Homework 1 Lesson 6-1 pages 303–305 Exercises 12. –x4 + 3x3; quartic binomial 1. 10x + 5; linear binomial 13. y = x3 + 1 2. –3x + 5; linear binomial 14. y = 2x3 – 12 3. 2m2 + 7m – 3; quadratic binomial 15. y = 1.5x3 + x2 – 2x + 1 4. x4 – x3 + x; quartic trinomial 16. y = –3x3 – 10x2 + 100 5. 2p2 – p; quadratic binomial 17. a. males: y = –0.002571x2 + 0.2829x + 67.21 females: y = –0.002286x2 + 0.2514x + 74.82 b. males: y = 0.00008333x3 – 0.007571x2 + 0.3545x + 67.11 females: y = 0.00008333x3 – 0.007286x2 + 0.3231x + 74.72 c. The cubic model is a better fit. 6. 3a3 + 5a2 + 1; cubic trinomial 7. –x5; quintic monomial 8. 12x4 + 3; quartic binomial 9. 5x3; cubic monomial 10. –2x3; cubic monomial 11. 5x2 + 4x + 8; quadratic trinomial 2 Lesson 6-1 18. y = x3 – 2x2; 4335 28. 6x2; quadratic monomial 19. y = x3 – 10x2; 2023 29. x4 + 2x3; quartic binomial 20. y = –0.5x3 + 10x2; 433.5 30. 1 x5 + 2 x; quintic binomial 21. y = –0.03948x3 + 2.069x2 – 17.93x + 106.9; 206.07 31. a. V = 10 r 2 22. y = –0.007990x3 + 0.4297x2 – 6.009x + 43.57; 26.34 23. y = 0.01002x3 – 0.3841x2 + 5.002x + 2.132; 25.39 24. Check students’ work. 25. x3 + 4x; cubic binomial 26. –4a4 + a3 + a2; quartic trinomial 27. 7; constant monomial 2 3 b. V = 2 3 c. V = 2 3 r3 r 3 + 10 r 2 32. Answers may vary. Sample: Cubic functions represent curvature in the data. Because of their turning points they can be unreliable for extrapolation. 33. –c2 + 16; binomial 34. –9d3 – 13; binomial 3 Lesson 6-1 35. 16x2 – x – 5; trinomial 45. 6a2 + 3ab – 8; trinomial 36. 2x3 – 6x + 17; trinomial 46. 8x3 + 2x2; binomial 37. a + 4b; binomial 47. 30x3 – 10x2; binomial 38. –12y; monomial 48. 2a3 – 5a2 – 2a + 5; polynomial of 4 terms 39. 8x2 – 6y; binomial 40. –3a + 2; binomial 41. 2x3 9x2 + + 5x + 27; polynomial of 4 terms 42. –4x4 – 3x3 + 5x – 54; polynomial of 4 terms 43. 80x3 – 109x2 + 7x – 75; polynomial of 4 terms 44. 2x3 – 2x2 + 8x – 27; polynomial of 4 terms 49. b3 – 6b2 + 9b; trinomial 50. x3 – 6x2 + 12x – 8; polynomial of 4 terms 51. x4 + 2x2 + 1; trinomial 52. 8x3 + 60x2 + 150x + 126; polynomial of 4 terms 53. a3 – a2b – b2a + b3; polynomial of 4 terms 4 Lesson 6-1 54. a4 – 4a3 + 6a2 – 4a + 1; polynomial of 5 terms b. 55. 12s3 + 61s2 + 68s – 21; polynomial of 4 terms 56. x3 + 2x2 – x – 2; trinomial 57. 