3 2 1 2 3 4 x −5 −4 −3 −2 −1 1 2 3 −2 −4 Horizontal shift three units to the left (c) f x 4 x − 4 − 3 −2 Vertical shift three units downward (d) f x 12x 14 x4 y y 6 5 3 2 1 − 4 − 3 −2 x 1 −1 2 3 x −4 −3 −2 −1 4 1 2 3 4 −2 −2 Reflection in the x-axis and then a vertical shift four units upward Horizontal shift one unit to the right and a vertical shrink each y-value is multiplied by 12 (f) f x 12x 2 4 (e) f x 2x4 1 y y 6 6 5 5 4 3 2 1 x − 4 −3 − 2 − 1 −1 1 2 3 −4 −3 4 x −1 −1 1 3 4 −2 Vertical shift one unit upward and a horizontal shrink each y-value is multiplied by 12 Vertical shift two units downward and a horizontal stretch each y-value is multiplied by 12 12. y x 6 1 (a) f x 8 x6 (b) f x x 2 6 4 y y 4 3 2 1 −4 −3 −2 x −1 2 3 −5 −4 4 x −2 1 2 3 −2 −3 −4 −4 Vertical shrink each y-value is multiplied by 8 and reflection in the x-axis 1 —CONTINUED— Horizontal shift two units to the left and vertical shift four units downward 314 Chapter 3 Polynomial Functions 12. —CONTINUED— (c) f x x 6 4 1 (d) f x 4 x 6 1 y y 4 4 3 3 2 2 1 x −4 −3 −2 2 3 4 −4 −3 −2 x 2 −1 3 4 −2 −3 −4 Vertical shift four units downward (e) f x 1 6 4x 2 Reflection in the x-axis, vertical shrink each y-value is 1 multiplied by 4 , and vertical shift one unit upward (f) f x 2x6 1 y y −8 − 6 −2 x 2 6 8 − 4 −3 − 2 − 1 −1 −4 Horizontal stretch (each x-value is multiplied by 4), and vertical shift two units downward 2 3 4 −2 Horizontal shrink each x-value is multiplied by 2 , and vertical shift one unit downward 1 14. f x 2x2 3x 1 1 13. f x 3x3 5x Degree: 2 Degree: 3 Leading coefficient: x 1 1 3 The degree is odd and the leading coefficient is positive. The graph falls to the left and rises to the right. 15. gx 5 72x 3x2 Leading coefficient: 2 The degree is even and the leading coefficient is positive. The graph rises to the left and rises to the right. 16. hx 1 x6 Degree: 2 Degree: 6 Leading coefficient: 3 Leading coefficient: 1 The degree is even and the leading coefficient is negative. The graph falls to the left and falls to the right. The degree is even and the leading coefficient is negative. The graph falls to the left and falls to the right. 17. f x 2.1x5 4x3 2 18. f x 2x5 5x 7.5 Degree: 5 Degree: 5 Leading coefficient: 2.1 Leading coefficient: 2 The degree is odd and the leading coefficient is negative. The graph rises to the left and falls to the right. The degree is odd and the leading coefficient is positive. The graph falls to the left and rises to the right. 19. f x 6 2x 4x2 5x3 20. f x 3x4 2x 5 4 Degree: 3 Degree: 4 Leading coefficient: 5 Leading coefficient: The degree is odd and the leading coefficient is negative. The graph rises to the left and falls to the right. The degree is even and the leading coefficient is positive. The graph rises to the left and rises to the right. 3 4 Section 3.2 Polynomial Functions of Higher Degree 7 22. f s 8 s3 5s2 7s 1 2 21. ht 3t2 5t 3 Degree: 3 Degree: 2 Leading coefficient: 7 Leading coefficient: 8 23 The degree is even and the leading coefficient is negative. The graph falls to the left and falls to the right. 23. f x 3x3 9x 1; gx 3x3 The degree is odd and the leading coefficient is negative. The graph rises to the left and falls to the right. 24. f x 13 x3 3x 2, gx 13 x3 6 8 g f g f −4 −9 4 9 −8 −6 25. f x x4 4x3 16x; gx x4 26. f x 3x 4 6x 2, gx 3x 4 5 12 −8 f g 8 −6 g 6 f −3 −20 27. f x x2 25 28. (a) f x 49 x2 (a) 0 x 2 25 x 5x 5 0 7 x7 x Zeros: x ± 5 x ± 7, both with multiplicity 1 (b) Each zero has a multiplicity of 1. (odd multiplicity) (b) Multiplicity of x 7is 1. Multiplicity of x 7 is 1. Turning point: 1 (the vertex of the parabola) (c) There is one turning point. 10 −30 30 (c) 55 −30 −30 30 −5 29. ht t 2 6t 9 30. (a) f x x2 10x 25 (a) 0 t2 6t 9 t 32 0 x 5 2 Zero: t 3 x 5, with multiplicity 2 (b) t 3 has a multiplicity of 2 (even multiplicity). (b) The multiplicity of x 5 is 2. Turning point: 1 (the vertex of the parabola) (c) 315 (c) 4 −18 There is one turning point. 25 18 −25 −20 15 −5 316 Chapter 3 Polynomial Functions 31. f x 13x2 13x 23 (a) 0 13 x 2 13 x 23 (c) 13 x 2 x 2 4 −6 3 x 2x 1 1 6 Zeros: x 2, x 1 −4 (b) Each zero has a multiplicity of 1 (odd multiplicity). Turning point: 1 (the vertex of the parabola) 1 5 3 32. (a) f x x 2 x 2 2 2 (b) The multiplicity of 3 1 5 a ,b ,c 2 2 2 x 5 2 ± 522 4 12 32 1 5 ± 2 The multiplicity of 5 37 is 1. 2 5 37 is 1. 2 There is one turning point. (c) 37 4 3 −8 4 5 ± 37 , both with multiplicity 1 2 −5 33. f x 3x 3 12x 2 3x (a) 0 3x3 12 x 2 3x 3xx 2 4x 1 (c) 8 −6 Zeros: x 0, x 2 ± 3 (by the Quadratic Formula) 6 (b) Each zero has a multiplicity of 1 (odd multiplicity). −24 Turning points: 2 34. (a) gx 5x x 2 2x 1 (b) The multiplicity of x 0 is 1. 0 5x x 2 2x 1 The multiplicity of x 1 2 is 1. 0 x The multiplicity of x 1 2 is 1. x2 2x 1 For x2 2x 1, a 1, b 2, c 1. x 2 ± 2 2 411 21 There are two turning points. (c) 12 −1 2 ± 8 2 3 −16 1 ± 2 The zeros are 0, 1 2, and 1 2, all with multiplicity 1. 35. f t t3 4t2 4t (a) 0 t 3 4t 2 4t tt 2 4t 4 t t 22 (c) 5 Zeros: t 0, t 2 (b) t 0 has a multiplicity of 1 (odd multiplicity) t 2 has a multiplicity of 2 (even multiplicity) Turning points: 2 −7 8 −5 Section 3.2 36. (a) f x x 4 x 3 20x 2 0 x 2 x 2 x 20 Polynomial Functions of Higher Degree 37. gt t5 6t3 9t (a) 0 t 5 6t 3 9t t t 4 6t 2 9 t t 2 32 t t 3 t 3 2 0 x 2 x 4x 5 x 0, 4, 5 (b) t 0 has a multiplicity of 1 (odd multiplicity). (b) The multiplicity of x 0 is 2. t ± 3 each have a multiplicity of 2 (even multiplicity) The multiplicity of x 5 is 1. Turning points: 4 The multiplicity of x 4 is 1. There are three turning points. (c) 25 −6 2 Zeros: t 0, t ± 3 0 with multiplicity 2, 4 and 5 with multiplicity 1. (c) 317 6 −9 9 6 −6 −150 39. f x 5x4 15x2 10 38. (a) f x x 5 x 3 6x 0 x x 4 x 2 6 (a) 0 5x 4 15x 2 10 5x 4 3x2 2 0 x x 2 3x 2 2 5x 2 1x 2 2 x 0, ± 2, all with multiplicity 1 (b) The multiplicity of x 0 is 1. No real zeros The multiplicity of x 2 is 1. (b) Turning point: 1 The multiplicity of x 2 is 1. (c) 40 There are two turning points. (c) 6 −4 4 −5 −9 9 −6 40. (a) f x 2x4 2x2 40 0 2x 4 2x 2 40 41. gx x3 3x2 4x 12 (a) 0 x 3 3x 2 4x 12 x 2 x 3 4x 3 0 2x2 4x 5 x 5 x 2 4x 3 x 2x 2x 3 x ± 5, both with multiplicity 1 (b) The multiplicity of x 5 is 1. Zeros: x ± 2, x 3 (b) Each zero has a multiplicity of 1 (odd multiplicity). The multiplicity of x 5 is 1. There is one turning point. (c) (c) 4 −8 20 −6 Turning points: 2 7 6 −16 −60 318 Chapter 3 Polynomial Functions 42. (a) f x x 3 4x 2 25x 100 0 x 2x 4 25x 4 43. y 4x3 20x2 25x (a) 12 0 x 2 25x 4 0 x 5x 5x 4 −2 x ± 5, 4, all with multiplicity 1 (b) The multiplicity of x 5 is 1. The multiplicity of x 5 is 1. 6 −4 5 (b) x-intercepts: 0, 0, 2, 0 (c) 0 4x3 20x2 25x The multiplicity of x 4 is 1. 0 x2x 52 There are two turning points. x 0 or x 2 (c) 140 −9 5 (d) The solutions are the same as the x-coordinates of the x-intercepts. 9 −20 45. y x5 5x3 4x 44. y 4x 3 4x 2 8x 8 (a) (a) 2 −3 4 3 −6 6 −4 −11 (b) (1, 0, 1.414214, 0, 1.414214, 0 (b) x-intercepts: 0, 0, ± 1, 0, ± 2, 0 (c) 0 4x 3 4x 2 8x 8 (c) 0 x5 5x3 4x 0 4x2x 1 8x 1 0 xx2 1x2 4 0 4x 2 8 x 1 0 xx 1x 1x 2x 2 0 4 x 0, ± 1, ± 2 x2 2x 1 x ± 2, 1 (d) The intercepts match part (b). (d) The solutions are the same as the x-coordinates of the x-intercepts. 46. y 14 x 3 x 2 9 (a) (c) 0 14 x 3x 2 9 12 x 0, ± 3 −18 18 −12 x-intercepts: 0, 0, ± 3, 0 (d) The intercepts match part (b). (b) 0, 0, 3, 0, 3, 0 47. f x x 0x 10 48. f x x 0x 3 f x x2 10x xx 3 Note: f x ax 0x 10 axx 10 has zeros 0 and 10 for all real numbers a 0. x 2 3x Note: f x axx 3 has zeros 0 and 3 for all real numbers a. Section 3.2 49. f x x 2x 6 Polynomial Functions of Higher Degree 50. f x x 4x 5 f x x 2x 6 x 4x 5 f x x2 4x 12 x 2 x 20 Note: f x ax 2x 6 has zeros 2 and 6 for all real numbers a 0. 51. f x x 0x 2x 3 Note: f x a x 4x 5 has zeros 4 and 5 for all real numbers a. 52. f x x 0x 2x 5 xx 2x 3 xx 2x 5 x x 2 7x 10 x3 6x 5x2 319 Note: f x axx 2x 3 has zeros 0, 2, 3 for all real numbers a 0. 53. f x x 4x 3x 3x 0 x 3 7x 2 10x Note: f x a xx 2x 5 has zeros 0, 2, 5 for all real numbers a. 54. f x x 2x 1x 0x 1x 2 x 4x2 9x xx 2x 1x 1x 2 x4 4x3 9x2 36x xx 2 4x 2 1 Note: f x ax4 4x3 9x2 36x has these zeros for all real numbers a 0. xx 4 5x 2 4 x 5 5x 3 4x Note: f x a xx 2x 1x 1x 2 has zeros 2, 1, 0, 1, 2 for all real numbers a. 55. f x x 1 3 x 1 3 x 1 3 x 1 3 56. f x x 2 x 4 5 x 4 5 x 2 x 4 5x 4 5 x 1 3 x 2 x 4 2 5 x2 2x 1 3 xx 4 2 5x 2x 4 2 10 x2 2x 2 x 3 8x 2 16x 5x 2x 2 16x 32 10 2 2 Note: f x a numbers a 0. x2 2x 2 has these zeros for all real x 3 10x 2 27x 22 Note: f x ax 3 10x 2 27x 22 has these zeros for all real numbers a. 57. f x x 2x 2 58. f x x 8x 4 x 22 x2 4x 4 x 8x 4 x2 12x 32 Note: f x ax2 4x 4, a 0, has degree 2 and zero x 2. 59. f x x 3x 0x 1 60. f x x 2x 4x 7 xx 3x 1 x 2x 3x 3 Note: f x ax2 12x 32, a 0, has degree 2 and zeros x 8 and 4. 2 Note: f x ax3 2x2 3x, a 0, has degree 3 and zeros x 3, 0, 1. 61. f x x 0x 3 x 3 xx 3x 3 x3 3x Note: f x ax3 3x, a 0, has degree 3 and zeros x 0, 3, 3. x 2x2 11x 28 x 3 9x2 6x 56 Note: f x ax 3 9x2 6x 56, a 0, has degree 3 and zeros x 2, 4, and 7. 62. f x x 93 x 3 27x2 243x 729 Note: f x ax 3 27x2 243x 729, a 0, has degree 3 and zero x 9. 320 Chapter 3 Polynomial Functions 63. f x x 52x 1x 2 x 4 7x3 3x2 55x 50 or f x x 5x 12x 2 x 4 x3 15x2 23x 10 or f x x 5x 1x 22 x4 17x2 36x 20 Note: Any nonzero scalar multiple of these functions would also have degree 4 and zeros x 5, 1, 2. 64. f x x 4x 1x 3x 6 x 4 4x 3 23x2 54x 72 Note: f x ax 4 4x 3 23x2 54x 72, a 0, has degree 4 and zeros x 4, 1, 3, and 6. 65. f x x4x 4 x5 4x 4 or f x x3x 42 x5 8x 4 16x3 or f x x2x 43 x5 12x4 48x3 64x2 or f x xx 44 x5 16x 4 96x3 256x2 256x Note: Any nonzero scalar multiple of these functions would also have degree 5 and zeros x 0 and 4. 66. f x x 32x 1x 5x 6 x5 6x4 22x3 108x2 189x 270 or f x x 3x 12x 5x 6 x 5 10x 4 14x 3 88x2 183x 90 or f x x 3x 1x 52x 6 x 5 14x 4 50x 3 68x2 555x 450 or f x x 3x 1x 5x 62 x 5 15x 4 59x 3 63x2 648x 540 Note: Any nonzero multiple of these functions would also have degree 5 and zeros x 3, 1, 5, and 6. 68. gx x 4 4x2 x2x 2x 2 67. f x x3 9x xx2 9 xx 3x 3 (a) Falls to the left; rises to the right (a) Rises to the left; rises to the right (b) Zeros: 0, 3, 3 (b) Zeros: 2, 0, 2 (c) x 3 2 1 0 1 2 3 f x 0 10 8 0 8 10 0 (d) y (c) x 0.5 1 1.5 2.5 gx 0.94 3 3.94 14.1 y (d) 4 12 3 (0, 0) (−3, 0) −12 − 8 4 2 (3, 0) x −4 4 8 1 (−2, 0) −4 −3 12 −4 (0, 0) (2, 0) 1 3 x −1 4 −8 −4 1 1 7 69. f t 4t2 2t 15 4t 12 2 (d) The graph is a parabola with vertex 1, 72 . (a) Rises to the left; rises to the right y (b) No real zero (no x-intercepts) (c) 8 t 1 0 1 2 3 f t 4.5 3.75 3.5 3.75 4.5 6 2 −4 −2 t 2 4 Section 3.2 Polynomial Functions of Higher Degree 71. f x x3 3x2 x2x 3 70. gx x2 10x 16 x 2x 8 (a) Falls to the left; falls to the right (a) Falls to the left; rises to the right (b) Zeros: 2, 8 (b) Zeros: 0 and 3 (c) (c) x 1 3 5 7 9 gx 7 5 9 5 7 y (d) 321 x 1 0 1 2 3 f x 4 0 2 4 0 y (d) 1 10 (0, 0) 8 −1 (3, 0) 1 2 x 4 6 4 −3 2 (2, 0) (8, 0) −4 x 4 6 10 73. f x 3x3 15x2 18x 3xx 2x 3 72. f x 1 x 3 (a) Rises to the left; falls to the right (a) Falls to the left; rises to the right (b) Zero: 1 (b) Zeros: 0, 2, 3 (c) (c) x 2 1 0 1 2 f x 9 2 1 0 7 0 1 2 2.5 3 3.5 f x 0 6 0 1.875 0 7.875 y (d) y (d) x 7 3 6 5 2 4 3 2 (1, 0) −2 −1 (0, 0) 1 (2, 0) x 2 −1 1 4 5 6 −2 75. f x 5x2 x3 x25 x 74. f x 4x 3 4x2 15x x4x2 4x 15 (a) Rises to the left; falls to the right x2x 52x 3 (b) Zeros: 0, 5 (c) (a) Rises to the left; falls to the right (b) Zeros: (c) (3, 0) x −3 − 2 − 1 −1 32, 0, 5 2 x 3 2 1 0 1 2 3 f x 99 18 7 0 15 14 27 x 5 4 3 2 1 0 1 f x 0 16 18 12 4 0 6 y (d) 5 (−5, 0) −15 y (d) (0, 0) − 10 5 20 16 12 8 (− 32, 0( −4 −3 −2 ( 52, 0( 4 (0, 0) 1 2 3 4 − 20 x x 10 322 Chapter 3 Polynomial Functions 76. f x 48x2 3x 4 3x2x2 16 (a) Rises to the left; rises to the right (d) y (− 4, 0) (b) Zeros: 0, ± 4 100 (0, 0) (c) 5 4 3 x f x 675 0 2 1 0 1 2 3 −6 4 5 −2 (4, 0) 2 x 6 189 144 45 0 45 144 189 0 675 − 200 − 300 1 78. hx 3 x 3x 42 77. f x x2x 4 (a) Falls to the left; rises to the right (a) Falls to the left; rises to the right (b) Zeros: 0, 4 (b) Zeros: 0 and 4 (c) (c) x 1 0 1 2 3 4 5 f x 5 0 3 8 9 0 25 y (d) x 1 0 1 2 3 4 5 hx 3 25 0 3 32 3 9 0 125 3 y (d) 14 2 (0, 0) −4 −2 (4, 0) 2 6 12 x 10 8 8 6 4 (0, 0) −4 −2 79. g t 14t 22t 22 (4, 0) 2 4 6 x 8 10 12 1 80. gx 10 x 12x 33 (a) Falls to the left; falls to the right (a) Falls to the left; rises to the right (b) Zeros: 2 and 2 (b) Zeros: 1, 3 (c) t 3 gt 25 4 2 1 0 94 y (d) −3 −1 1 4 94 2 3 0 25 4 (c) x 2 1 0 1 2 4 g x 12.5 0 2.7 3.2 0.9 2.5 y (d) (2, 0) (−2, 0) 0 t −1 −2 1 2 6 3 4 (−1, 0) −6 −4 −2 −5 −6 2 (3, 0) 4 6 x 8 Section 3.2 81. f x x3 4x xx 2x 2 Polynomial Functions of Higher Degree 1 82. f x 4x 4 2x 2 6 −9 6 −9 9 9 −6 −6 Zeros: 0, 2, 2 all of multiplicity 1 Zeros: 2.828 and 2.828 with multiplicity 1; 0, with multiplicity 2 84. h x 5x 2 2 3x 5 2 1 1 83. gx 5x 12x 32x 9 21 14 −12 323 18 − 12 12 −3 −6 Zeros: 2, 53, both with multiplicity 2 Zeros: 1 of multiplicity 2, 3 of multiplicity 1, and 9 2 of multiplicity 1 85. f x x3 3x2 3 86. f x 0.11x 3 2.07x 2 9.81x 6.88 x y1 3 51 2 17 1 1 0 3 The function has three zeros. They are in the intervals 1, 0, 1, 2 and 2, 3. 