Aim #49: How do we factor polynomials completely? Homework: Handout Do Now: Factor each expression. 2 2 1. x - 49 2 4 2. x - 9x + 20 3 3. 4a b - 10a b 3 2 4. 2x - 3x - 14 4 22 6. xx ++x100 9 2 5. -6x + 13x - 6 Sometimes, one problem will require us to use more than one type of factoring and we will have to factor multiple times. We need to __________ ___________ and use all of the necessary methods. *** ALWAYS see if we can factor out a _______ FIRST!!! *** Factor Completely: 2 1) 8x + 20x + 8 2 3) wx - 16wx 4 3 2 2) 6x - 2x - 4x 2 2 4) 100x - 36y Factor the following completely. 1) 2x2 - 18 2) 3x2 + 6x - 24 3) z8 - z4 4) 2ax2 - 2ax - 12a 5) z3 - z 6) 16x2 - x2y4 7) 4x2 - 6x - 4 8) -8x3 - 18x2 - 4x 9) ax2 - 3ax - 54a 10) 2x3 - 14x2 + 24x 11) -2x2 + 3x + 9 12) 9x2 + 18xy + 9y2 13) ax5 - a5x5 14) x2(x + 2) - 9(x + 2) 15) 3x2 + 12x + 12 16) 9a4 - 36b4 17) 5x2 - 25x + 30 18) 6a2 - 6a4 19) xy + 2x + 3y + 6 3 2 21) ax + 3ax - 64ax - 192a 4 2 20) x - 15x - 250 8 4 22) 3x - 47x - 16 Sum it up!!! To factor completely, ALWAYS start by seeing if a GCF can be factored out. Then determine if trinomial factoring or DOTS can be used. Factor until the expression inside of the parentheses is prime.
© Copyright 2026 Paperzz