8c3 – 26c + 12; trinomial 58. s4 – 2t 2s2 + t 4; trinomial 59. a. y = 0.7166x + 47.61 y = 0.0009365x3 – 0.0744x2 + 2.2929x + 41.4129 y = –0.00004789x4 + 0.004666x3 – 0.1647x2 + 2.9797x + 40.7831 The quartic model fits best. c. 72.2 × 1015 5 Lesson 6-2 pages 311–313 Exercises 12. x(x – 9)(x + 2) 17. 2, –9 1. x2 + x – 6 13. 24.2, –1.4, 0, –5, 1 2. x3 + 12x2 + 47x + 60 14. 5.0, –16.9, 2, 6, 8 3. x3 – 7x2 + 15x – 9 15. a. h = x, = 16 – 2x, w = 12 – 2x 18. 0, –5, 8 b. V = x(16 – 2x)(12 – 2x) 4. x3 + 4x2 + 4x 5. x3 + 10x2 + 25x 6. x3 – x c. 7. x(x – 6)(x + 6) 8. 3x(3x – 1)(x + 1) 9. 5x(2x2 – 2x + 3) 194 in.3, 2.26 in. 19. –1, 2, 3 16. 1, –2 10. x(x + 5)(x + 2) 11. x(x + 4)2 6 Lesson 6-2 20. –1, 1, 2 30. 0, 1 (mult. 3) 31. –1, 0, 1 2 32. –1, 0, 1 21. y = x3 – 18x2 + 107x – 210 33. 4 (mult. 2) 22. y = x3 + x2 – 2x 34. 1, 2 (mult. 2) 23. y = x3 + 9x2 + 15x – 25 35. – 3, 1 (mult. 2) 24. y = x3 – 9x2 + 27x – 27 36. –1 (mult. 2), 1, 2 25. y = x3 + 2x2 – x – 2 37. 2 x3 blocks, 15 x2 blocks, 31 x blocks, 12 unit blocks 26. y = x3 + 6x2 + 11x + 6 27. y = x3 – 2x2 28. y = x3 – 7 2 x – 2x 2 29. –3 (mult. 3) 2 38. a. V = 2x3 + 15x2 + 31x + 12; 2x3 + 7x2 + 7x + 2 b. V = 8x2 + 24x + 10 39. V = 12x3 – 27x 7 Lesson 6-3 pages 318–320 Exercises 12. no 1. x – 8 13. x2 + 4x + 3 2. 3x – 5 14. x2 – 2x + 2 3. x2 + 4x + 3, R 5 15. x2 – 11x + 37, R –128 4. 2x2 + 5x + 2 16. x2 + 2x + 5 5. 3x2 – 7x + 2 17. x2 – x – 6 6. 9x – 12, R –32 18. –2x2 + 9x – 19, R 40 7. x – 10, R 40 19. x + 1, R 4 8. x2 + 4x + 3 20. 3x2 + 8x – 3 9. no 21. x2 – 3x + 9 10. yes 22. 6x – 2, R –4 11. yes 23. y = (x + 1)(x + 3)(x – 2) 8 Lesson 6-3 24. y = (x + 3)(x – 4)(x – 3) 25. = x + 3 and h = x 26. 18 35. x – 1 is not a factor of x3 – x2 – 2x because it does not divide into x3 – x2 – 2x evenly. 27. 0 36. Answers may vary. Sample: (x2 + x – 4) ÷ (x – 2) 28. 0 37. x2 + 4x + 5 29. 12 38. x3 – 3x2 + 12x – 35, R 109 30. 168 39. x4 – x3 + x2 – x + 1 31. 10 40. x + 4 32. 51 41. x3 – x2 + 1 33. 0 42. no 34. P(a) = 0; x – a is a factor of P(x). 43. yes 44. yes 9 Lesson 6-4 pages 324–326 Exercises 12. (x + 4)(x2 – 4x + 16) 1. –2, 1, 5 13. (x – 10)(x2 + 10x + 100) 2. –1, 0, 3 14. (5x – 3)(25x2 + 15x + 9) 3. 0, 1 15. 3, –3 ± 3i 3 4. 0, 8 16. –4, 2 ± 2i 5. 0, –1, –2 17. 5, –5 ± 5i 3 2 3 8. –0.5, 0, 3 2 18. –1, 1 ± i 3 2 19. 1 , –1 ± i 3 4 2 9. 1, 7 20. – 1 , 1 ± i 3 10. 4.8% 21. (x2 – 7)(x – 1)(x + 1) 11. about 5.78 ft × 6.78 ft × 1.78 ft 22. (x2 + 10)(x2 – 2) 6. 0, –3.5, 1 7. 0, –0.5, 1.5 2 4 10 Lesson 6-4 23. (x2 – 3)(x – 2)(x + 2) 35. –2, –3, 1, 2 24. (x – 2)(x + 2)(x – 1)(x + 1) 36. 