1 1 2 1 They are x 0.879, 1.347, 2.532 . 3 3 4 19 10 −5 5 −10 87. gx 3x4 4x3 3 10 −5 5 −10 x y1 4 509 3 132 2 13 The function has three zeros. They are in the intervals 0, 1, 6, 7, and 11, 12. They are approximately 0.845, 6.385, and 11.588. x y x y 10 −4 16 0 6.88 7 1.91 1 0.97 8 4.56 2 5.34 9 6.07 3 6.89 10 5.78 4 6.28 11 3.03 5 4.17 12 2.84 6 1.12 −10 88. h x x 4 10x 2 3 The function has four zeros. They are in the intervals 4, 3, 1, 0, 0, 1, and 3, 4. They are approximately ± 3.113 and ± 0.556. x y 4 99 3 6 2 21 1 6 0 3 1 6 10 1 4 The function has two zeros. They are in the intervals 2, 1 and 0, 1. 0 3 1 4 They are x 1.585, 0.779 . 2 77 2 21 3 348 3 6 4 99 −4 4 −30 324 Chapter 3 Polynomial Functions 89. (a) Volume l w h (c) height x Box Height Box Width Box Volume, V length width 36 2x 1 36 21 136 212 1156 Thus, Vx 36 2x36 2xx x36 2x2. 2 36 22 236 222 2048 3 36 23 336 232 2700 4 36 24 436 242 3136 5 36 25 536 252 3380 6 36 26 636 262 3456 7 36 27 736 272 3388 (b) Domain: 0 < x < 18 The length and width must be positive. (d) 3600 0 18 0 The volume is a maximum of 3456 cubic inches when the height is 6 inches and the length and width are each 24 inches. So the dimensions are 6 24 24 inches. The maximum point on the graph occurs at x 6. This agrees with the maximum found in part (c). 90. (a) Volume w h 24 2x24 4xx (c) 212 x 46 xx 720 600 8x12 x6 x (b) x > 0, 12 x > 0, 6x > 0 x < 12 x < 6 V 480 360 240 120 Domain: 0 < x < 6 x 1 2 3 4 5 6 x 2.6 corresponds to a maximum of about 665 cubic inches. 91. (a) A w 12 2xx 2x 2 12x square inches (e) 4000 (b) 16 feet 192 inches Vlw h 12 2xx192 0 384x 2 2304x cubic inches Maximum: 3, 3456 (c) Since x and 12 2x cannot be negative, we have 0 < x < 6 inches for the domain. (d) x V 0 0 1 1920 2 3072 3 3456 4 3072 5 1920 6 0 When x 3, the volume is a maximum with V 3456 in.3. The dimensions of the gutter cross-section are 3 inches 6 inches 3 inches. 6 0 The maximum value is the same. (f) No. The volume is a product of the constant length and the cross-sectional area. The value of x would remain the same; only the value of V would change if the length was changed. Section 3.2 4 92. (a) V 3 r 3 r 24r V 4 3 3 r 4r 325 (b) r ≥ 0 3 (d) V 120 ft 3 16 3 r 3 3 16 3 r r 1.93 ft length 4r 7.72 ft 150 (c) Polynomial Functions of Higher Degree 0 2 0 93. y1 0.139t 3 4.42t 2 51.1t 39 94. y 0.056t 3 1.73t 2 23.8t 29 180 200 7 140 7 120 13 The data fit the model closely. The model is a good fit to the actual data. 95. Midwest: y118 $259.368 thousand $259,368 13 96. Answers will vary. South: y218 $223.472 thousand $223,472 Example: The median price of homes in the South are all lower than those in the Midwest. The curves do not intersect. Since the models are both cubic functions with positive leading coefficients, both will increase without bound as t increases, thus should only be used for short term projections. 97. G 0.003t 3 0.137t 2 0.458t 0.839, 2 ≤ t ≤ 34 (a) y 0.009t 2 0.274t 0.458 (c) 60 − 10 45 −5 (b) The tree is growing most rapidly at t 15. 98. R 1 3 100,000 x 600x 2 The point of diminishing returns (where the graph changes from curving upward to curving downward) occurs when x 200. The point is 200, 160 which corresponds to spending $2,000,000 on advertising to obtain a revenue of $160 million. b 0.274 15.222 2a 20.009 y15.222 2.543 Vertex 15.22, 2.54 (d) The x-value of the vertex in part (c) is approximately equal to the value found in part (b). 99. False. A fifth degree polynomial can have at most four turning points. 100. True. f x x 16 has one repeated solution. 101. True. A polynomial of degree 7 with a negative leading coefficient rises to the left and falls to the right. 102. (a) Degree: 3 Leading coefficient: Positive (c) Degree: 4 Leading coefficient: Positive (b) Degree: 2 Leading coefficient: Positive (d) Degree: 5 Leading coefficient: Positive 326 Chapter 3 Polynomial Functions 103. f x x4; f x is even. y (a) gx f x 2 5 4 Vertical shift two units upward 3 gx f x 2 2 1 f x 2 −3 gx −2 −1 x −1 1 2 3 Even (b) gx f x 2 (c) gx f x x4 x 4 Horizontal shift two units to the left Reflection in the y-axis. The graph looks the same. Neither odd nor even Even 1 4 (e) gx f 12 x 16 x (d) gx f x x 4 Reflection in the x-axis Horizontal stretch Even Even (f) gx f x 1 2 (g) gx f x 34 x 344 x 3, x ≥ 0 1 4 2x Vertical shrink Neither odd nor even Even (h) gx f f x f f x f x 4 x 44 x16 Even 1 104. (a) y1 3x 25 1 is decreasing. y2 35x 25 3 is increasing. 8 (c) Hx x5 3x3 2x 1 Since Hx is not always increasing or always decreasing, Hx cannot be written in the form ax h5 k. 6 −12 12 y1 y2 −9 9 −8 (b) The graph is either always increasing or always decreasing. The behavior is determined by a. If a > 0, gx will always be increasing. If a < 0, gx will always be decreasing. 105. 5x2 7x 24 5x 8x 3 −6 106. 6x3 61x2 10x x6x2 61x 10 x6x 1x 10 107. 4x 4 7x 3 15x 2 x 24x 2 7x 15 108. y3 216 y3 63 x24x 5x 3 109. 2x2 x 28 0 110. 3x2 22x 16 0 2x 7x 4 0 2x 7 0 ⇒ x y 6 y2 6y 36 3x 2x 8 0 72 x40 ⇒ x4 3x 2 0 x 23 or x80 or x8 Section 3.2 Polynomial Functions of Higher Degree 111. 12x2 11x 5 0 112. x2 24x 144 0 3x 14x 5 0 x 122 0 3x 1 0 ⇒ x 13 4x 5 0 ⇒ x x 12 0 54 x 12 114. x2 8x 2 0 x2 2x 21 0 113. x2 2x 12 21 1 0 x2 8x 2 x 12 22 0 x2 8x 16 2 16 x 42 14 x 12 22 x 4 ± 14 x 1 ± 22 x 1 ± 22 x 4 ± 14 116. 3x2 4x 9 0 2x2 5x 20 0 115. 5 2 x2 x 20 0 2 4 x2 x 3 0 3 20 258 0 4 x2 x 3 3 5 5 2 x2 x 2 4 2 2 x 5 4 2 4 4 4 x2 x 3 3 9 9 185 0 8 x 45 x 2 x 32 185 16 185 5 ± 4 4 x x 5 ± 185 4 2 117. f x x 42 2 31 ± 3 3 2 ± 31 3 118. f x 3 x 2 7 y 4 Reflection in the x-axis and vertical shift of three units upward of y x2 6 5 Transformation: Horizontal shift four units to the left 319 x y x2 31 9 2 ± 3 x Common function: y 4 2 1 3 − 4 −3 2 − 7 − 6 − 5 −4 − 3 − 2 − 1 −1 119. f x x 1 5 −2 −1 x −1 −2 −3 −5 2 4 −4 120. f x 7 x 6 1 3 −3 1 1 −3 1 −2 x y Common function: y x x −1 −1 1 Transformation: Horizontal shift one unit to the left and a vertical shift five units downward 327 3 y 15 Horizontal shift of six units to the right, reflection in the x-axis, and vertical shift of seven units upward of y x 12 9 6 3 −3 x −3 3 6 9 12 15 328 Chapter 3 Polynomial Functions 121. f x 2x 9 1 122. f x 10 3 x 3 y Common function: y x 6 Transformation: Vertical stretch each y-value is multiplied by 2, then a vertical shift nine units upward 4 5 3 2 1 −6 −3 −2 −1 x 1 2 Horizontal shift of three units to the left, vertical shrink y-value is multiplied each by 13 , reflection in the x-axis and vertical shift of ten units upward of y x −1 −2 Section 3.3 y 9 8 7 6 5 4 3 2 1 x 1 2 3 4 5 6 7 8 9 Polynomial and Synthetic Division You should know the following basic techniques and principles of polynomial division. ■ The Division Algorithm (Long Division of Polynomials) ■ Synthetic Division ■ f k is equal to the remainder of f x divided by x k. (The Remainder Theorem) ■ f k 0 if and only if x k is a factor of f x. Vocabulary Check 1. f x is the dividend; dx is the divisor; gx is the quotient; rx is the remainder 2. improper; proper 1. y1 3. synthetic division x2 4 and y2 x 2 x2 x2 4. factor 2. y1 5. remainder x4 3x2 1 39 and y2 x2 8 2 x2 5 x 5 x2 x2) x2 x2 8 0x 0 x2 5) x2 2x 3. y1 3x2 1 x4 5x2 2x 0 8x2 1 2x 4 8x2 40 4 39 x2 4 x2 and y1 y2. x2 x2 Thus, x4 x5 3x3 4x and y2 x3 4x 2 x2 1 x 1 (a) and (b) 6 Thus, x4 3x2 1 39 x2 8 2 and y1 y2. x2 5 x 5 x3 4x (c) x2 0x 1 ) x5 0x 4 3x3 0x2 0x 0 x5 0x 4 x3 4x3 0x2 0x −9 4x3 0x2 4x 9 4x 0 −6 Thus, x5 3x3 4x and y1 y2. x3 4x 2 x2 1 x 1 Section 3.3 4. y1 Polynomial and Synthetic Division x 3 2x 2 5 2x 4 and y2 x 3 2 x2 x 1 x x1 329 x3 (c) x 2 x 1 ) x 3 2x 2 0x 5 (a) and (b) x3 x2 x 8 3x 2 x 5 −12 12 3x 2 3x 3 2x 8 −8 Thus, 2x 4 5. 2x 4 x 3 2x 2 5 x3 2 and y1 y2. x2 x 1 x x1 5x 3 6. x 4 ) 5x2 17x 12 x 3 ) 2x2 10x 12 2x2 6x 5x2 20x 4x 12 3x 12 4x 12 3x 12 0 0 2x2 10x 12 2x 4 x3 5x2 x2 3x 1 7. 5x2 12x2 2x2 4x 3 8. 4x 5 ) 4x3 7x2 11x 5 4x3 17x 12 5x 3 x4 3x 2 ) 6x3 6x3 4x2 11x 12x2 17x 12x2 15x 12x2 8x 4x 5 4x3 4x 5 9x 6 0 9x 6 11x 5 x2 3x 1 4x 5 7x2 x3 3x2 9. x2) x4 5x3 6x2 6x2 1 x2 x4 2x3 3x3 x2 7x 18 10. x3) x3 4x2 3x 12 7x2 21x x2 18x 12 0 18x 54 x2 x3 3x2 1 x2 6x2 6x3 16x2 17x 6 2x2 4x 3 3x 2 7x2 3x x2 5x3 0 x3 3x2 3x3 6x2 x4 16x2 17x 6 42 x3 4x2 3x 12 42 x2 7x 18 x3 x3 330 Chapter 3 Polynomial Functions 7 11. 12. 4 x 2 ) 7x 3 2x 1 ) 8x 5 7x 14 8x 4 11 9 11 7x 3 7 x2 x2 8x 5 9 4 2x 1 2x 1 3x 5 13. 14. x x2 0x1 ) x3 0x2 0x 9 2x2 0x 1 ) 6x3 10x2 x 8 6x3 0x2 3x x3 0x2 x 10x2 2x 8 x 9 10x2 0x 5 x9 x 9 x 2 x2 1 x 1 3 2x 3 6x3 10x2 x 8 2x 3 3x 5 2 2x2 1 2x 1 x2 2x 4 15. x2 2x 3 ) x4 0x3 3x2 0x 1 x4 3x2 1 2x 11 x2 2x 4 2 x2 2x 3 x 2x 3 ⇒ x4 2x3 3x2 2x3 0x2 0x 2x3 4x2 6x 4x2 6x 1 4x2 8x 12 2x 11 x2 16. x3 17. x 3 0x2 0x 1 ) x5 0x4 0x3 0x2 0x 7 x3 3x2 3x 1 ) x4 0x3 0x2 0x 0 x4 3x3 3x2 x x5 0x4 0x3 x2 x2 x5 7 x2 7 x2 3 3 x 1 x 1 x2 3x3 9x2 9x 3 6x2 8x 3 x4 6x2 8x 3 x3 x 13 x 13 2x 18. 3x3 3x2 x 0 7 19. 5 3 2x 1 ) 2x3 4x2 15x 5 2x3 4x2 2x 17x 5 17x 5 2x 3 4x 2 15x 5 2x 2 x 1 2 x 2x 1 3 17 15 2 15 10 5 25 25 0 3x 17x2 15x 25 3x2 2x 5 x5 3 Section 3.3 20. 3 5 18 15 7 9 6 6 5 3 2 0 21. 2 0 16 3 16 18 0 72 12 72 3 12 2 25. 4 5 6 8 20 52 29. 8 5 10 26 44 1 13 3 0 0 120 80 48 144 432 936 250 250 1 10 25 0 6 20 0 56 8 224 14 56 232 10 50 60 0 60 0 360 800 2160 10 60 360 1360 1 16 48 144 50x3 800 10x x6 4 10x3 10x2 60x 360 312 856 120x 80 856 x 4 16x 3 48x 2 144x 312 x3 x3 13x 4 1 0 8 0 64 512 512 1 8 64 0 30. 9 3 0 6 0 12 0 24 0 48 3 6 12 24 48 1 1 180x x6 x4 1 0 9 0 81 729 729 1 9 81 0 x3 729 x2 9x 81 x9 32. 2 48 3x4 3x3 6x2 12x 24 x2 x2 33. 6 75 100 10 x3 512 x2 8x 64 x8 31. 2 0 10 6x2 27. 6 44 5x 6x 8 5x 2 10x 26 x2 x2 1 8 232 5x 5x2 14x 56 x4 x4 3 3 x5 9 5 0 10 28. 3 0 5 0 16x 2 26. 2 4 18 18 0 x3 75x 250 x2 10x 25 x 10 72 3x 3x 2 2x 12 x6 3 9 0 0 9x 3 18x 2 16x 32 9x 2 16 x2 24. 6 8 8 23. 10 9 18 16 32 18 0 32 9 4 331 4x3 8x2 9x 18 4x2 9 x2 5x 3 18x 2 7x 6 5x 2 3x 2 x3 22. 2 Polynomial and Synthetic Division 0 6 0 36 180 216 0 216 6 36 36 216 x3 6x2 36x 36 216 x6 3 0 0 6 12 0 0 24 48 3 6 12 24 48 3x 4 48 3x 3 6x 2 12x 24 x2 x2 34. 1 1 1 2 1 3 5 3x 2x x1 2 3 3 5 6 6 11 x3 x2 3x 6 11 x1 1360 x6 332 Chapter 3 1 35. 2 4 4 4x3 Polynomial Functions 16 2 23 7 15 15 14 30 0 36. 23x 15 4x2 14x 30 x 12 1 1 4 1 3 14 12 11 8 2 3 3 4 0 5 9 2 3 4 9 8 1 2 3 4 49 8 3 16x2 3x 3 4x 2 5 3 49 1 3x 2 x x 32 2 4 8x 12 38. f x x 3 5x2 11x 8, k 2 37. f x x3 x2 14x 11, k 4 4 3 2 2 1 5 2 1 7 11 14 8 6 3 2 f x x 4x 3x 2 3 f x x 2x 7x 3 2 f 4 4 4 144 11 3 f 2 23 522 112 8 2 2 3 2 8 20 22 8 2 40. f x 10x 3 22x2 3x 4, k 15 39. f x 15x4 10x3 6x2 14, k 23 23 15 6 10 0 14 10 0 4 8 3 0 6 4 34 3 15 1 5 10 f x x 23 15x3 6x 4 34 3 3 22 3 4 2 4 5 20 7 13 5 7 f x x 15 10x2 20x 7 13 5 f 15 1015 2215 315 4 f 23 15 23 10 23 6 23 14 34 3 4 10 2 3 2 2 3 65 13 25 22 25 5 4 25 5 42. f x x 3 2x2 5x 4, k 5 41. f x x3 3x2 2x 14, k 2 2 3 2 14 2 2 32 6 3 2 32 8 1 1 5 1 f x x 2x2 3 2x 32 8 2 5 4 5 25 5 10 2 5 25 6 f x x 5 x2 2 5 x 25 6 f 2 2 32 22 14 8 3 1 f 5 5 3 2 5 2 5 5 4 2 55 10 55 4 6 43. f x 4x3 6x2 12x 4, k 1 3 1 3 4 4 6 12 4 4 43 10 23 4 2 43 2 23 0 f x x 1 34x2 2 43x 2 23 0 f 1 3 41 3 61 3 121 3 4 0 3 2 f x x 2 2 3x2 2 32 x 8 42 0 44. f x 3x 3 8x2 10x 8, k 2 2 2 2 3 3 8 10 8 6 32 2 42 f 2 2 32 2 3 82 2 2 102 2 8 8 2 32 8 42 320 142 86 42 102 2 8 0 60 422 48 322 20 102 8 0 Section 3.3 45. f x 4x3 13x 10 (a) 1 4 4 (a) 2 10 9 1 f 1 1 (b) 2 4 13 16 3 0 8 8 10 6 4 4 f 10 6 4 4 10 1944 1954 10 42 32 5 9 14 3 (b) 3 (a) 1 1 96 97 3 3 10 1 1 2 6 8 83 5 3 3 3 1 1 0 2 2 3 6 14 1 0 4 4 16 0 48 3 0 192 780 2 3120 1 4 12 48 195 780 3122 1 0 3 4 9 0 15 3 45 0 144 2 432 1 3 5 15 48 144 434 1 0 1 4 1 0 3 3 3 0 0 2 0 1 1 3 3 0 0 2 0.4 1.6 0.7 0 2 0.4 1.2 0.5 0.5 0.4 1.6 0.8 0.7 0 4.8 11 2 22 0.4 2.4 5.5 11 20 f 2 20 5 6 1 10 2 8 1 16 17 (c) 5 5 15 10 7 4 3 10 50 40 1 200 199 0.7 0 2 2.0 13.5 67.5 0.4 2.7 13.5 65.5 0.4 (d) 10 0.4 1.6 4.0 0.7 0 56.0 567 2 5670 0.4 5.6 56.7 567 5668 f 10 5668 6 6 0 x 7x 6 x 2x2 2x 3 3 x 2x 3x 1 Zeros: 2, 3, 1 0.4 1.6 2.0 f 5 65.5 h5 199 49. 