1.71, 0.83 25. (x – 1)(x + 1)(x2 + 1) 37. 0, 1.54, 8.46 26. 2(2x2 – 1)(x + 1)(x – 1) 38. 0, 1.27, 4.73 27. ±3, ±1 39. –1.04, 0, 6.04 28. ±2 40. (n – 1)(n)(n + 1) = 210; 5, 6, 7 29. ±4, ±2i 41. about 3.58 cm, about 2.83 cm 30. ±3i, ± 31. ± 32. ±i 42. – 6 , 3 ± 3i 3 2 2, ±i 5, ±i 6 3 33. –1, 3.24, –1.24 34. –9, 0 5 43. 4 , –2 ± 2i 3 3 5 44. ±2 2, ±2i 45. ±5, ±i 3 2 2 11 Lesson 6-5 pages 333–334 Exercises 12. 1, –2, 1 ± 3 7 1. ±1, ±2; 1 13. – 2. ±1, ±2, ±3, ±6; 1, –2, –3 14. 4 + 6, – 3. ±1, ±2, ±4; –1 15. 1 + 10, 2 – 5, 13 3 2 4. ± 1 , ±1, ±2, ±4, ±8; no rational roots 16. 1 – i, 5i 5. ±1, ±2, ±4, ±8, ±16; –2 17. 2 – 3i, –6i 6. ±1, ±3, ±5, ±15; no rational roots 18. 4 + i, 3 – 7i 7. 2, ±i 5 19. x3 – x2 + 9x – 9 = 0 8. 5, ±i 7 20. x3 + 3x2 – 8x + 10 = 0 2 7 9. –3, 1, 2 10. –5, 1 ± 11. ± 1 , ±3 2 2 3 21. x3 – 2x2 + 16x – 32 = 0 22. x3 – 3x2 – 8x + 30 = 0 23. x3 – 6x2 + 4x – 24 = 0 12 Lesson 6-6 pages 337–338 Exercises 1. 3 complex roots; number of real roots: 1 or 3 possible rational roots: ±1 5. 7 complex roots; number of real roots: 1, 3, 5, or 7 possible rational roots: ±1, ±3 2. 2 complex roots; number of real roots: 0 or 2 possible rational roots: ± 1 , ± 7 , ±1, ±7 6. 1 complex root; number of real roots: 1 possible rational roots: ± 1 , ± 1 , ±1, ±2, ±4, ±8 3. 4 complex roots; number of real roots: 0, 2, or 4 possible rational roots: 0 7. 3 3 4. 5 complex roots; number of real roots: 1, 3, or 5 possible rational roots: ± 1 , ±1, ± 5 , ±5 2 2 8. 4 2 6 complex roots; number of real roots: 0, 2, 4, or 6 possible rational roots: ± 1 , ±1, ± 7 , ±7 2 2 10 complex roots; number of real roots: 0, 2, 4, 6, 8, or 10 possible rational roots: ±1 13 Lesson 6-6 9. –1, 1 ± i 4 18. 5 complex roots; number of real roots: 1, 3, or 5 possible rational roots: ±1, ±2, ±3, ±6, ±9, ±18 7 10. 3, ±i 11. 4, 1 ± i 3 2 12. 2, ± 13. ±2, ± 19. 3 complex roots; number of real roots: 1 or 3 possible rational roots: ± 1 , ± 2 , ±1, ± 4 , ±2, ±3, ±4, ±6, ±12 3 2 14. ±2, ±i 15. 0, 3 ± 3 16. –6, ±i 2 5 17. 4 complex roots; number of real roots: 0, 2, or 4 possible rational roots: ± 1 , ±1, ±2, ± 13 , ±13, ±26 2 2 3 3 4 2 3 20. 6 complex roots; number of real roots: 0, 2, 4, or 6 possible rational roots: ± 1 , ± 1 , ± 3 , ±1, ± 3 , ±2, ±3, ±4, ±6, 4 ±8, ±12, ±24 2 21. 4, ±3i 22. –2, ± 5 14 Graphing Polynomial Functions 1. 2. 15 Graphing Polynomial Functions 3. 4. 16
© Copyright 2026 Paperzz