2 0 (b) 2 h2 17 (d) 5 0 0.4 1.2 0.5 0.5 2.5 h13 53 (c) 2 2 f 1 2.5 5 3 1 48. f x 0.4x 4 1.6x 3 0.7x 2 2 h3 97 1 3 2 12 g1 2 47. h x 3x3 5x2 10x 1 3 0 6 (d) 1 f 8 1954 (a) 3 3 0 g3 434 13 256 243 0 32 32 4 0 0 (c) 3 4 (d) 8 4 4 g4 3122 13 1 12 0 2 2 4 1 2 0 2 (b) 4 f 2 4 1 2 1 g2 14 4 (c) 333 46. g x x 6 4x 4 3x 2 2 13 4 9 0 4 4 Polynomial and Synthetic Division 50. 4 1 0 28 48 4 16 48 1 4 12 0 x 3 28x 48 x 4x 2 4x 12 x 4x 6x 2 Zeros: 4, 2, 6 334 51. Chapter 3 1 2 Polynomial Functions 15 1 14 2 2 10 10 0 27 7 20 52. x 2x2 48 80 41 32 32 48 48 2x3 15x2 27x 10 1 2 2 3 48x 3 80x 2 14x 20 6 6 9 0 41x 6 x 23 48x 2 48x 9 x 23 4x 312x 3 2x 1x 2x 5 3x 24x 34x 1 1 Zeros: 2, 2, 5 53. 3 Zeros: 1 3 3 23 23 2 3 2 3 1 3 2 3 3 2 1 1 6 6 0 54. 2 2 3 1 3, 4, 4 2 x3 2x2 3x 6 x 3 x 3 x 2 x3 Zeros: ± 3, 2 2 22 2 4 4 2 2 22 0 2 1 23 23 0 2 1 2x 2 1 2 2 2 22 22 1 2 0 2x 4 x 2 x 2x 2 Zeros: 2, 2, 2 55. 1 3 1 1 1 3 1 1 x3 3x2 3 1 3 2 3 0 1 3 1 3 2 3 1 3 1 1 3 1 3 0 2 2 0 2 x 1 3 x 1 3 x 1 x 1x 1 3 x 1 3 Zeros: 1, 1 ± 3 56. 2 5 2 5 1 1 2 5 13 7 35 3 3 1 1 5 6 35 0 1 1 5 2 5 6 35 6 35 1 3 0 x x 13x 3 x 2 5 x 2 5 x 3 3 2 Zeros: 2 5, 2 5, 3 57. f x 2x3 x2 5x 2; Factors: x 2, x 1 (a) 2 2 2 1 2 2 1 4 3 3 2 1 5 6 1 2 2 0 1 1 0 (b) The remaining factor of f x is 2x 1. (c) f x 2x 1x 2x 1 (d) Zeros: 12, 2, 1 (e) 7 Both are factors of f x since the remainders are zero. −6 6 −1 Section 3.3 Polynomial and Synthetic Division 58. f x 3x 3 2x2 19x 6; Factors: x 3, x 2 (a) 3 3 3 2 3 19 21 6 6 7 2 7 2 6 2 0 2 9 1 3 (c) f x 3x 3 2x2 19x 6 3x 1x 3x 2 (d) Zeros: 13, 3, 2 (e) 35 0 (b) The remaining factor is 3x 1. −4 3 −10 59. f x x4 4x3 15x2 58x 40; Factors: x 5, x 4 (a) 5 4 5 1 1 1 4 1 1 15 5 10 10 12 2 1 4 3 (c) f x x 1x 2x 5x 4 40 40 0 58 50 8 (d) Zeros: 1, 2, 5, 4 (e) 8 8 0 20 −6 6 Both are factors of f x since the remainders are zero. − 180 (b) x2 3x 2 x 1x 2 The remaining factors are x 1 and x 2. 60. f x 8x 4 14x 3 71x2 10x 24; Factors: x 2, x 4 (a) 2 8 8 4 14 16 71 60 10 22 24 24 30 11 12 0 8 30 32 11 8 12 12 8 2 3 0 (c) f x 4x 32x 1x 2x 4 (d) Zeros: 34, 12, 2, 4 (e) 40 −3 5 − 380 (b) 8x2 2x 3 4x 32x 1 The remaining factors are 4x 3 and 2x 1. 61. f x 6x3 41x2 9x 14; Factors: 2x 1, 3x 2 (a) 12 6 6 2 3 6 6 41 3 38 38 4 42 9 19 28 14 14 0 (b) 6x 42 6x 7 This shows that 28 28 0 so f x x 7. 2x 13x 2 The remaining factor is x 7. Both are factors since the remainders are zero. (c) f x x 72x 13x 2 f x 6x 7, x 12 x 23 1 2 (d) Zeros: 7, , 2 3 (e) 320 −9 3 − 40 335 336 Chapter 3 Polynomial Functions 63. f x 2x3 x2 10x 5; 62. f x 10x 3 11x2 72x 45; Factors: 2x 1, x 5 Factors: 2x 5, 5x 3 (a) 52 3 5 10 11 25 72 90 45 45 10 36 18 0 36 6 10 (a) 5 1 1 0 10 0 10 2 0 25 10 25 0 2 10 30 0 (b) 10x 30 10x 3 f x x x 5 2 3 5 10x 3, 10 (b) 2x 25 2x 5 This shows that so The remaining factor is x 3. (c) f x x 32x 55x 3 5 3 (d) Zeros: 3, , 2 5 f x x 12 x 5 2x 5, f x x 5. 2x 1x 5 The remaining factor is x 5. (c) f x x 5x 52x 1 (d) Zeros: 5, 5, 100 (e) −4 5 5 0 Both are factors since the remainders are zero. f x so x 3. 2x 55x 3 (e) 2 2 18 18 This shows that 1 2 1 2 14 4 −6 − 80 6 −6 64. f x x 3 3x2 48x 144; Factors: x 43 , x 3 (a) 3 3 3 48 0 1 0 43 1 48 0 1 1 144 144 0 48 43 48 43 0 (c) f x x 43 x 43 x 3 (d) Zeros: ± 43, 3 (e) 60 −8 8 (b) The remaining factor is x 43 . 65. f x x3 2x2 5x 10 −240 66. g x x 3 4x 2 2x 8 (a) The zeros of f are 2 and ± 2.236. (a) The zeros of g are x 4, x 1.414, x 1.414. (b) An exact zero is x 2. (b) x 4 is an exact zero. (c) 2 1 1 2 2 0 5 0 5 10 10 0 f x x 2x2 5 x 2x 5x 5 (c) 4 1 4 4 2 0 8 8 1 0 2 0 f x x 4x 2 2 x 4x 2 x 2 Section 3.3 Polynomial and Synthetic Division 3 2 68. f s s 12s 40s 24 67. ht t3 2t2 7t 2 (a) The zeros of h are t 2, t 3.732, t 0.268. (a) The zeros of f are s 6, s 0.764, s 5.236 (b) An exact zero is t 2. (b) s 6 is an exact zero. (c) 2 1 1 2 2 4 7 8 1 337 1 12 40 24 6 36 24 (c) 6 2 2 0 6 1 ht t 2t2 4t 1 4 0 f s s 6s 2 6s 4 s 6 s 3 5 s 3 5 By the Quadratic Formula, the zeros of t2 4t 1 are 2 ± 3. Thus, ht t 2t 2 3t 2 3 t 2t 2 3 t 2 3 . 69. 4x3 8x2 x 3 2x 3 3 2 8 6 2 4 4 4x3 8x2 Thus, 71. 1 3 2 x3 x 32 70. 8 3 3 0 1 1 64 64 8 56 64 1 7 8 0 64x 64 x 2 7x 8, x 8 x8 x2 3 4x3 8x2 x 3 2x2 x 1, x . 2x 3 2 1 1 2 x3 4x2 2x 2 22x 2 x 1 x 4 6x3 11x2 6x x 4 6x3 11x2 6x x2 3x 2 x 1x 2 1 x3 x2 64x 64 x8 1 1 6 1 5 11 5 6 6 6 0 5 2 3 6 6 0 0 0 0 0 0 0 x4 6x3 11x2 6x x2 3x, x 2, 1 x 1x 2 73. (a) and (b) 1800 3 1200 —CONTINUED— 13 72. x 4 9x 3 5x 2 36x 4 x 4 9x 3 5x 2 36x 4 x2 4 x 2x 2 2 1 9 2 1 2 11 1 1 x 4 9x 3 5 36 22 34 4 4 2 0 17 11 17 2 18 2 2 1 0 9 36x 4 x 2 9x 1, x ± 2 x2 4 5x 2 338 Chapter 3 Polynomial Functions 73. —CONTINUED— (c) M 0.242t 3 12.43t 2 173.4t 2118 Year, t Military Personnel M 3 1705 1703 4 1611 1608 5 1518 1532 6 1472 1473 7 1439 1430 8 1407 1402 9 1386 1388 10 1384 1385 11 1385 1393 12 1412 1409 13 1434 1433 (d) 18 0.242 12.43 4.356 173.4 145.332 2118 505.224 0.242 8.074 28.068 1612.776 M18 1613 thousand No, this model should not be used to predict the number of military personnel in the future. It predicts an increase in military personnel until 2024 and then it decreases and will approach negative infinity quickly. The model is a good fit to the actual data. 75. False. If 7x 4 is a factor of f, then 47 is a zero of f. 74. (a) and (b) 40 2 12 0 (b) R 0.0026t 3 0.0292t 2 1.558t 15.632 (c) 18 0.0026 0.0026 0.0292 1.558 15.632 0.0468 0.3168 33.7464 0.0176 1.8748 49.3784 For the year 2008, the model predicts a monthly rate of about $49.38. 76. True. 1 2 6 1 3 92 2 45 45 184 0 4 92 48 48 6 4 90 0 184 96 0 77. True. The degree of the numerator is greater than the degree of the denominator. f x 2x 1x 1x 2x 33x 2x 4 78. f x x kqx r (a) k 2, r 5, qx any quadratic ax2 bx c where a > 0. One example: f x x 2x2 5 x3 2x2 5 (b) k 3, r 1, qx any quadratic ax2 bx c where a < 0. One example: f x x 3x2 1 x3 3x2 1 Section 3.3 x2n 6xn 9 79. xn 3) x3n 9x2n 27xn 27xn 27 xn 2 ) x 3x2n 5xn 6 3n x3n 2x2n x2n 5x n 6x2n 18xn x2n 2xn 9xn 27 9xn 27 3x n 6 0 3xn 6 x3n 9x2n 27xn 27 x2n 6xn 9 xn 3 81. A divisor divides evenly into a dividend if the remainder is zero. 83. 5 1 1 4 5 9 3 45 42 0 x3n 3x2n 5xn 6 x2n x n 3 xn 2 82. You can check polynomial division by multiplying the quotient by the divisor. This should yield the original dividend if the multiplication was performed correctly. 84. 2 c 210 c 210 To divide evenly, c 210 must equal zero. Thus, c must equal 210. 85. f x x 32x 3x 13 The remainder when k 3 is zero since x 3 is a factor of f x. 87. 9x2 25 0 1 0 2 5 3 x2 21 16 x± 89. 5x2 3x 14 0 2116 21 4 90. 8x2 22x 15 0 5x 7x 2 0 4x 52x 3 0 57 x20 ⇒ x2 c 42 86. In this case it is easier to evaluate f 2 directly because f x is in factored form. To evaluate using synthetic division you would have to expand each factor and then multiply it all out. x± 4x 5 0 or 2x 3 0 x 54 91. 2x2 6x 3 0 b ± b2 4ac 6 ± 62 423 6 ± 12 2a 22 4 3 ± 3 2 1 20 1 2 4 10 21 c 42 To divide evenly, c 42 must equal zero. Thus, c must equal 42. 3x 5 0 ⇒ x 35 2 8 16x2 21 3x 5 0 ⇒ x 5x 7 0 ⇒ x 0 4 88. 16x2 21 0 3x 53x 5 0 x 339 x2n x n 3 80. x3n 3x2n 6x2n Polynomial and Synthetic Division or 3 x2 340 Chapter 3 Polynomial Functions 92. x2 3x 3 0 x 3 ± 32 413 3 ± 21 21 2 93. f x x 0x 3x 4 94. f x x 6x 1 xx 3x 4 xx 7x 12 x 6x 1 x 3 7x2 12x x2 5x 6 2 Note: Any nonzero scalar multiple of f x would also have these zeros. Note: Any nonzero scalar multiple of f x would also have these zeros. 95. f x x 3x 1 2 x 1 2 x 3x 1 2x 1 2 96. f x x 1x 2x 2 3x 2 3 x 3x 12 2 2 x 1x 2x 2 3x 2 3 x2 x 2x 22 3 2 x 3x2 2x 1 x2 x 2x2 4x 1 x 3 x2 7x 3 x4 3x3 5x2 9x 2 Note: Any nonzero scalar multiple of f x would also have these zeros. Section 3.4 Note: Any nonzero scalar multiple of f x would also have these zeros. Zeros of Polynomial Functions ■ You should know that if f is a polynomial of degree n > 0, then f has at least one zero in the complex number system. ■ You should know the Linear Factorization Theorem. ■ You should know the Rational Zero Test. ■ You should know shortcuts for the Rational Zero Test. Possible rational zeros factors of constant term factors of leading coefficient (a) Use a graphing or programmable calculator. (b) Sketch a graph. (c) After finding a root, use synthetic division to reduce the degree of the polynomial. ■ You should know that if a bi is a complex zero of a polynomial f, with real coefficients, then a bi is also a complex zero of f. ■ You should know the difference between a factor that is irreducible over the rationals (such as x2 7) and a factor that is irreducible over the reals (such as x2 9). ■ You should know Descartes’s Rule of Signs. (For a polynomial with real coefficients and a non-zero constant term.) (a) The number of positive real zeros of f is either equal to the number of variations of sign of f or is less than that number by an even integer. (b) The number of negative real zeros of f is either equal to the number of variations in sign of f x or is less than that number by an even integer. (c) When there is only one variation in sign, there is exactly one positive (or negative) real zero. ■ You should be able to observe the last row obtained from synthetic division in order to determine upper or lower bounds. (a) If the test value is positive and all of the entries in the last row are positive or zero, then the test value is an upper bound. (b) If the test value is negative and the entries in the last row alternate from positive to negative, then the test value is a lower bound. (Zero entries count as positive or negative.) Section 3.4 Zeros of Polynomial Functions Vocabulary Check 1. Fundamental Theorem of Algebra 2. Linear Factorization Theme 3. Rational Zero 4. conjugate 5. irreducible; reals 6. Descarte’s Rule of Signs 7. lower; upper 1. f x xx 62 2. f x x2x 3x2 1 x2x 3x 1x 1 The zeros are: x 0, x 6. The five zeros are: 0, 0, 3, ± 1. 4. f x x 5x 82 3. gx x 2x 43 5. f x x 6x ix i The three zeros are: 5, 8, 8. The zeros are: x 2, x 4. The three zeros are: x 6, x i, x i. 6. ht t 3t 2t 3it 3i The four zeros are: 3, 2, ± 3i. 7. f x x3 3x2 x 3 Possible rational zeros: ± 1, ± 3 Zeros shown on graph: 3, 1, 1 9. f x 2x4 17x3 35x2 9x 45 8. f x x 3 4x 2 4x 16 Possible rational zeros: ± 1, ± 2, ± 4, ± 8, ± 16 Zeros shown on graph: 2, 2, 4 3 Zeros shown on graph: 1, 2, 3, 5 10. f x 4x 5 8x 4 5x 3 10x 2 x 2 Possible rational zeros: ± 1, ± 2, ± 12, ± 14 Zeros shown on graph: 1, 12, 12, Possible rational zeros: ± 1, ± 3, ± 5, ± 9, ± 15, ± 45, 1 3 5 9 15 45 ± 2, ± 2, ± 2, ± 2, ± 2 , ± 2 1, 2 11. f x x3 6x2 11x 6 Possible rational zeros: ± 1, ± 2, ± 3, ± 6 1 1 1 6 1 5 11 5 6 6 6 0 x3 6x2 11x 6 x 1x2 5x 6 x 1x 2x 3 Thus, the rational zeros are 1, 2, and 3. 12. f x x 3 7x 6 13. gx x3 4x2 x 4 x2x 4 1x 4 Possible rational zeros: ± 1, ± 2, ± 3, ± 6 3 1 0 3 7 9 6 6 1 3 2 0 f x x 3x 2 3x 2 x 3x 2x 1 Thus, the rational zeros are 2, 1, 3. x 4x2 1 x 4x 1x 1 Thus, the rational zeros of gx are 4 and ± 1. 341 342 Chapter 3 Polynomial Functions 14. hx x 3 9x 2 20x 12 15. ht t3 12t2 21t 10 Possible rational zeros: ± 1, ± 2, ± 3, ± 4, ± 6, ± 12 1 1 9 1 1 8 20 12 8 12 12 Possible rational zeros: ± 1, ± 2, ± 5, ± 10 1 1 12 1 11 1 0 hx x 1x 2 8x 12 t3 21 11 10 10 10 0 12t2 21t 10 t 1t2 11t 10 t 1t 1t 10 x 1x 2x 6 t 12t 10 Thus, the rational zeros are 1, 2, 6. Thus, the rational zeros are 1 and 10. 17. Cx 2x3 3x2 1 16. px x 3 9x 2 27x 27 1 Possible rational zeros: ± 1, ± 2 Possible rational zeros: ± 1, ± 3, ± 9, ± 27 3 1 9 27 27 3 18 27 1 6 9 1 2 3 2 1 2 0 1 1 0 0 1 1 2x 3x2 1 x 12x2 x 1 f x x 3x 2 6x 9 3 x 1x 12x 1 x 3x 3x 3 x 122x 1 Thus, the rational zero is 3. 1 Thus, the rational zeros are 1 and 2. 18. f x 3x3 19x 2 33x 9 Possible rational zeros: ± 1, ± 3, ± 9, ± 13 3 19 33 9 30 3 3 10 3 9 9 0 f x x 33x 2 10x 3 x 33x 1x 3 Thus, the rational zeros are 3, 13. 19. f x 9x4 9x3 58x2 4x 24 20. f x 2x 4 15x 3 23x 2 15x 25 Possible rational zeros: ± 1, ± 2, ± 3, ± 4, ± 6, ± 8, ± 12, ± 24, 1 2 4 8 1 2 4 8 ± 3, ± 3, ± 3, ± 3, ± 9, ± 9, ± 9, ± 9 2 9 9 3 9 9 9 18 27 58 54 4 4 8 12 27 27 0 4 0 4 12 12 0 24 24 0 Possible rational zeros: ± 1, ± 5, ± 25, ± 12, ± 52, ± 25 2 5 2 15 23 15 25 10 25 10 25 1 2 5 2 2 3 5 5 2 3 5 0 5 2 1 9x4 9x3 58x2 4x 24 x 2x 39x2 4 x 2x 33x 23x 2 2 Thus, the rational zeros are 2, 3, and ± 3. 2 2 3 2 5 5 2 5 0 5 0 f x x 5x 1x 12x 5 Thus, the rational zeros are 5, 1, 1, 52. Section 3.4 xx 3 13x 12 0 Possible rational zeros: ± 1, ± 2, ± 4 1 1 2 1 1 343 22. x 4 13x 2 12x 0 21. z4 z3 2z 4 0 1 Zeros of Polynomial Functions 1 1 2 0 2 2 2 2 4 2 2 0 2 0 2 4 4 0 Possible rational zeros of x 3 13x 12: ± 1, ± 2, ± 3, ± 4, ± 6, ± 12. 4 4 0 1 0 13 12 1 1 12 1 1 12 1 xx 1 x2 0 x 12 0 z4 z3 2z 4 z 1z 2z2 2 xx 1x 4x 3 0 The only real zeros are 1 and 2. The real zeros are 0, 1, 4, 3. 23. 2y4 7y3 26y2 23y 6 0 1 3 Possible rational zeros: ± 1, ± 2, ± 3, ± 6, ± 2, ± 2 1 2 2 6 2 6 6 0 23 17 6 17 18 1 9 12 3 2 2y4 26 9 17 7 2 9 6 6 0 7y3 26y2 23y 6 y 1y 62y2 3y 1 y 1y 62y 1y 1 y 12 y 62y 1 The only real zeros are 1, 6, and 12. 25. f x x3 x2 4x 4 24. x 5 x 4 3x 3 5x 2 2x 0 xx 4 x 3 3x 2 5x 2 0 Possible rational zeros of x ± 1, ± 2. 4 1 1 1 1 3 0 5 3 2 2 0 3 2 0 1 2 1 0 2 3 4 2 2 1 2 1 0 x3 (a) Possible rational zeros: ± 1, ± 2, ± 4 3x2 5x 2: y (b) 4 2 −6 x −4 4 6 −4 −6 −8 xx 1x 2x 2 2x 1 0 (c) The zeros are: 2, 1, 2 xx 1x 2x 1x 1 0 The real zeros are 2, 0, 1. 26. f x 3x 3 20x 2 36x 16 (a) Possible rational zeros: ± 1, ± 2, ± 4, ± 8, ± 16, ± 13, 2 4 8 16 ± 3, ± 3, ± 3, ± 3 27. f x 4x3 15x2 8x 3 1 3 1 3 (a) Possible rational zeros: ± 1, ± 3, ± 2, ± 2, ± 4, ± 4 y (b) y (b) 10 8 6 4 4 2 2 −4 −2 −6 −4 −2 x 2 4 6 8 10 x 6 8 10 12 −4 −4 −6 −6 (c) Real zeros: 23, 2, 4 1 (c) The zeros are: 4, 1, 3 344 Chapter 3 Polynomial Functions 28. f x 4x 3 12x 2 x 15 29. f x 2x4 13x3 21x2 2x 8 (a) Possible rational zeros: ± 1, ± 3, ± 5, ± 15, ± 12, ± 32, 5 15 1 3 5 15 ± 2, ± 2 , ± 4, ± 4, ± 4, ± 4 1 (a) Possible rational zeros: ± 1, ± 2, ± 4, ± 8, ± 2 (b) 16 y (b) 15 −4 12 8 −8 1 (c) The zeros are: 2, 1, 2, 4 x − 9 −6 − 3 6 9 12 (c) Real zeros: 1, 32, 52 31. f x 32x3 52x2 17x 3 30. f x 4x 4 17x 2 4 (a) Possible rational zeros: ± 1, ± 2, ± 4, ± 12, ± 14 (b) 9 1 3 1 3 (a) Possible rational zeros: ± 1, ± 3, ± 2, ± 2, ± 4, ± 4, 1 3 1 3 1 3 ± 6 , ± 8 , ± 16 , ± 16 , ± 32 , ± 32 (b) −8 6 8 −1 3 − 15 −2 (c) Real zeros: ± 2, ± 12 1 3 (c) The zeros are: 8, 4, 1 33. f x x4 3x2 2 32. f x 4x 3 7x 2 11x 18 (a) Possible rational zeros: ± 1, ± 2, ± 3, ± 6, ± 9, ± 18, 1 3 9 1 3 9 ± 2, ± 2, ± 2, ± 4, ± 4, ± 4 (b) 8 (a) From the calculator we have x ± 1 and x ± 1.414. (b) An exact zero is x 1. 1 −8 1 1 (c) 1 − 24 (c) Real zeros: 2, 1 1 1 145 ± 8 8 3 1 2 0 1 1 8 1 1 0 0 2 2 2 0 2 2 2 0 2 2 0 f x x 1x 1x2 2 x 1x 1x 2 x 2 34. P t t 4 7t 2 12 35. hx x5 7x4 10x3 14x2 24x (a) t ± 2, ± 1.732 (b) 2 2 (a) hx xx4 7x3 10x2 14x 24 1 0 2 7 4 0 6 12 12 1 2 3 6 0 1 2 2 3 0 6 6 1 0 3 0 (c) Pt t 2t 2t2 3 t 2t 2t 3 t 3 From the calculator we have x 0, 3, 4 and x ± 1.414. (b) An exact zero is x 3. 3 1 1 (c) 4 1 1 7 3 4 10 12 2 4 4 0 2 0 2 14 6 8 24 24 0 8 8 0 h x xx 3x 4x2 2 xx 3x 4x 2 x 2 Section 3.4 Zeros of Polynomial Functions 345 36. gx 6x 4 11x 3 51x 2 99x 27 (a) x ± 3, 1.5, 0.333 (b) 3 (c) gx x 3x 36x 11x 3 2 x 3x 33x 12x 3 6 11 51 99 27 18 21 90 27 7 30 6 3 9 7 30 18 33 6 6 11 0 9 9 3 0 38. f x x 4x 3ix 3i 37. f x x 1x 5ix 5i x 1x2 25 x 4x 2 9 x3 x2 25x 25 x 3 4x 2 9x 36 Note: f x ax3 x2 25x 25, where a is any nonzero real number, has the zeros 1 and ± 5i. 39. f x x 6x 5 2ix 5 2i Note: f x a x 3 4x 2 9x 36, where a is any real number, has the zeros 4, 3i and 3i. 40. f x x 2x 4 ix 4 i x 6x 5 2ix 5 2i x 2x 2 8x 17 x 6x 52 2i2 x 3 10x 2 33x 34 Note: f x ax 3 10x 2 33x 34 where a is any real number, has the zeros 2, 4 ± i. x 6x2 10x 25 4 x 6x2 10x 29 x3 4x2 31x 174 Note: f x ax3 4x2 31x 174, where a is any nonzero real number, has the zeros 6, and 5 ± 2i. 41. If 3 2i is a zero, so is its conjugate, 3 2i. f x 3x 2x 1x 3 2ix 3 2i 3x 2x 1x 3 2ix 3 2i 3x2 x 2x 32 2i 2 3x2 x 2x2 6x 9 2 3x2 x 2x2 6x 11 42. If 1 3i is a zero, so is its conjugate, 1 3i. f x x 5 2x 1 3ix 1 3i x 2 10x 25x 2 2x 4 x 4 8x 3 9x 2 10x 100 Note: f x ax 4 8x 3 9x 2 10x 100, where a is any real number, has the zeros 5, 5, 1 ± 3 i. 3x4 17x3 25x2 23x 22 Note: f x a3x4 17x3 25x2 23x 22, where a is any nonzero real number, has the zeros 2 3 , 1, and 3 ± 2i. 43. f x x4 6x2 27 44. f x x 4 2x 3 3x 2 12x 18 (a) f x x2 9x2 3 (b) f x x2 9x 3x 3 (c) f x x 3ix 3ix 3x 3 x2 2x 3 x6) x4 2x3 6x2 x4 x4 3x2 12x 18 2x3 2x3 3x2 12x 6 12x 2x3 3x2 3x 2 3x2 18 18 0 (a) f x x 2 6x 2 2x 3 (b) f x x 6 x 6 x 2 2x 3 (c) f x x 6 x 6 x 1 2ix 1 2 i 346 Chapter 3 Polynomial Functions 45. f x x 4 4x 3 5x 2 2x 6 x2 2x 3 x 2x 2 )x 4x 5x2 2x 6 2 4 3 x4 2x3 2x2 42x3 x 7x2 2x 6 2x 4x 4x 3 2 2x3 3x2 6x 6 (a) f x x2 2x 2x2 2x 3 (b) f x x 1 3 x 1 3 x2 2x 3 (c) f x x 1 3 x 1 3 x 1 2 i x 1 2 i Note: Use the Quadratic Formula for (b) and (c). 3x2 6x 6 3x2 6x 0 f x x2 2x 2x2 2x 3 46. f x x 4 3x 3 x 2 12x 20 x 2 3x 5 (a) f x x 2 4x 2 3x 5 x 2 4 ) x 4 3x 3 x 2 12x 20 x4 x 3 2 29 3 29 (c) f x x 2ix 2ix x 3 2 29 2 4x2 (b) f x x 2 4 x 3x 5x2 12x 3 3x3 12x 20 5x2 20 0 2 5i 2 2 3 10i 3 10i 50 50 15i 15i 3 10i 10i 3 15i 15i 0 The zero of 2x 3 is x 75 75 0 3x2 50x 75 3x2 50x 70 32. Since 3i is a zero, so is 3i. 1 1 3i 9 9 3i 9 9 1 1 3i 3i 0 1 1 3i 3i 3i 3i 1 1 0 02x 3 x2 0x 25 )2x3 3x2 50x 75 2x3 3x2 50x 75 48. f x x 3 x 2 9x 9 3i Since x ± 5i are zeros of f x, x 5ix 5i x2 25 is a factor of f x. By long division we have: 2x3 0x2 50x 3 The zeros of f x are x 2 and x ± 5i. 3i Alternate Solution Since 5i is a zero, so is 5i. 2 5x2 47. f x 2x3 3x2 50x 75 5i 3 29 2 The zero of x 1 is x 1. The zeros of f are x 1 and x ± 3i. Thus, f x x2 252x 3 and the zeros of f are x ± 5i and x 32. Section 3.4 49. f x 2x4 x3 7x2 4x 4 2 2 2i 2 2 347 Alternate Solution Since 2i is a zero, so is 2i. 2i Zeros of Polynomial Functions 1 4i 1 4i 7 8 2i 1 2i 4 4 2i 2i 1 4i 4i 1 1 2i 2i 1 2i 2i 0 4 4 0 Since x ± 2i are zeros of f x, x 2ix 2i x2 4 is a factor of f x. By long division we have: 2x2 4x 1 x2 0x 4 )2x4 x3 7x2 4x 4 2x4 0x3 8x2 2x4 0x3 8x2 4x 1 The zeros of 2x2 x 1 2x 1x 1 are x 2 and x 1. 1 The zeros of f x are x ± 2i, x 2, and x 1. 7x3 0x2 4x 0x30 x2 0x 4 0 x2 0x 4 0x2 0x 0 Thus, f x x2 42x2 x 1 f x x 2ix 2i2x 1x 1 and the zeros of f x are x ± 2i, x 2, and x 1. 1 50. gx x 3 7x 2 x 87 Since 5 2i is a zero, so is 5 2i. 5 2i 5 2i 1 7 5 2i 1 14 6i 87 87 1 2 2i 15 6i 0 1 2 2i 5 2i 15 6i 15 6i 1 3 0 The zero of x 3 is x 3. The zeros of f are x 3, 5 ± 2i. 51. gx 4x3 23x2 34x 10 Alternate Solution Since 3 i is a zero, so is 3 i. 3 i 4 4 3 i 4 4 23 12 4i 11 4i 34 37 i 3 i 11 4i 12 4i 1 3 i 3i 0 The zero of 4x 1 is x 1 x 3 ± i and x 4. 1 4. 10 10 0 The zeros of gx are Since 3 ± i are zeros of gx, x 3 i x 3 i x 3 ix 3 i x 32 i2 x2 6x 10 is a factor of gx. By long division we have: 34x 1 x2 6x 10 )4x3 23x2 34x 10 4x3 24x2 40x 4x324 x2 36x 10 x2 36x 10 0 Thus, gx x2 6x 104x 1 and the zeros of gx are x 3 ± i and x 14. 348 Chapter 3 Polynomial Functions 52. hx 3x3 4x 2 8x 8 Since 1 3 i is a zero, so is 1 3 i. 3 4 3 33i 8 10 23i 8 8 3 1 33i 2 23i 0 3 1 33i 3 33i 2 23i 2 23i 3 2 0 The zero of 3x 2 is x 23. 1 3i 1 3i 2 The zeros of f are x 3, 1 ± 3i. 53. f x x 4 3x3 5x2 21x 22 Since 3 2 i is a zero, so is 3 2 i, and x 3 2 i x 3 2 i x 3 2 ix 3 2 i 2 x 32 2 i x 2 6x 11 is a factor of f x. By long division, we have: x2 3x 2 x2 6x 11 ) x4 3x3 5x2 21x 22 x4 6x3 11x2 3x3 16x2 21x 3x3 18x2 33x 2x2 12x 22 2x2 12x 22 0 Thus, f x x2 6x 11x2 3x 2 x 2 6x 11x 1x 2 and the zeros of f are x 3 ± 2 i, x 1, and x 2. 54. f x x 3 4x 2 14x 20 55. f x x2 25 Since 1 3i is a zero, so is 1 3i. 1 3i 1 3i x 5ix 5i 1 4 1 3i 14 12 6i 20 20 1 3 3i 2 6i 0 1 3 3i 1 3i 2 6i 2 6i 1 2 0 The zero of x 2 is x 2. The zeros of f are x 2, 1 ± 3i. The zeros of f x are x ± 5i. Section 3.4 56. f x x 2 x 56 1 ± 1 224 1 ± 223i . 2 2 f x x 1 223i 2 By the Quadratic Formula, the zeros of hx are x x 1 2 223i 58. gx x 2 10x 23 4 ± 16 4 2 ± 3. 2 hx x 2 3 x 2 3 x 2 3 x 2 3 59. f x x4 81 By the Quadratic Formula, the zeros of f x are x 349 57. hx x2 4x 1 By the Quadratic Formula, the zeros of f x are x Zeros of Polynomial Functions 10 ± 100 92 10 ± 8 5 ± 2. 2 2 gx x 5 2 x 5 2 60. f y y 4 625 x2 9x2 9 x 3x 3x 3ix 3i The zeros of f x are x ± 3 and x ± 3i. 61. f z z2 2z 2 y2 25 y2 25 Zeros: y ± 5, ± 5i f y y 5 y 5 y 5i y 5i By the Quadratic Formula, the zeros of f z are z 2 ± 4 8 1 ± i. 2 f z z 1 iz 1 i z 1 iz 1 i 62. hx x 3 3x 2 4x 2 Possible rational zeros: ± 1, ± 2 1 1 3 1 4 2 2 2 1 2 2 0 Possible rational zeros: ± 1, ± 2, ± 5, ± 10 2 1 1 By the Quadratic Formula, the zeros of x2 2x 2 are x 63. gx x3 6x2 13x 10 2 ± 4 8 1 ± i. 2 6 2 4 13 8 5 10 10 0 By the Quadratic Formula, the zeros of x2 4x 5 are x 4 ± 16 20 2 ± i. 2 Zeros: x 1, 1 ± i The zeros of gx are x 2 and x 2 ± i. hx x 1x 1 ix 1 i gx x 2x 2 ix 2 i x 2x 2 ix 2 i 64. f x x 3 2x 2 11x 52 Possible rational zeros: ± 1, ± 2, ± 4, ± 13, ± 26 4 1 2 11 52 4 24 52 1 6 13 0 By the Quadratic Formula, the zeros of x2 6x 13 are x Zeros: x 4, 3 ± 2i f x x 4x 3 2ix 3 2i 6 ± 36 52 3 ± 2i. 2 350 Chapter 3 Polynomial Functions 65. hx x3 x 6 66. hx x 3 9x2 27x 35 Possible rational zeros: ± 1, ± 2, ± 3, ± 6 2 1 1 1 4 3 0 2 2 5 6 6 0 By the Quadratic Formula, the zeros of x2 2x 3 are x Possible rational zeros: ± 1, ± 5, ± 7, ± 35 2 ± 4 12 1 ± 2 i. 2 1 9 5 27 20 35 35 1 4 7 0 By the Quadratic Formula, the zeros of x2 4x 7 4 ± 16 28 2 ± 3i. 2 are x The zeros of hx are x 2 and x 1 ± 2 i. Zeros: 5, 2 ± 3i hx x 2x 1 2 i x 1 2 i h x x 5x 2 3ix 2 3i x 2x 1 2 ix 1 2 i 67. f x 5x3 9x2 28x 6 68. gx 3x 3 4x 2 8x 8 Possible rational zeros: 1 2 3 6 ± 1, ± 2, ± 3, ± 6, ± 5 , ± 5 , ± 5 , ± 5 15 5 5 9 1 10 28 2 30 Possible rational zeros: 1 2 4 8 ± 1, ± 2, ± 4, ± 8, ± 3 , ± 3 , ± 3 , ± 3 23 6 6 0 By the Quadratic Formula, the zeros of 5x2 10x 30 5x2 2x 6 are x 2 ± 4 24 1 ± 5 i. 2 3 4 2 8 4 8 8 3 6 12 0 By the Quadratic Formula, the zeros of 3x2 6x 12 3x2 2x 4 are x 2 ± 4 16 1 ± 3i. 2 The zeros of f x are x 15 and x 1 ± 5 i. Zeros: x 23, 1 ± 3i f x x 15 5x 1 5 i x 1 5 i gx 3x 2x 1 3ix 1 3 i 5x 1x 1 5 ix 1 5 i 69. gx x4 4x3 8x2 16x 16 Possible rational zeros: ± 1, ± 2, ± 4, ± 8, ± 16 2 1 1 2 1 1 4 2 2 8 4 4 2 2 0 4 0 4 16 8 8 16 16 0 8 8 0 gx x 2x 2x 2 4 x 22x 2ix 2i The zeros of gx are 2 and ± 2i. 70. hx x 4 6x 3 10x 2 6x 9 Possible rational zeros: ± 1, ± 3, ± 9 3 3 1 6 3 10 9 6 3 9 9 1 3 1 3 0 1 3 3 1 0 3 3 1 0 1 0 The zeros of x2 1 are x ± i. Zeros: x 3, ± i hx x 3 2x ix i 71. f x x 4 10x 2 9 x 2 1x2 9 x ix ix 3ix 3i The zeros of f x are x ± i and x ± 3i. 72. f x x 4 29x 2 100 x 2 25x 2 4 Zeros: x ± 2i, ± 5i f x x 2ix 2ix 5ix 5i Section 3.4 73. f x x3 24x2 214x 740 Zeros of Polynomial Functions 351 74. f s 2s 3 5s 2 12s 5 Possible rational zeros: ± 1, ± 2, ± 4, ± 5, ± 10, ± 20, ± 37, ± 74, ± 148, ± 185, ± 370, ± 740 Possible rational zeros: ± 1, ± 5, ± 12, ± 52 10 2000 −10 −20 10 10 −10 −1000 Based on the graph, try s 12 . Based on the graph, try x 10. 10 1 24 10 14 1 214 140 74 1 2 740 740 0 By the Quadratic Formula, the zeros of x2 14x 74 are x 14 ± 196 296 7 ± 5i. 2 The zeros of f x are x 10 and x 7 ± 5i. 75. f x 16x3 20x2 4x 15 Possible rational zeros: 1 3 5 15 1 3 ± 1, ± 3, ± 5, ± 15, ± 2 , ± 2 , ± 2 , ± 2 , ± 4 , ± 4 , 5 15 1 3 5 15 1 3 5 15 ± 4 , ± 4 , ± 8 , ± 8 , ± 8 , ± 8 , ± 16 , ± 16 , ± 16 , ± 16 2 5 1 12 2 5 5 2 4 10 0 By the Quadratic Formula, the zeros of 2s 2 2s 5 are s 2 ± 4 20 1 ± 2i. 2 1 The zeros of f s are s 2 and s 1 ± 2i. 76. f x 9x 3 15x 2 11x 5 Possible rational zeros: ± 1, ± 5, ± 13, ± 53, ± 19, ± 59 5 −5 20 5 −5 −3 Based on the graph, try x 1. 3 −5 1 Based on the graph, try x 34 16 16 20 12 32 4 24 20 34. 15 15 0 By the Quadratic Formula, the zeros of 16x2 32x 20 44x2 8x 5 are 8 ± 64 80 1 x 1 ± i. 8 2 9 15 9 11 6 5 5 6 5 0 9 By the Quadratic Formula, the zeros of 9x 2 6x 5 are x 6 ± 36 180 1 2 ± i. 18 3 3 1 2 The zeros of f x are x 1 and x 3 ± 3i. The zeros of f x are x 34 and x 1 ± 12i. 77. f x 2x4 5x3 4x2 5x 2 1 Possible rational zeros: ± 1, ± 2, ± 2 Based on the graph, try x 2 and x 12. 2 2 20 2 12 −4 2 4 2 −5 5 4 1 4 2 2 1 1 0 2 0 2 5 4 1 2 2 0 1 1 0 The zeros of 2x2 2 2x2 1 are x ± i. The zeros of f x are x 2, x 12, and x ± i. 352 Chapter 3 Polynomial Functions 78. gx x 5 8x 4 28x 3 56x 2 64x 32 2 1 8 2 28 12 56 32 64 48 32 32 1 6 16 24 16 0 1 6 2 16 8 24 16 16 16 1 4 8 8 0 Possible rational zeros: ± 1, ± 2, ± 4, ± 8, ± 16, ± 32 Based on the graph, try x 2. 10 −10 2 10 −10 2 1 4 2 8 4 8 8 1 2 4 0 By the Quadratic Formula, the zeros of x2 2x 4 are x 2 ± 4 16 1 ± 3i. 2 The zeros of gx are x 2 and x 1 ± 3 i. 79. gx 5x5 10x 5xx4 2 80. hx 4x 2 8x 3 Let f x x4 2. Sign variations: 2, positive zeros: 2 or 0 Sign variations: 0, positive zeros: 0 hx 4x 2 8x 3 f x x4 2 Sign variations: 0, negative zeros: 0 Sign variations: 0, negative zeros: 0 81. hx 3x4 2x2 1 82. hx 2x 4 3x 2 Sign variations: 0, positive zeros: 0 Sign variations: 2, positive zeros: 2 or 0 hx 3x4 2x2 1 hx 2x 4 3x 2 Sign variations: 0, negative zeros: 0 Sign variations: 0, negative zeros: 0 83. gx 2x3 3x2 3 84. f x 4x 3 3x 2 2x 1 Sign variations: 1, positive zeros: 1 gx 2x3 3x2 f x 4x 3 3x 2 2x 1 3 Sign variations: 0, negative zeros: 0 Sign variations: 3, positive zeros: 3 or 1 2 Sign variations: 0, negative zeros: 0 4 4 0 1 0 0 0 0 0 0 1 1 4 1 5 0 5 5 1 is a lower bound. 0 5 5 3 12 8 20 8 32 2 5 8 4 is an upper bound. 40 (a) 4 15 0 15 4 is an upper bound. (b) 1 Sign variations: 3, negative zeros: 3 or 1 88. f x 2x 3 3x 2 12x 8 87. f x x4 4x3 15 1 Sign variations: 0, positive zeros: 0 f x 3x 3 2x 2 x 3 f x 5x x x 5 (a) 4 Sign variations: 0, negative zeros: 0 86. f x 3x 3 2x 2 x 3 85. f x 5x3 x2 x 5 3 Sign variations: 3, positive zeros: 3 or 1 15 5 20 (b) 3 2 2 3 12 8 6 27 45 2 9 15 37 3 is a lower bound. Section 3.4 4 5 1 1 1 0 5 5 16 205 189 16 25 41 4 3 7 1 1 0 21 21 16 63 47 4 2 6 18 3 is an upper bound. 46 141 2 0 8 0 8 32 128 3 544 32 136 547 92. f z 12z 3 4z 2 27z 9 1 1 Possible rational zeros: ± 1, ± 2, ± 4 0 4 4 3 138 0 6 2 8 3 is a lower bound. 91. f x 4x3 3x 1 4 8 54 2 (b) 4 16 141 125 3 is a lower bound. 1 0 18 (a) 3 5 is an upper bound. (b) 3 353 90. f x 2x 4 8x 3 89. f x x 4 4x 3 16x 16 (a) 5 Zeros of Polynomial Functions 3 4 1 1 3 9 1 Possible rational zeros: ± 1, ± 3, ± 9, ± 2, ± 2, ± 2, ± 3, 1 3 9 1 1 ± 4 , ± 4 , ± 4 , ± 6 , ± 12 1 1 0 3 2 4x3 3x 1 x 14x2 4x 1 12 12 4 27 18 21 9 9 6 0 14 f z 2z 32 6z 2 7z 3 x 12x 12 1 Thus, the zeros are 1 and 2. 2z 33z 12z 3 3 1 3 Real zeros: 2, 3, 2 94. gx 3x3 2x 2 15x 10 93. f y 4y3 3y2 8y 6 1 3 1 3 Possible rational zeros: ± 1, ± 2, ± 3, ± 6, ± 2, ± 2, ± 4, ± 4 Possible rational zeros: ± 1, ± 2, ± 5, ± 10, ± 13, ± 23,± 53, ± 10 3 34 2 3 4 4 4y3 3 3 0 8 0 8 6 6 0 3y2 8y 6 y 34 4y2 8 y 34 4y2 2 3 2 2 3 0 15 10 0 10 15 0 gx x 23 3x 2 15 3x 2x2 5 2 Thus, the only real zero is 3. 4y 3 y2 2 3 Thus, the only real zero is 4. 25 95. Px x4 4 x2 9 1 96. f x 22x 3 3x 2 23x 12 144x4 25x2 36 Possible rational zeros: ± 1, ± 2, ± 3, ± 4, ± 6, ± 12, ± 2, ± 2 144x2 9x2 4 4 1 4 2x 1 2 32x 3x 2x 2 3 The rational zeros are ± 2 and ± 2. 2 f x 1 2 x 3 23 12 8 20 12 3 5 4 2x 2 0 5x 3 12x 42x 1x 3 1 The rational zeros are 3, 2, and 4. 97. f x x3 14x2 x 14 144x3 x2 4x 1 14x24x 1 14x 1 144x 1x2 1 144x 1x 1x 1 The rational zeros are 14 and ± 1. 3 354 Chapter 3 Polynomial Functions 99. f x x3 1 x 1x2 x 1 98. f z 166z 3 11z 2 3z 2 Possible rational zeros: ± 1, ± 2, ± 12, ± 13, ± 23, ± 16 Rational zeros: 1 x 1 2 Irrational zeros: 0 6 6 11 12 3 2 2 2 1 1 0 Matches (d). f x 16x 26x 2 x 1 16x 23x 12x 1 1 1 Rational zeros: 2, 3, 2 100. f x x 3 2 101. f x x3 x xx 1x 1 3 3 3 x 2 x2 2x 4 Rational zeros: 3 x 0, ± 1 Rational zeros: 0 Irrational zeros: 0 3 2 Irrational zeros: 1 x Matches (b). Matches (a). 102. f x x 3 2x xx 2 2 x x 2 x 2 Rational zeros: 1 x 0 x ± 2 Irrational zeros: 2 Matches (c). 103. (a) (b) V l w 15 x 9 9− x − 15 2x 2x x (c) x9 2x15 2x Since length, width, and height must be positive, we have 0 < x < 92 for the domain. (d) 56 x9 2x15 2x V 125 Volume of box h 15 2x9 2xx 56 135x 48x2 4x3 100 50 4x3 48x2 135x 56 75 50 25 x 1 2 3 4 5 Length of sides of squares removed The volume is maximum when x 1.82. The dimensions are: length 15 21.82 11.36 width 9 21.82 5.36 height x 1.82 1.82 cm 5.36 cm 11.36 cm 1 7 The zeros of this polynomial are 2, 2, and 8. x cannot equal 8 since it is not in the domain of V. [The length cannot equal 1 and the width cannot equal 7. The product of 817 56 so it showed up as an extraneous solution.] Thus, the volume is 56 cubic centimeters when x 12 centimeter or x 72 centimeters. Section 3.4 104. (a) Combined length and width: 4x y 120 ⇒ y 120 4x 4x 3 120x 2 13,500 0 x 3 30x 2 3375 0 15 1 30 15 0 3375 225 3375 1 15 225 4x 230 x (b) 18,000 355 13,500 4x 230 x (c) Volume l w h x 2 y x 2120 4x Zeros of Polynomial Functions x 15 x2 0 15x 225 0 Using the Quadratic Formula, 0 x 15, 30 0 Dimensions with maximum volume: 20 in. 20 in. 40 in. 15 ± 155 . 2 The value of it is negative. 15 155 is not possible because 2 P 76x3 4830x2 320,000, 0 ≤ x ≤ 60 105. 2,500,000 76x3 4830x2 320,000 76x3 4830x2 2,820,000 0 The zeros of this equation are x 46.1, x 38.4, and x 21.0. Since 0 ≤ x ≤ 60, we disregard x 21.0. The smaller remaining solution is x 38.4. The advertising expense is $384,000. 106. P 45x 3 2500x 2 275,000 800,000 0 45x 3 45x 3 2500x 2 2500x 2 107. (a) Current bin: V 2 3 4 24 cubic feet New bin: V 524 120 cubic feet 275,000 V 2 x3 x4 x 120 1,075,000 0 9x 3 500x 2 215,000 (b) x3 9x2 26x 24 120 The zeros of this equation are x 18.0, x 31.5, and x 42.0. Because 0 ≤ x ≤ 50, disregard x 18.02. The smaller remaining solution is x 31.5, or an advertising expense of $315,000. 108. (a) A 250 x160 x 1.5160250 x3 9x2 26x 96 0 The only real zero of this polynomial is x 2. All the dimensions should be increased by 2 feet, so the new bin will have dimensions of 4 feet by 5 feet by 6 feet. (c) A 250 2x160 x 60,000 60,000 (b) 60,000 x2 410x 40,000 0 x2 410x 20,000 x 410 ± 4102 4120,000 21 410 ± 248,100 2 x must be positive, so x 410 248,100 2 44.05. The new length is 250 44.05 294.05 ft and the new width is 160 44.05 204.05 ft, so the new dimensions are 204.05 ft 294.05 ft. 2x2 570x 20,000 0 x 570 ± 5702 4220,000 22 x must be positive, so x 570 484,900 31.6. 4 The new length is 250 231.6 313.2 ft and the new width is 160 31.6 191.6 ft, so the new dimensions are 191.6 ft 313.2 ft. 356 Chapter 3 109. C 100 x 200 2 Polynomial Functions x ,x ≥ 1 x 30 C is minimum when 3x3 40x2 2400x 36000 0. The only real zero is x 40 or 4000 units. 110. h(t 16t2 48t 6 Let h 64 and solve for t 64 16t2 48t 6 16t2 48t 58 0 By the Quadratic Formula we have t 48 ± i1408 . 32 Since the equation yields only imaginary zeros, it is not possible for the ball to have reached a height of 64 feet. P R C xp C 111. x140 0.0001x 80x 150,000 112. (a) A 0.0167t3 0.508t2 5.60t 13.4 (b) The model is a good fit to the actual data. 12 0.0001x 2 60x 150,000 9,000,000 0.0001x2 60x 150,000 7 Thus, 0 0.0001x 2 60x 9,150,000. x 60 ± 60 300,000 ± 10,00015i 0.0002 Since the solutions are both complex, it is not possible to determine a price p that would yield a profit of 9 million dollars. 13 0 (c) A 8.5 when t 10 which corresponds to the year 2000. (d) A 9 when t 11 which corresponds to the year 2001. (e) Yes. The degree of A is odd and the leading coefficient is positive, so as x increases, A will increase. This implies that attendance will continue to grow. 113. False. The most nonreal complex zeros it can have is two and the Linear Factorization Theorem guarantees that there are 3 linear factors, so one zero must be real. 114. False. f does not have real coefficients. 115. gx f x. This function would have the same zeros as f x so r1, r2, and r3 are also zeros of gx. 116. gx 3 f x. This function has the same zeros as f because it is a vertical stretch of f. The zeros of g are r1, r2, and r3. 117. gx f x 5. The graph of gx is a horizontal shift of the graph of f x five units to the right so the zeros of gx are 5 r1, 5 r2, and 5 r3. 118. gx f 2x. Note that x is a zero of g if and only if 2x r3 r1 r2 is a zero of f. The zeros of g are , , and . 2 2 2 119. gx 3 f x. Since gx is a vertical shift of the graph of f x, the zeros of gx cannot be determined. 120. gx f x. Note that x is a zero of g if and only if x is a zero of f. The zeros of g are r1, r2, and r3. 121. f x x4 4x2 k x2 4 ± 42 41k 4 ± 24 k 2 ± 4 k 21 2 x ± 2 ± 4 k (a) For there to be four distinct real roots, both 4 k and 2 ± 4 k must be positive. This occurs when 0 < k < 4. Thus, some possible k-values are k 1, k 2, k 3, k 12, k 2, etc. (b) For there to be two real roots, each of multiplicity 2, 4 k must equal zero. Thus, k 4. —CONTINUED— Section 3.4 Zeros of Polynomial Functions 357 121. —CONTINUED— (c) For there to be two real zeros and two complex zeros, 2 4 k must be positive and 2 4 k 1 must be negative. This occurs when k < 0. Thus, some possible k-values are k 1, k 2, k 2, etc. (d) For there to be four complex zeros, 2 ± 4 k must be nonreal. This occurs when k > 4. Some possible k-values are k 5, k 6, k 7.4, etc. 122. (a) gx f x 2 No. This function is a horizontal shift of f x. Note that x is a zero of g if and only if x 2 is a zero of f; the number of real and complex zeros is not affected by a horizontal shift. 123. Zeros: 2, 12, 3 (b) gx f 2x No. Since x is a zero of g if and only if 2x is a zero of f, the number of real and complex zeros of g is the same as the number of real and complex zeros of f. y 124. f x x 22x 1x 3 50 (− 1, 0) 2x3 3x2 11x 6 y 10 (1, 0) (4, 0) x 8 (−2, 0) −8 −4 4 (3, 0) 4 5 ( ( 1 ,0 2 (3, 0) x 4 8 12 Any nonzero scalar multiple of f would have the same three zeros. Let gx af x, a > 0. There are infinitely many possible functions for f. 125. Answers will vary. Some of the factoring techniques are: 126. (a) Zeros of f x: 2, 1, 4 1. Factor out the greatest common factor. (b) The graph touches the x-axis at x 1 2. Use special product formulas. (c) The least possible degree of the function is 4 because there are at least 4 real zeros (1 is repeated) and a function can have at most the number of real zeros equal to the degree of the function. The degree cannot be odd by the definition of multiplicity. a2 b2 a ba b a2 2ab b2 a b2 a2 2ab b2 a b2 a3 b3 a ba2 ab b2 a3 b3 a ba2 ab b2 3. Factor by grouping, if possible. (d) The leading coefficient of f is positive. From the information in the table, you can conclude that the graph will eventually rise to the left and to the right. (e) Answers may vary. One possibility is: 4. Factor general trinomials with binomial factors by “guess-and-test” or by the grouping method. f x x 12x 2x 4 x 12x 2x 4 5. Use the Rational Zero Test together with synthetic division to factor a polynomial. 6. Use Descartes’s Rule of Signs to determine the number of real zeros. Then find any zeros and use them to factor the polynomial. 7. Find any upper and lower bounds for the real zeros to eliminate some of the possible rational zeros. Then test the remaining candidates by synthetic division and use any zeros to factor the polynomial. x2 2x 1x2 2x 8 x 4 4x3 3x2 14x 8 (f) y (−2, 0) −3 2 (1, 0) −1 −4 −6 −8 − 10 2 (4, 0) x 3 5 358 Chapter 3 Polynomial Functions 127. (a) f x x b ix b i x2 b 128. (a) f x cannot have this graph since it also has a zero at x 0. (b) f x x a bi x a bi (b) g x cannot have this graph since it is a quadratic function. Its graph is a parabola. x a bi x a bi (c) h x is the correct function. It has two real zeros, x 2 and x 3.5, and it has a degree of four, needed to yield three turning points. x a2 bi2 x 2ax 2 a2 b2 (d) k x cannot have this graph since it also has a zero at x 1. In addition, since it is only of degree three, it would have at most two turning points. 129. 3 6i 8 3i 3 6i 8 3i 11 9i 130. 12 5i 16i 12 11i 131. 6 2i1 7i 6 42i 2i 14i2 20 40i 132. 9 5i9 5i 81 25i 2 81 25 106 133. gx f x 2 134. gx f x 2 135. gx 2f x y y y (6, 4) 4 3 3 2 (2, 2) 2 x −1 (0, 0) 2 3 4 5 6 (2, 0) (0, 4) x −2 − 1 6 1 2 3 4 (2, 4) −2 Horizontal shift two units to the right (− 2, 0) Vertical shift two units downward Vertical stretch (each y-value is multiplied by 2) y (−4, 4) 8 3 6 (−2, 2) 1 4 (0, 2) (2, 0) (1, 2) x 1 (0, 2) (8, 4) (4, 2) 2 x −2 (− 4, 0) (− 1, 0) −2 Reflection in the y-axis −1 x 1 −2 2 4 6 8 2 Horizontal shrink each x-value is 1 multiplied by 2 Mathematical Modeling and Variation You should know the following the following terms and formulas. ■ Direct variation (varies directly, directly proportional) ■ (a) y kx (b) y kxn as nth power Inverse variation (varies inversely, inversely proportional) ■ (a) y kx (b) y kxn as nth power Joint variation (varies jointly, jointly proportional) ■ (a) z kxy (b) z kxnym as nth power of x and mth power of y k is called the constant of proportionality. ■ 8 10 4 (0, 2) Section 3.5 6 y (2, 4) 3 − 4 − 3 − 2 −1 −1 4 1 138. gx f 2 x y 4 2 −2 137. gx f 2x 136. gx f x x (−2, − 2) −3 −2 (4, 8) 8 (0, 0) (4, 2) 1 10 (4, 2) Least Squares Regression Line y ax b. Use your calculator or computer to enter the data points and to find the “best-fitting”linear model. Horizontal stretch each x-value is multiplied by 2 Section 3.5 Mathematical Modeling and Variation 359 Vocabulary Check 1. variation; regression 2. sum of square differences 3. correlation coefficient 4. directly proportional 5. constant of variation 6. directly proportional 7. inverse 8. combined 9. jointly proportional 1. y 1767.0t 123,916 Actual Number (in thousands) Model (in thousands) 1992 128,105 127,450 1993 129,200 129,217 145,000 Number of employees (in thousands) Year y 140,000 135,000 130,000 125,000 t 2 1994 131,056 130,984 1995 132,304 132,751 1996 133,943 134,518 1997 136,297 136,285 1998 137,673 138,052 1999 139,368 139,819 2000 142,583 141,586 2001 143,734 143,353 2002 144,863 145,120 y Winning time (in minutes) 2. 5.0 4.8 4.6 4.4 4.2 4.0 3.8 6 8 10 12 Year (2 ↔ 1992) The model is a good fit for the actual data. y 3. The model is not a “good fit” for the actual data. It appears that another type of model may be a better fit. 5.4 4 5 4 2 1 t 0 8 16 24 32 40 48 56 x Year (0 ↔ 1950) 1 2 3 4 5 Using the points 0, 3 and 4, 4, we have y 14x 3. 4. y 5. y y 6. 5 5 5 4 4 4 3 3 2 2 1 1 x 1 2 3 4 5 The line appears to pass through 2, 5.5 and 6, 0.5, so its equation is y 54x 8. 1 x 1 2 3 4 5 Using the points 2, 2 and 4, 1, we have y 12x 3. x 1 2 3 4 5 The line appears to pass through 0, 2 and 3, 3 so its equation is y 13x 2. 360 Chapter 3 Polynomial Functions (c) y 1.03t 130.27 7. (a) and (b) y (d) The models are similar. 240 (e) When t 108, we have: Length (in feet) 220 200 Model in part (b): 238 feet 180 160 Model in part (c): 241.51 feet 140 (f) Answers will vary. t 12 36 60 84 108 Year (12 ↔ 1912) y t 130 (b) The line appears to pass through 7, 1151.6 and 10, 1906.0, so the equation is about y 251.5x 609. 8. (a) and (b) Total revenues (in millions of dollars) y (c) y 251.56x 608.79 3000 2500 2000 (d) Answers will vary. 1500 (e) Using the model in (b), y 251.515 609 $3164.6 million. 1000 Using the model in (c), y 251.5615 608.79 $3165.2 million. 500 t 5 7 9 11 13 (f) Answers will vary. Year (5 ↔ 1995) 10. (a) y 0.4306x 67.708 9. (a) and (c) 800 (b) 800 5 5 14 0 110 60 14 0 90 90 The model is a good fit to the actual data. r 0.98 The model is a good fit to the data. r 0.97 (b) S 38.4t 224 (c) y 0.430690 67.708 106.5 million (d) For 2005, use t 15: S $800.4 million (d) For every increase of one million households with cable TV, there is a 0.43 million increase in the number of households with color TV. For 2007, use t 17: S $877.3 million (e) Each year the annual gross ticket sales for Broadway shows in New York City increase by approximately $38.4 million. 11. The graph appears to represent y 4x, so y varies inversely as x. 12. The graph appears to represent y 2x which is a direct variation. 13. k 1 14. k 2 x 2 y kx2 4 4 6 16 8 36 64 3 10 x 100 y kx 2 y 2 4 6 8 10 8 32 72 128 200 y 100 200 80 160 60 120 40 80 20 40 x 2 4 6 8 10 x 2 4 6 8 10 Section 3.5 Mathematical Modeling and Variation 1 16. k 4 15. k 12 x 2 4 6 8 10 x 2 4 6 8 10 y kx2 2 8 18 32 50 y kx2 1 4 9 16 25 y y 50 25 40 20 30 15 20 10 10 5 x 2 4 6 8 x 10 2 17. k 2 6 8 10 18. k 5 x k x2 y 4 2 4 6 8 10 x 1 2 1 8 1 18 1 32 1 50 y y k x2 2 4 6 8 10 5 4 5 16 5 36 5 64 1 20 y 5 10 5 4 4 10 1 3 10 3 4 2 10 2 4 1 10 1 4 x 2 4 6 8 x 10 2 19. k 10 6 8 10 20. k 20 x y 4 k x2 2 4 6 8 10 x 5 2 5 8 5 18 5 32 1 10 y y k x2 2 4 6 8 10 5 5 4 5 9 5 16 1 5 y 5 2 5 2 4 3 2 3 1 2 1 2 1 x x 2 4 6 8 10 21. The table represents the equation y 5x. 2 4 6 8 10 22. The table represents the equation y 25 x. 361 362 Chapter 3 23. y kx Polynomial Functions y k x 24 k 5 24. 7 k10 7 k 10 12 k 5 Thus, y 120x. This equation checks with the other points given in the table. This equation checks with the other points given in the table. y kx y kx 27. 14 k2 290 3 y 205x I kP 31. 187.50 k5000 87.50 k2500 0.035 k k y 290 3 x y kx 33 13 I 0.035P 32. 53 14 33 13 x 53 5 gallons: y 145 18.9 liters 25 gallons: y 1425 94.6 liters 53 When x 20 inches, y 50.8 centimeters. y kx 34. y kx 10.22 k145.99 5520 k150,000 0.0368 k 0.07 k k y 53 14 x When x 10 inches, y 25.4 centimeters. 33. y kx 53 k14 k y I 0.0375P I kP 29. 33 k13 0.0375 k 12 x 5 580 k6 205 k y 7x y y kx 28. 2050 k10 7k 30. 12 k5 120 k 7 y x 10 26. y kx 25. d kF 35. 0.15 k265 3 5300 k y 0.0368x y 0.07x y 0.0368200,000 y 0.07540.50 3 (a) d 5300 90 0.05 meter y 37.84 3 (b) 0.1 5300 F $7360 3 d 5300 F 530 3 The sales tax is $37.84. The property tax is $7360. F F 17623 newtons 36. d kF 37. 1.9 k25 ⇒ k 0.076 0.12 k220 3 5500 k d 0.076F 3 d 5500 F When the distance compressed is 3 inches, we have 3 0.16 5500 F 880 3 3 0.076F F The required force is d kF 1 2933 newtons. F 39.47. No child over 39.47 pounds should use the toy. 38. d kF 1 k15 1 k 15 1 d 15 F 8 2 1 15 F F 60 lb per spring Combined lifting force 2F 120 lbs 39. A kr2 40. V ke3 44. z kx2y3 45. P Mathematical Modeling and Variation k x2 42. h 46. R kT Te 47. F 41. y k V 50. S 4 r 2 49. A 12bh 52. V r 2h 53. r The volume of a right circular cylinder is jointly proportional to the height and the square of the radius. A kr2 56. k A r 2 k x 3 k 25 75 x F 14rs3 61. z kx2 y 6 k62 4 81 24 k 36 2 27 k 3 2 k 3 18 k P 18x y2 k 4 28 x 4158 k1133 z 2xy 42 k 7 F krs3 k 14 28 3 k x y 2k 28 k42 2 3 9 y 28 k 59. kx y2 kgW varies directly as the square root of g and inversely as the square root of W. Note: The constant of proportionality is k. 75 k 64 k48 P The volume of a sphere varies directly as the cube of its radius. 57. z kxy 60. kg r2 48. R kSS L 54. y z 363 51. V 43r3 d t y 43. F km1m2 r2 Average speed is directly proportional to the distance and inversely proportional to the time. 9 k32 58. k s The surface area of a sphere varies directly as the square of the radius r. The area of a triangle is jointly proportional to its base and height. 55. Section 3.5 23x 2 2x2 y 3y 62. v 1.5 k pq s2 k4.16.3 1.22 1.51.44 k 4.16.3 2.16 k 25.83 24 k 287 24pq v 287s 2 364 Chapter 3 63. d kv2 0.02 k 4 1 Polynomial Functions 64. d kv 2 If the velocity is doubled: 2 d k2v2 k 0.32 d k 4v 2 d 0.32v2 4kv 2 4 kv 2 0.12 0.32v2 v2 v 0.12 3 0.32 8 3 22 d increases by a factor of 4 when velocity is doubled. 6 4 0.61 mihr d 2 kl , A r 2 A 4 4kl r d 2 r 65. 66.17 66. From Exercise 65: k 5.73 108. 41000k 0.0126 12 33.5 45.73 108l d 2 d 45.73 r 10 d 10 14 45.730.05 2 k 5.73 108 r r 45.73 108l 0.0126 12 2 33.5 l 45.73 108 8 l 8 d 0.0045 feet 0.054 inch 45.73 108l 0.0126 2 12 0.0126 2 12 l 506 feet W kmh 67. 68. 2116.8 k1201.8 k 2116.8 9.8 1201.8 W 9.8mh When m 100 kilograms and h 1.5 meters, we have W 9.81001.5 1470 joules. P kA k r 2 k 8.78 k 2 9 2 d 2 2 48.78 k 81 k 0.138 However, we do not obtain $11.78 when d 12 inches. P 0.138 2 Instead, k 12 2 $15.61 11.78 0.104. 36 For the 15-inch pizza, we have k 414.18 0.080. 225 The price is not directly proportional to the surface area. The best buy is the 15-inch pizza. 69. v v k A k 4 k 0.75A 3 A The velocity is increased by one-third. Section 3.5 70. Load 365 kwd 2 l (a) load k 2wd 2 kwd 2 2l l (b) load (c) load k 2w2d 2 8kwd 2 l l The safe load is eight times as great. The safe load is unchanged. k 2w2d 2 4kwd 2 2l l (d) load kwd22 14kwd2 l l The safe load is one-fourth as great. The safe load is four times as great. 71. (a) Mathematical Modeling and Variation Temperature (in °C) C 5 4 3 2 1 d 2000 4000 Depth (in meters) (b) Yes, the data appears to be modeled (approximately) by the inverse proportion model. 4.2 k1 1000 1.9 4200 k1 (c) Mean: k (d) k2 2000 3800 k2 1.4 k3 3000 1.2 4200 k3 k4 4000 4800 k4 0.9 k5 5000 4500 k5 4200 3800 4200 4800 4500 4300 4300, Model: C 5 d (e) 3 6 d 0 4300 d 1 4300 1433 meters 3 3 6000 0 72. (a) 73. y y 262.76 x2.12 74. I k d2 Length (in centimeters) 7 (a) 6 When the distance is doubled: 0.2 5 4 I 3 2 1 F 2 4 6 8 10 12 25 55 0 Force (in pounds) (b) It appears to fit Hooke’s Law. k 6.9 0.575 12 (c) y kF 9 0.575F F 15.7 pounds (b) y 262.76 252.12 0.2857 microwatts per sq.cm. k k . 2d2 4d 2 The illumination is one-fourth as great. The model given in Exercise 73 is very close to I kd 2. The difference is probably due to measurement error. 366 Chapter 3 Polynomial Functions 75. False. y will increase if k is positive and y will decrease if k is negative. 77. False. The closer the value of r is to 1, the better the fit. 76. False. E is jointly proportional (not “directly proportional”) to the mass of an object and the square of its velocity. 78. (a) The data shown could be represented by a linear model which would be a good approximation. (b) The points do not follow a linear pattern. A linear model would be a poor approximation. A quadratic model would be better. (c) The points do not follow a linear pattern. A linear model would be a poor approximation. (d) The data shown could be represented by a linear model which would be a good approximation. 79. The accuracy of the model in predicting prize winnings is questionable because the model is based on limited data. 80. Answers will vary. 81. 3x 2 > 17 82. 7x 10 ≤ 1 x 8x ≤ 11 3x > 15 x ≥ x > 5 11 8 x 3 4 5 6 7 8 11 8 9 x −1 83. 2x 1 < 9 4 < x < 5 x 1 2 3 3 4 5 4 4 3x ≥ 5 4 3x ≤ 5 8 < 2x < 10 0 2 84. 4 3x 7 ≥ 12 9 < 2x 1 < 9 −4 −3 −2 −1 1 0 or 4 3x ≥ 5 3x ≤ 9 or x ≥ 3 or 3x ≥ 1 x ≤ 13 5 −1 3 x −2 −1 85. f x x2 5 x3 (a) f 0 02 5 5 03 3 32 5 14 7 (b) f 3 3 3 6 3 42 5 (c) f 4 4 3 21 86. f x 0 1 2 3 10, x 6x 1, 2 2 4 x ≥ 2 x < 2 (a) f 2 22 10 4 10 6 (b) f 1 12 10 1 10 9 (c) f 8 682 1 384 1 383 Review Exercises for Chapter 3 Review Exercises for Chapter 3 1. (a) y 2x2 (b) y 2x2 Vertical stretch Vertical stretch and a reflection in the x-axis y y 4 4 3 3 2 2 1 x − 4 − 3 −2 −1 −1 1 2 3 − 4 −3 − 2 − 1 4 x 1 2 3 4 −2 −3 −3 −4 −4 (d) y x 22 (c) y x2 2 Vertical shift two units upward Horizontal shift two units to the left y (a) y 4 4 3 1 1 x − 4 − 3 −2 − 1 −1 1 2 3 4 −2 −2 −3 −3 −4 −4 2. (a) y x 2 4 1 2 3 4 (b) y 4 x 2 Vertical shift four units downward y Reflection in the x-axis and a vertical shift four units upward y 3 2 −4 −3 x −4 −3 −2 −1 −1 5 x −1 −1 1 3 3 4 2 −2 1 −4 −3 −5 x −1 −1 1 3 4 −2 −3 (c) y x 3 2 (d) y 12 x 2 1 Horizontal shift three units to the right y Vertical shrink (each y-value is multiplied by 2 , and a vertical shift one unit downward 1 5 y 4 3 4 2 3 2 1 − 3 −2 − 1 −1 −2 −3 1 x 1 2 3 4 5 x −4 −3 −2 2 −2 −3 −4 3 4 367 368 Chapter 3 Polynomial Functions 3. gx x2 2x 4. f x 6x x2 y x2 2x 1 1 7 x 12 1 5 x2 6x 9 9 6 6 Vertex: 3, 9 3 Axis of symmetry: x 1 x −3 −2 −1 −1 0 x 2 2x xx 2 8 x 32 9 4 Vertex: 1, 1 y 10 1 2 3 4 5 6 2 Axis of symmetry: x 3 0 6x x2 x6 x −2 4 x −2 2 4 8 10 −2 x-intercepts: 0, 0, 6, 0 x-intercepts: 0, 0, 2, 0 6. hx 3 4x x2 5. f x x2 8x 10 x2 4x 3 x2 8x 16 16 10 x 42 6 x2 4x 4 4 3 y y x 22 7 Vertex: 4, 6 Axis of symmetry: x 4 0 x 42 6 −8 x −4 2 −2 x 42 6 8 Vertex: 2, 7 6 4 Axis of symmetry: x 2 −4 x 4 ± 6 10 x 22 7 2 0 3 4x x2 −6 2 x −2 2 4 6 8 10 0 x2 4x 3 x 4 ± 6 x-intercepts: 4 ± 6, 0 x 4 ± 42 413 21 4 ± 28 2 ± 7 2 x-intercepts: 2 ± 7, 0 7. f t 2t2 4t 1 8. f x x2 8x 12 2t2 2t 1 1 1 x2 8x 16 16 12 2t 12 1 1 x 42 4 2t 12 3 Vertex: 1, 3 6 Axis of symmetry: t 1 4 2t 12 3 2 32 t1 ± t-intercepts: 1 4 t 1 2 3 4 5 6 x-intercepts: 2, 0, 6, 0 2 x −2 4 −2 −4 3 6 ± 6 0 x 2x 6 1 − 3 −2 − 1 8 0 x2 8x 12 3 0 2t 1 3 y Axis of symmetry: x 4 5 2 t1± Vertex: 4, 4 y 6 2 ,0 8 10 Review Exercises for Chapter 3 9. hx 4x2 4x 13 10. f x x2 6x 1 4x2 x 13 4 x2 x 4 x2 Vertex: x2 6x 9 9 1 x 32 8 1 1 13 4 4 Vertex: 3, 8 1 x 1 13 4 4 x 1 2 2 Axis of symmetry: x 3 12 21, 12 2 x 15 1 Axis of symmetry: x 2 x 21 0 x2 6x 1 y 20 1 04 x 2 369 10 12 −3 −2 6 ± 32 3 ± 22 2 y x-intercepts: 3 ± 22, 0 5 2 6 ± 62 411 21 x −1 1 2 2 x −2 3 2 4 8 10 −2 −4 3 −6 No real zeros −8 x-intercepts: none 12. f x 4x2 4x 5 11. hx x2 5x 4 x2 5x 5 2 5 2 x x Vertex: 2 2 25 25 4 4 4 4 x2 x 25 16 4 4 −8 41 4 x 2 −6 −4 2 4 x −2 −4 25, 414 Vertex: 5 Axis of symmetry: x 2 − 10 5 ±2 41 ,0 5 ± 41 . 2 Vertex: 1 5 x 3 2 2 4 10 8 2 −8 −6 −4 −2 The equation has no real zeros. No x-intercepts y 4 2 By the Quadratic Formula, x 1 25 25 x2 5x 4 3 4 4 1 2 21, 4 1 13. f x x2 5x 4 3 y x −2 2 4 6 0 4x 2 4x 5 By the Quadratic Formula, x 1 5 x 3 2 1 1 Axis of symmetry: x 2 0 x 2 5x 4 x-intercepts: 2 12 x −2 1 4 y 1 1 5 4 4 4 2 41 4 5 41 , 2 12 2 −8 −4 x −2 2 −4 41 12 −6 0 x 2 5x 4 Axis of symmetry: x −6 By the Quadratic Formula, x 5 2 x-intercepts: 5 ±2 41 ,0 5 ± 41 . 2 4 ± 8i 1 ± i. 8 2 370 Chapter 3 Polynomial Functions 1 14. f x 6x2 24x 22 2 y 14 3x2 12x 11 12 10 3x2 4x 4 4 11 8 6 3x 22 34 11 4 2 3x 2 1 2 x –6 –4 –2 Vertex: 2, 1 4 6 8 10 Axis of symmetry: x 2 0 3x2 12x 11 x 3 12 ± 122 4311 12 ± 12 2 ± 23 6 3 x-intercepts: 2 ± 3 3 ,0 15. Vertex: 4, 1 ⇒ f x ax 42 1 16. Vertex: 2, 2 ⇒ f x ax 2 2 2 Point: 0, 3 ⇒ 3 a0 22 2 Point: 2, 1 ⇒ 1 a2 42 1 2 4a 3 4a 2 12 a 1 4a 1 4 1 Thus, f x 2x 42 1. a f x 14x 2 2 2 17. Vertex: 1, 4 ⇒ f x ax 12 4 18. Vertex: 2, 3 ⇒ f x ax 2 2 3 Point: 1, 6 ⇒ 6 a1 2 2 3 Point: 2, 3 ⇒ 3 a2 12 4 6 9a 3 1a 3 9a Thus, f x x 12 4. 1 3 f x 19. (a) A xy x 8x since 2 x 2y 8 0 ⇒ y (c) 8x . 2 (b) Since the figure is in the first quadrant and x and y must be positive, the domain of Ax (d) 8x 2 is 0 < x < 8. 9 0 8 0 The maximum area of 8 occurs at the vertex when x 4 and y —CONTINUED— 84 2. 2 x 1 3 x a 2 2 3 y Area 1 4 1 2 1 14 121 72 2 4 122 24 122 6 3 4 123 34 123 152 4 4 124 44 124 8 5 4 125 54 125 152 6 4 126 64 126 6 Review Exercises for Chapter 3 371 19. —CONTINUED— (e) A x 1 1 8x 8x x 2 x 2 8x 2 2 2 1 1 1 x2 8x 16 16 x 42 16 x 42 8 2 2 2 84 The maximum area of 8 occurs when x 4 and y 2. 2 (b) 2x 2y 200 20. (a) (c) Area 100x x2 x2 100x 2500 2500 x y 100 y x 502 2500 y 100 x x Area xy x 502 2500 x100 x The maximum area occurs at the vertex when x 50 and y 100 50 50. The dimensions with the maximum area are x 50 meters and y 50 meters. 100x x2 21. R 10p2 800p (a) R20 $12,000 22. Let x the number of $30 increases in rent. Then, Rent 540 30x R25 $13,750 Number of occupied units 50 x R30 $15,000 Revenue Number of occupied unitsrent (b) The maximum revenue occurs at the vertex of the parabola. b 800 $40 2a 210 R40 $16,000 R 50 x540 30x Cost Number of occupied units$18 C 50 x18 Profit Revenue Cost P 50 x540 30x 50 x18 The revenue is maximum when the price is $40 per unit. The maximum revenue is $16,000. 27,000 960x 30x2 900 18x 30x2 978x 26,100 The maximum profit occurs at the vertex. b 978 16.3 16 increases 2a 230 The corresponding rent is 540 3016 $1020. The minimum cost occurs at the vertex of the parabola. Vertex: b 120 1091 units 2a 20.055 Approximately 1091 units should be produced each day to yield a minimum cost. 24. 26 0.107x2 5.68x 48.5 0 0.107x2 5.68x 74.5 x 5.68 ± 5.682 40.10774.5 20.107 x 23.7, 29.4 The age of the bride is approximately 24 years when the age of the groom is 26 years. y 27 Age of groom 23. C 70,000 120x 0.055x2 26 25 24 23 22 x 20 21 22 23 24 25 Age of bride 372 Chapter 3 Polynomial Functions 27. y x 4, f x 2 x 4 26. y x3, f x 4x3 25. y x3, f x x 43 y y y 3 5 4 3 2 1 3 2 1 x −2 1 2 3 4 −3 6 7 −2 −1 −3 −4 1 x 1 2 −3 3 −2 −2 −3 −3 y 5 4 3 2 1 6 5 4 3 8 6 4 2 x −2 1 3 4 5 6 7 1 x −3 −2 −1 1 2 3 4 5 3 1 30. y x5, f x 2x5 3 y y 2 Transformation: Reflection in the x-axis and a vertical shift two units upward 29. y x5, f x x 35 28. y x4, f x 2x 24 1 −1 f x is a reflection in the x-axis and a vertical stretch of the graph of y x3. Transformation: Reflection in the x-axis and a horizontal shift four units to the right x −2 −1 −6 6 −4 x −2 2 4 6 −2 −5 −3 f x is a vertical stretch and a shift to the right two units of the graph of y x4. 32. f x 12x3 2x 31. f x x2 6x 9 The degree is even and the leading coefficient is negative. The graph falls to the left and falls to the right. The degree is even and the leading coefficient is positive. The graph rises to the left and rises to the right. 35. f x 2x2 11x 21 0 2x 11x 21 −9 9 −40 −6 6 −5 x 3 of multiplicity 2 (even multiplicity) Turning points: 1 Turning points: 2 37. f t t 3 3t 38. f x x3 8x2 3 0 0 t 3 3t Turning points: 2 0 xx 3 3 2 Zeros: x 0 of multiplicity 1 (odd multiplicity) 3 Zeros: x 2, 7, all of multiplicity 1 (odd multiplicity) Zeros: t 0, ± 3 all of multiplicity 1 (odd multiplicity) The degree is odd and the leading coefficient is negative. The graph rises to the left and falls to the right. 36. f x xx 3 2 20 2x 3x 7 0 t t 2 3 The degree is odd and the leading coefficient is positive. The graph falls to the left and rises to the right. 34. hx x5 7x2 10x 33. g x 34x4 3x2 2 2 f x is a vertical shrink and a vertical shift three units upward of the graph of y x5. Transformation: Horizontal shift three units to the right −5 4 −3 x3 8x2 10 −10 10 0 x 2x 8 Zeros: x 0 of multiplicity 2 (even multiplicity) x 8 of multiplicity 1 (odd multiplicity) Turning points: 2 −80 Review Exercises for Chapter 3 39. f x 12x 3 20x2 40. gx x4 x3 2x2 10 0 4x23x 5 −5 −4 0 x2x2 x 2 5 Zeros: x 0 of multiplicity 2 (even multiplicity) 5 x2x 1x 2 −5 −3 Zeros: x 0 of multiplicity 2 (even multiplicity) 5 x 3 of multiplicity 1 (odd multiplicity) x 1 of multiplicity 1 (odd multiplicity) x 2 of multiplicity 1 (odd multiplicity) Turning points: 2 Turning points: 3 41. f x x3 x2 2 42. g x 2x3 4x2 (a) The degree is odd and the leading coefficient, 2, is positive. The graph rises to the right and falls to the left. (a) The degree is odd and the leading coefficient is negative. The graph rises to the left and falls to the right. (b) gx 2x3 4x2 (b) Zero: x 1 0 2x3 4x2 x 3 2 1 0 1 2 0 2x2x 2 f x 34 10 0 2 2 6 0 x2x 2 The zeros are 0 and 2. y (d) 3 0 x4 x3 2x2 0 12x 3 20x2 (c) 373 (c) 4 3 2 x 3 2 1 0 1 gx 18 0 2 0 6 1 (−1, 0) 1 2 3 y (d) x −4 −3 −2 4 4 3 −3 2 −4 (− 2, 0) − 4 −3 (0, 0) −1 −1 1 2 x 3 4 −2 −3 −4 44. h x 3x2 x4 43. f x xx3 x2 5x 3 (a) The degree is even and the leading coefficient, 1 , is negative. The graph falls to the left and falls to the right. (a) The degree is even and the leading coefficient is positive. The graph rises to the left and rises to the right. (b) gx 3x2 x4 (b) Zeros: x 0, 1, 3 (c) 0 3x2 x4 x 4 3 2 1 0 1 2 3 f x 100 0 18 8 0 0 10 72 (−3, 0) −4 3 −2 −1 The zeros are 0, 3, and 3. (c) y (d) 0 x23 x2 (1, 0) x 1 2 (0, 0) 3 x 2 1 0 1 2 hx 4 2 0 2 4 4 y (d) 4 3 −15 −18 −21 (0, 0) 2 (− 3, 0( −4 −3 ( 3, 0( −1 −1 −2 −3 −4 x 1 3 4 374 Chapter 3 Polynomial Functions 45. f x 3x3 x2 3 46. f x 0.25x3 3.65x 6.12 x 3 2 1 0 1 2 3 x 6 5 4 3 2 f x 87 25 1 3 5 23 75 f x 25.98 6.88 4.72 10.32 11.42 The zero is in the interval 1, 0. x 1 0 1 2 3 4 Zero: x 0.900 f x 9.52 6.12 2.72 0.82 1.92 7.52 The only zero is in the interval 5, 4. It is x 4.479. 47. f x x4 5x 1 48. f x 7x4 3x3 8x2 2 x 3 2 1 0 1 2 3 x 3 2 1 0 1 2 f x 95 25 5 1 5 5 65 f x 416 58 2 2 4 106 There are zeros in the intervals 2, 1 and 1, 0. They are x 1.211 and x 0.509. There are two zeros, one in the interval 1, 0 and one in the interval 1, 2 Zeros: x 0.200, x 1.772 8x 5 49. 3x 2 ) 24x2 4 3 50. x 8 3x 2 ) 4x 7 24x2 16x 4x 83 15x 8 29 3 15x 10 29 4x 7 4 3x 2 3 33x 2 2 Thus, 2 24x2 x 8 8x 5 . 3x 2 3x 2 5x 2 51. x2 3x 1 ) 5x3 13x2 3x2 52. 5x3 15x2 5x 4 3x4 3 3x2 2x2 6x 2 3x2 0 2x2 6x 2 3x2 3 3 0 Thus, 5x3 13x2 x 2 5x 2. x2 3x 1 x2 3x 2 53. x2 0x 2 ) x4 3x3 4x2 6x 3 3 3x4 3x2 3 2 x2 1 x 1 3x2 5x 8 54. 2x2 0x 1 ) 6x4 10x3 13x2 5x 2 6x4 0x3 3x2 x4 0x3 2x2 3x 3 2x2 6x 10x3 16x2 5x 3x3 0x2 6x 10x3 0x2 5x 2x2 0x 3 16x2 0x 2 2x2 0x 4 16x2 0x 8 1 1 x 3x 4x 6x 3 x2 3x 2 2 . x2 2 x 2 4 Thus, 3 3 x 1 ) 3x 0x 0x2 0x 0 x2 2 2 10 6x4 10x 13x 5x 2 10 3x2 5x 8 2 2x2 1 2x 1 3 2 Review Exercises for Chapter 3 55. 2 6 4 12 27 16 18 22 0 8 6 8 11 4 8 56. 5 0.1 0.3 0.5 0.8 0.1 0.5 20 19.5 0 4 4 0.1x3 0.3x2 0.5 19.5 0.1x 2 0.8x 4 x5 x5 Thus, 6x4 4x3 27x2 18x 8 6x3 8x2 11x 4 . x2 x2 57. 4 2 19 8 38 44 24 24 2 11 6 0 58. 3 3 20 9 11 3 12 12 0 29 33 4 3x3 20x2 29x 12 3x2 11x 4 x3 2x3 19x2 38x 24 Thus, 2x2 11x 6. x4 59. f x 20x 4 9x 3 14x2 3x (a) 1 20 9 20 14 11 3 3 0 0 20 11 3 0 0 3 4 20 9 15 14 18 3 3 0 0 20 24 4 0 0 3 Yes, x 1 is a zero of f. (c) 0 (b) Yes, x 4 is a zero of f. 20 9 0 14 0 3 0 0 0 20 9 14 3 0 (d) 1 Yes, x 0 is a zero of f. 20 9 20 14 29 3 15 0 12 20 29 15 12 12 No, x 1 is not a zero of f. 60. f x 3x3 8x2 20x 16 (a) 4 8 12 4 3 3 20 16 4 (b) 4 16 16 0 3 (c) 8 2 6 3 3 20 4 24 20 80 60 16 240 224 No, x 4 is not a zero of f. Yes, x 4 is a zero of f. 2 3 8 12 20 3 (d) 1 16 16 0 8 3 11 3 3 20 11 9 16 9 25 No, x 1 is not a zero of f. 2 3 Yes, x is a zero of f. 61. f x x4 10x3 24x2 20x 44 (a) 3 1 10 3 24 21 20 135 44 465 1 7 45 155 421 Thus, f 3 421. (b) 1 1 10 1 24 9 20 33 44 53 1 9 33 53 9 f 1 9 375 376 Chapter 3 Polynomial Functions 62. gt 2t5 5t4 8t 20 (a) 4 5 8 13 2 2 0 52 52 0 208 208 8 832 824 20 3296 3276 Thus, g4 3276. (b) 2 2 5 22 0 52 4 0 10 42 8 102 8 20 20 2 5 22 5 2 4 10 42 102 0 Thus, g2 0. 63. f x x 3 4x2 25x 28; Factor: x 4 (a) 4 1 4 4 25 32 28 28 1 8 7 0 64. f x 2x3 11x2 21x 90 (a) 6 11 12 1 2 21 6 15 (b) 2x2 x 15 2x 5x 3 (b) x2 8x 7 x 7x 1 The remaining factors are 2x 5 and x 3. The remaining factors of f are x 7 and x 1. (c) f x 2x 5x 3x 6 (c) f x x 3 4x2 25x 28 5 (d) Zeros: x 2, 3, 6 x 7x 1x 4 (d) Zeros: 7, 1, 4 (e) 50 −7 80 −8 90 90 0 Yes, x 6 is a factor of f x. Yes, x 4 is a factor of f x. (e) 2 5 5 − 100 − 60 65. f x x 4 4x 3 7x2 22x 24 66. f x x4 11x3 41x2 61x 30 Factors: x 2, x 3 (a) 2 1 1 3 (a) 2 4 2 7 12 22 10 24 24 6 5 12 0 1 6 3 5 9 12 12 1 3 4 0 Both are factors since the remainders are zero. (b) x2 3x 4 x 1x 4 The remaining factors are x 1 and x 4. (c) f x x 1x 4x 2x 3 11 2 41 18 61 46 30 30 1 9 23 15 0 1 9 5 23 20 15 15 1 4 3 0 Yes, x 2 and x 5 are both factors of f x. (b) x2 4x 3 x 1x 3 The remaining factors are x 1 and x 3. (c) f x x 1x 3x 2x 5 (d) Zeros: x 1, 2, 3, 5 (e) (d) Zeros: 2, 1, 3, 4 (e) 5 1 4 −6 40 12 −8 −3 5 − 10 Review Exercises for Chapter 3 67. f x 3xx 22 68. f x x 4x 92 Zeros: x 0, x 2 69. f x x2 9x 8 70. f x x 3 6x x 1x 8 Zeros: x 9, 4 xx2 6 Zeros: x 1, x 8 71. f x x 4x 6x 2ix 2i Zeros: x 4, x 6, x 2i, x 2i 73. f x 4x3 8x2 3x 15 Possible rational zeros: ± 1, ± 2, ± 3, ± 6, ± 9, ± 18 2 1 3 1 21 3 18 72. f x x 8x 52x 3 ix 3 i Zeros: x 5, 8, 3 ± i 1 2 4 18 18 0 Possible rational zeros: ± 1, ± 2, ± 3, ± 5, ± 6, ± 10, ± 15, 1 2 5 10 ± 30, ± 3 , ± 3 , ± 3 , ± 3 1 x3 2x2 21x 18 x 1x2 3x 18 x 1x 6x 3 3 20 3 7 23 30 30 3 23 30 0 So, f x 3x 3 20x2 7x 30 x 13x2 23x 30 The zeros of f x are x 1, x 6, and x 3. x 13x 5x 6 0 x 13x 5x 6 5 Zeros: x 1, 3, 6 77. f x x3 10x2 17x 8 78. f x x 3 9x2 24x 20 Possible rational zeros: ± 1, ± 2, ± 4, ± 8 1 10 1 9 1 1 x3 17 9 8 8 8 0 4 1 1 4 4 0 20 20 1 4 4 0 So, f x x 3 9x2 24x 20 x 5x 22. 11 12 1 1 3 4 1 0 1 4 4 0 12 12 0 x x 11x2 x 12 x 3x 4x2 1 4 24 20 x 12x 8 Possible rational zeros: ± 1, ± 2, ± 3, ± 4, ± 6, ± 12 1 9 5 x 5x2 4x 4 79. f x x4 x3 11x2 x 12 1 3 4 1 x 1x 1x 8 The zeros of f x are x 1 and x 8. 1 Possible rational zeros: ± 1, ± 2, ± 4, ± 5, ± 10, ± 20 5 10x2 17x 8 x 1x2 9x 8 3 8 Possible rational zeros: ± 1, ± 2, ± 4, ± 8, ± 3, ± 3, ± 3, ± 3 76. f x 3x 3 20x2 7x 30 75. f x x3 2x2 21x 18 1 Zeros: x 0, ± 6i 74. f x 3x4 4x3 5x2 8 1 3 5 15 Possible rational zeros: ± 1, ± 3, ± 5, ± 15, ± 2, ± 2, ± 2, ± 2 , 1 3 5 15 ± 4, ± 4, ± 4, ± 4 1 377 3 The real zeros of f x are x 3, and x 4. Zeros: x 5, 2 378 Chapter 3 Polynomial Functions 80. f x 25x 4 25x 3 154x2 4x 24 Possible rational zeros: ± 1, ± 2, ± 3, ± 4, ± 6, ± 8, ± 12, ± 24, ± 15, ± 25, ± 35, ± 45, ± 65, ± 85, ± 12 5, 24 1 2 3 4 6 8 12 24 ± 5 , ± 25 , ± 25 , ± 25 , ± 25 , ± 25 , ± 25 , ± 25 , ± 25 3 25 25 75 154 150 4 12 24 24 25 25 50 50 50 4 8 4 8 0 8 0 2 25 0 4 0 So, f x 25x 4 25x 3 154x2 4x 24 x 3x 225x2 4 x 3x 25x 25x 2. Zeros: x 3, 2, ± 25 81. f x 3x 23 x 4x 3 ix 3 i 3x 2x 4 x2 3 Multiply by 3 to clear the fraction. Since 3i is a zero, so is 3i. 3x2 14x 8x2 3 3x4 14x3 17x2 42x 24 2 Note: f x a3x4 14x3 17x2 42x 24, where a is any real nonzero number, has zeros 3, 4, and ± 3 i. 82. Since 1 2i is a zero and the coefficients are real, 1 2i must also be a zero. f x x 2x 3x 1 2ix 1 2i 83. f x x3 4x2 x 4, Zero: i Since i is a zero, so is i. i 1 4 i 1 1 4i 4 4 1 4 i 4i 0 x2 x 6x 12 4 x2 x 6x2 2x 5 x4 x 3x 17x 30 3 2 i 1 4 i i 4i 4i 1 4 0 f x x ix ix 4, Zeros: x ± i, 4 84. hx x3 2x2 16x 32 85. g x 2x 4 3x 3 13x2 37x 15, Zero: 2 i Since 4i is a zero, so is 4i. 4i 4i Since 2 i is a zero, so is 2 i 1 2 4i 16 16 8i 32 32 1 2 4i 8i 0 1 2 4i 4i 8i 8i 0 2 1 hx x 4ix 4ix 2 Zeros: x ± 4i, 2 2i 2i 2 3 4 2i 13 5i 37 31 3i 15 15 2 1 2i 13 5i 6 3i 0 2 1 2i 4 2i 13 5i 10 5i 6 3i 6 3i 2 5 3 0 gx x 2 ix 2 i2x2 5x 3 x 2 ix 2 i2x 1x 3 Zeros: x 2 ± i, 12, 3 Review Exercises for Chapter 3 379 4 3 2 86. f x 4x 11x 14x 6x x4x3 11x2 14x 6 One zero is x 0. Since 1 i is a zero, so is 1 i. 1i 1i 4 11 4 4i 14 11 3i 6 6 4 7 4i 3 3i 0 4 7 4i 4 4i 4 3 3 3i 3 3i f x xx 1 ix 1 i4x 3 xx 1 ix 1 i4x 3 Zeros: 0, 34, 1 i, 1 i 87. f x x3 4x2 5x 88. gx x3 7x2 36 xx2 4x 5 2 1 7 2 0 18 36 36 1 9 18 0 xx 5x 1 Zeros: x 0, 5, 1 The zeros of x2 9x 18 x 3x 6 are x 3, 6. The zeros of gx are 2, 3, 6. gx x 2x 3x 6 89. g x x 4 4x 3 3x2 40x 208, Zero: x 4 4 4 1 4 4 3 0 40 12 208 208 1 0 3 52 0 1 0 4 3 16 52 52 1 4 13 0 90. f x x4 8x3 8x2 72x 153 3 1 8 3 8 33 72 123 153 153 1 11 41 51 0 3 1 11 3 41 24 1 8 17 51 51 gx x 42x2 4x 13 By the Quadratic Formula, the zeros of x2 8x 17 are By the Quadratic Formula the zeros of x2 4x 13 are x 2 ± 3i. The zeros of gx are x 4 of multiplicity 2, and x 2 ± 3i. x gx x 42x 2 3ix 2 3i x 42x 2 3ix 2 3i 91. f x x4 2x 1 (a) 8 ± 82 4117 8 ± 4 4 ± i. 21 2 The zeros of f x are 3, 3, 4 i, 4 i. f x x 3x 3x 4 ix 4 i 92. gx x3 3x2 3x 2 (a) 7 6 −6 −6 6 6 −1 −2 (b) The graph has two x-intercepts, so there are two real zeros. (b) One real zero because the graph has only one x-intercept. (c) The zeros are x 1 and x 0.54. (c) The zero is x 0.44. 380 Chapter 3 Polynomial Functions 93. hx x3 6x2 12x 10 (a) 94. f x x5 2x3 3x 20 (a) 4 −6 10 −3 12 5 −8 − 30 (b) The graph has one x-intercept, so there is one real zero. (b) One real zero because the graph has only one x-intercept. (c) x 3.26 (c) The zero is x 1.72. 95. g x 5x3 3x2 6x 9 96. hx 2x5 4x3 2x2 5 g x has two variations in sign, so g has either two or no positive real zeros. hx has three variations in sign, so h has either three or one positive real zeros. g x 5x3 3x2 6x 9 hx 2x5 4x3 2x2 5 g x has one variation in sign, so g has one negative real zero. 3 4 4 3 5 4 1 hx has two variations in sign, so h has either two or no negative real zeros. 98. gx 2x3 5x2 14x 8 97. f x 4x3 3x2 4x 3 (a) 1 2x5 4x3 2x2 5 (a) 8 4 3 1 4 1 3 54 4 4 5 17 4 (b) 4 Median income (in thousands of dollars) 2 14 52 5 8 8 152 100. (a) and (b) y (a) 8 592 2 13 38 144 Since the last row entries alternate in sign, x 4 is a lower bound. Since the last row entries alternate in sign, x 41 is a lower bound. 99. I 2.09t 37.2 14 88 2 11 74 600 Since the last row has all positive entries, x 8 is an upper bound. 4 1 5 2 Since the last row has all positive entries, x 1 is an upper bound. (b) 14 5 16 2 8000 65 60 55 5 2000 50 45 t 5 6 7 8 9 10 11 12 Year (5 ↔ 1995) (b) The model is a good fit to the actual data. r 0.992 13 (b) S 627.02t 346 The model is a good fit. r 0.995 (c) S 627.0218 346 $10,940.36 million (d) The factory sales of electronic gaming software in the U.S. increases by $627.02 million each year. Problem Solving for Chapter 3 101. D km 102. 4 k2.5 8 5 103. F ks2 P kS 3 750 k273 k D 85m If the speed is doubled, k 0.03810 F k2s2 P 0.03810403 F 4ks2. In 2 miles, D 852 3.2 kilometers. 381 2438.7 kilowatts The force will be changed by a factor of 4. In 10 miles, D 8510 16 kilometers. 104. k p 105. T k 800 5 3 x C khw2 106. 28.80 k1662 k 65 k 0.05 k 365 195 k 4000 x k r 4000 667 boxes 6 T C 0.051482 195 r $44.80 When t 80 mph, T 195 2.4375 hours 80 2 hours, 26 minutes. 107. False. A fourth-degree polynomial can have at most four zeros and complex zeros occur in conjugate pairs. 108. True. If y kx, then 109. The maximum (or minimum) value of a quadratic function is located at its graph’s vertex. To find the vertex, either write the equation in standard form or use the formula 110. Answers will vary. Sample answer: 2ab , f 2ab . If the leading coefficient is positive, the vertex is a minimum. If the leading coefficient is negative, the vertex is a maximum. 1 x y. k Polynomials of degree n > 0 with real coefficients can be written as the product of linear and quadratic factors with real coefficients, where the quadratic factors have no real zeros. Setting the factors equal to zero and solving for the variable can find the zeros of a polynomial function. To solve an equation is to find all the values of the variable for which the equation is true. Problem Solving for Chapter 3 1. (a) (i) gx x2 4x 12 0 x 6x 2 Zeros: 6, 2 (iii) gx x2 3x 10 0 x 5x 2 Zeros: 5, 2 (ii) gx x2 5x 0 xx 5 Zeros: 0, 5 (iv) gx x2 4x 4 0 x 2x 2 Zeros: 2, 2 2 (v) gx x 2x 6 (vi) gx x2 3x 4 0 x2 2x 6 0 x2 3x 4 By the Quadratic Formula, x 1 ± 7. By the Quadratic Formula, x Zeros: 1 ± 7 —CONTINUED— Zeros: 3 ± 7i 2 3 ± 7i . 2 382 Chapter 3 Polynomial Functions 1. —CONTINUED— (b) (i) f x x 2x2 4x 12 (ii) f x x 2x2 5x 30 30 −10 10 −10 10 −30 −15 (iii) f x x 2x2 3x 10 (iv) f x x 2x2 4x 4 60 4 −4 −10 −30 (v) 8 10 −4 f x x 2x2 2x 6 (vi) f x x 2x2 3x 4 20 2 −9 −10 9 10 −10 −10 x 2 is an x-intercept of f x in all six graphs. All the graphs, except (iii), cross the x-axis at x 2. (c) (i) other x-intercepts: 2, 0, 6, 0 (ii) other x-intercepts: 5, 0, 0, 0 (iii) other x-intercepts: 5, 0 (iv) other x-intercepts: No additional x-intercepts (v) other x-intercepts: 1.6, 0, 3.6, 0 (vi) other x-intercepts: No additional x-intercepts (d) The x-intercepts of f x x 2gx are the same as the zeros of gx plus x 2. 2. r l (a) r 2 rl 600 (c) 2000 rl 600 r 2 l (b) V 600 r 2 r 1 2 1 600 r 2 r l r 2 2 2 r 1 r 600 r 2 2 1 300r r 3 2 1 r3 300r 2 0 20 0 The maximum volume is V 1595.8 cubic feet. This occurs when r 8 feet and l 16 feet. Problem Solving for Chapter 3 383 3. f x ax3 bx2 cx d x k) ax3 ax2 ak bx ak2 bk c bx2 cx d ax3 akx2 ak bx2 cx ak bx2 ak2 bkx ak2 bk cx d ak2 bk cx ak3 bk2 ck ak3 bk2 ck d Thus, f x ax3 bx2 cx d x kax2 ak bx ak2 bx c ak3 bk2 ck d and f k ak3 bk2 ck d. Since the remainder r ak3 bk2 ck d, f k r. 4. (a) (d) 3x3 x2 90; a 3, b 1 ⇒ y3 y2 y 1 2 2 12 3 36 4 80 5 150 6 252 7 392 8 576 9 810 10 1100 93 x 3 9x2 990 3x3 3x2 810 ⇒ 3x 9 ⇒ x 3 (e) 2x3 5x2 2500; a 2, b 5 ⇒ x2 (c) x3 2x2 2x5 2x5 3 x 2 7x6 7x6 3 5. V l w 2x 4 ⇒ x 10 5 36 ⇒ 2 392 ⇒ 49 a2 b3 216 7x 7 ⇒ x6 6 (g) 10x3 3x2 297; a 10, b 3 ⇒ a2 100 b3 27 100 2 100 100 10x3 3x 297 27 27 27 10x3 10x3 3 2 80 ⇒ 49 49 49 7 x 3 6x2 1728 216 216 216 a2 1 288; a 1, b 2 ⇒ 3 b 8 3 2 (f) 7x3 6x2 1728; a 7, b 6 ⇒ 1 1 3 1 2 x 2x 288 8 8 8 x 2 a2 4 b3 125 4 4 4 2 x 3 5x2 2500 125 125 125 252 ⇒ x 6 (b) x3 a2 9 b3 x 3 ⇒ x6 2 2 1100 ⇒ 10x 10 ⇒ x 3 3 h x2x 3 x2x 3 20 x3 3x2 20 0 Possible rational zeros: ± 1, ± 2, ± 4, ± 5, ± 10, ± 20 2 1 3 2 0 10 20 20 1 5 10 0 x 2x2 5x 10 0 x 2 or x 5 ± 15i 2 x x+3 x Choosing the real positive value for x we have: x 2 and x 3 5. The dimensions of the mold are 2 inches 2 inches 5 inches. 384 Chapter 3 6. (a) Polynomial Functions Function Zeros Sum of Zeros Product of Zeros f1x x2 5x 6 2, 3 5 6 f2x x3 7x 6 3, 1, 2 0 6 3, 1, ± 2i 2 12 3, 0, 2, 2 ± 3 3 0 f3x x4 2x3 x2 8x 12 f4x x5 3x4 9x3 25x2 6x (b) Conjecture: Sum of Zeros an1 (c) Conjecture: Product of Zeros: aa, , 0 0 if f x anx n an1x n1 . . . a1x a0 if n is even if n is odd if f x anx n an1x n1 . . . a1x a0 7. False. Since f x dxqx rx, we have f x rx qx . dx dx The statement should be corrected to read f 1 2 since f 1 f x qx . x1 x1 8. (a) y ax 2 bx c 0, 4: 4 a0 b0 c 2 (b) Enter the data points 0, 4, 1, 0, 2, 2, 4, 0, 6, 10 and use the regression feature to obtain y x 2 5x 4. 4 c 4, 0: 0 a42 b4 4 0 16a 4b 4 44a b 1 0 4a b 1 or b 1 4a 1, 0: 0 a12 b1 4 4ab 4 a 1 4a 4 1 3a 3 3a a 1 b 1 41 5 y x 2 5x 4 9. (a) Slope 94 5 32 (b) Slope Slope of tangent line is less than 5. (c) Slope 4.41 4 4.1 2.1 2 Slope of tangent line is less than 4.1. (e) Slope 4 h, h0 4 1 3 415 4 0.1 4.1 The results are the same as in (a)–(c). 41 3 21 Slope of tangent line is greater than 3. (d) Slope f 2 h f 2 2 h 2 2 h2 4 h 4h h2 h 4 h, h 0 (f) Letting h get closer and closer to 0, the slope approaches 4. Hence, the slope at 2, 4 is 4. Problem Solving for Chapter 3 10. (a) x 2y 100 y (b) 1500 100 x 2 Ax xy x Area of pasture (in square meters) y 1002 x 100x x2 2 50x 1250 1000 750 500 250 x 20 40 60 80 100 Length of pasture (in meters) x2 The maximum occurs at an area of 1250 square meters when x 50 meters and 2 Domain: 0 < x < 100 y 100 50 25 meters. 2 11. Let x length of the wire used to form the square. Then 100 x length of wire used to form the circle. (a) Let s the side of the square. Then 4s x ⇒ s x 4 and the area of the square is s2 x 42. Let r the radius of the circle. Then 2r 100 x ⇒ r 100 x 100 x 2 . and the area of the circle is r2 2 2 The combined area is: Ax 4x 2 1002 x 2 x2 10,000 200x x2 16 4 2 2500 50x x2 x2 16 4 161 41 x 164x 50 2500 x 2 2 50x 2500 (b) Domain: Since the wire is 100 cm, 0 ≤ x ≤ 100. (c) Ax 385 164 x 2 50 2500 x 164x 164x 4 400 164x 400 4 16 4 164x 400 4 10,000 2500 4 164x 400 4 2500 4 2 2 800 2500 x 4 800 400 x 4 4 2500 400 4 2 2 2 2 2 2 2500 The minimum occurs at the vertex when x 400 4 56 cm and Ax 350 cm2. The maximum occurs at one of the endpoints of the domain. When x 0, Ax 796 cm2. When x 100, Ax 625 cm2. Thus, the area is maximum when x 0 cm. (d) Answers will vary. Graph Ax to see where the minimum and maximum values occur. 386 12. Chapter 3 Polynomial Functions xn 1 x1 xn1 xn2 xn3 . . . x1 n1 n2 n3 2 . . . x 1 ) x 0x 0x 0x 0x 0x 1 n xn xn1 xn1 0xn2 xn1 xn2 xn2 0xn3 xn2 xn3 xn3 0xn4 x 2 0x x2 x x1 x1 0 xn 1 xn1 xn2 xn3 . . . x 1 x1 Practice Test for Chapter 3 Practice Test for Chapter 3 1. Sketch the graph of f x x2 6x 5 and identify the vertex and the intercepts. 2. Find the number of units x that produce a minimum cost C if C 0.01x2 90x 15,000. 3. Find the quadratic function that has a maximum at 1, 7 and passes through the point 2, 5. 4. Find two quadratic functions that have x-intercepts 2, 0 and 3, 0. 4 5. Use the leading coefficient test to determine the right and left end behavior of the graph of the polynomial function f x 3x5 2x3 17. 6. Find all the real zeros of f x x5 5x3 4x. 7. Find a polynomial function with 0, 3, and 2 as zeros. 8. Sketch f x x3 12x. 9. Divide 3x4 7x2 2x 10 by x 3 using long division. 10. Divide x3 11 by x2 2x 1. 11. Use synthetic division to divide 3x5 13x4 12x 1 by x 5. 12. Use synthetic division to find f 6 given f x 7x 3 40x 2 12x 15. 13. Find the real zeros of f x x3 19x 30. 14. Find the real zeros of f x x4 x3 8x2 9x 9. 15. List all possible rational zeros of the function f x 6x3 5x2 4x 15. 10 2 16. Find the rational zeros of the polynomial f x x3 20 3 x 9x 3 . 17. Write f x x4 x3 3x2 5x 10 as a product of linear factors. 18. Find a polynomial with real coefficients that has 2, 3 i, and 3 2i as zeros. 19. Use synthetic division to show that 3i is a zero of f x x3 4x2 9x 36. 20. Find a mathematical model for the statement, “z varies directly as the square of x and inversely as the square root of y.” 387
© Copyright 2025 Paperzz