CHAPTER 15 ACIDS, BASES, AND SALTS SOLUTIONS TO REVIEW QUESTIONS 1. The Arrhenius definition is restricted to aqueous solutions, while the Brønsted-Lowry definition is not. 2. An electrolyte must be present in the solution for the bulb to glow. 3. Electrolytes include acids, bases, and salts. 4. First, the orientation of the polar water molecules about the Naþ and Cl is different. The positive end (hydrogen) of the water molecule is directed towards Cl, while the negative end (oxygen) of the water molecule is directed towards the Clþ. Second, more water molecules will fit around Cl, since it is larger than the Naþ ion. 5. The pH for a solution with a hydrogen ion concentration of 0.003 M will be between 2 and 3. 6. Tomato juice is more acidic than blood, since its pH is lower. 7. By the Arrhenius theory, an acid is a substance that produces hydrogen ions in aqueous solution. A base is a substance that produces hydroxide ions in aqueous solution. By the Brønsted-Lowry theory, an acid is a proton donor, while a base accepts protons. Since a proton is a hydrogen ion, then the two theories are very similar for acids, but not bases. A chloride ion can accept a proton (producing HCl), so it is a Brønsted-Lowry base, but would not be a base by the Arrhenius theory, since it does not produce hydroxide ions. By the Lewis theory, an acid is an electron pair acceptor, and a base is an electron pair donor. Many individual substances would be similarly classified as bases by Brønsted-Lowry or Lewis theories, since a substance with an electron pair to donate, can accept a proton. But, the Lewis definition is almost exclusively applied to reactions where the acid and base combine into a single molecule. The Brønsted-Lowry definition is usually applied to reactions that involve a transfer of a proton from the acid to the base. The Arrhenius definition is most often applied to individual substances, not to reactions. According to the Arrhenius theory, neutralization involves the reaction between a hydrogen ion and a hydroxide ion to form water. Neutralization, according to the Brønsted-Lowry theory, involves the transfer of a proton to a negative ion. The formation of a covalent bond constitutes a Lewis neutralization. - 181 - - Chapter 15 8. Neutralization reactions: Arrhenius: HCl þ NaOH ! NaCl þ H2 O ðHþ þ OH ! H2 OÞ Brønsted-Lowry: HCl þ KCN ! HCN þ KCl ! AlCl4 þ Naþ Lewis: AlCl3 þ NaCl Cl Cl Cl Cl 9. (a) Br + – Cl (b) Cl Cl Al Cl Cl – O H – (c) ðHþ þ CN ! HCNÞ – C N – These ions are considered to be bases according to the Brønsted-Lowry theory, because they can accept a proton at any of their unshared pairs of electrons. They are considered to be bases according to the Lewis acid-base theory, because they can donate an electron pair 10. The electrolytic compounds are acids, bases, and salts. 11. Names of the compounds in Table 15.3 sulfuric acid H2 SO4 nitric acid HNO3 HCl hydrochloric acid HBr hydrobromic acid HClO4 perchloric acid NaOH sodium hydroxide KOH potassium hydroxide CaðOHÞ2 calcium hydroxide barium hydroxide BaðOHÞ2 HC2 H3 O2 acetic acid H2 CO3 carbonic acid HNO2 nitrous acid sulfurous acid H2 SO3 H2 S hydrosulfuric acid oxalic acid H 2 C 2 O4 H3 BO3 boric acid HClO hypochlorous acid NH3 ammonia HF hydrofluoric acid 12. Hydrogen chloride dissolved in water conducts an electric current. HCl reacts with polar water molecules to produce H3Oþ and Cl ions, which conduct electric current Hexane is a nonpolar solvent, so it cannot pull the HCl molecules apart. Since there are no ions in the hexane solution, it does not conduct an electric current. HCl does not ionize in hexane. 13. In their crystalline structure, salts exist as positive and negative ions in definite geometric arrangement to each other, held together by the attraction of the opposite charges. When dissolved in water, the salt dissociates as the ions are pulled away from each other by the polar water molecules. 14. Testing the electrical conductivity of the solutions shows that CH3OH is a nonelectrolyte, while NaOH is an electrolyte. This indicates that the OH group in CH3OH must be covalently bonded to the CH3 group. 15. Molten NaCl conducts electricity because the ions are free to move. In the solid state, however, the ions are immobile and do not conduct electricity. 16. Dissociation is the separation of already existing ions in an ionic compound. Ionization is the formation of ions from molecules. The dissolving of NaCl is a dissociation, since the ions already exist in the crystalline compound. The dissolving of HCl in water is an ionization process, because ions are formed from HCl molecules and H2O. - 182 - - Chapter 15 17. Strong electrolytes are those which are essentially 100% ionized or dissociated in water. Weak electrolytes are those which are only slightly ionized in water. 18. Ions are hydrated in solution because there is an electrical attraction between the charged ions and the polar water molecules. 19. The main distinction between water solutions of strong and weak electrolytes is the degree of ionization of the electrolyte. A solution of an electrolyte contains many more ions than does a solution of a nonelectrolyte. Strong electrolytes are essentially 100% ionized. Weak electrolytes are only slightly ionized in water. 20. (a) (b) (c) In a neutral solution, the concentration of Hþ and OH are equal. In an acid solution, the concentration of Hþ is greater than the concentration of OH. In a basic solution, the concentration of OH is greater than the concentration of Hþ. 21. The net ionic equation for an acid-base reaction in aqueous solutions is: Hþ þ OH ! H2 O 22. The HCl molecule is polar and, consequently, is much more soluble in the polar solvent, water, than in the nonpolar solvent, hexane. There is also a chemical reaction between HCl and H2 O molecules. HCl þ H2 O ! H3 Oþ þ Cl 23. Pure water is neutral because when it ionizes it produces equal molar concentrations of acid [Hþ] and base [OH] ions. 24. The fundamental difference between a colloidal dispersion and a true solution lies in the size of the particles. In a true solution particles are usually ions or hydrated molecules and are less than 1 nm in size. In colloidals the particles are aggregates of ions or molecules, ranging in size from 1-1000 nm. 25. Dialysis is the process of removing dissolved solutes from a colloidal dispersion by use of a dialyzing membrane. The dissolved solutes pass through the membrane leaving the colloidal dispersion behind. Dialysis is used in artificial kidneys to remove soluble waste products from the blood. 26. A neutral solution is one in which the concentration of acid is equal to the concentration of base ð½Hþ ¼ ½OH Þ. An acidic solution is one in which the concentration of acid is greater than the concentration of base ð½Hþ > ½OH Þ. A basic solution is one in which the concentration of base is greater than the concentration of acid ð½Hþ < ½OH Þ. 27. Acid rain is caused by the release of nitrogen and sulfur oxides into the air. When these oxides are carried through the atmosphere they react with water and form sulfuric acid ðH2 SO4 Þ and nitric acid ðHNO3 Þ. Precipitation (rain or snow) carries the acids to the ground. 28. A titration is used to determine the concentration of a specific substance (often an acid or a base) in a sample. A titration determines the volume of a reagent of known concentration that is required to completely react with a volume of a sample of unknown concentration. An indicator is used to help visualize the endpoint of a titration. The endpoint is the point at which enough of the reagent of known concentration has been added to the sample of unknown concentration to completely react with the unknown solution. An indicator color change is visible when the endpoint has been reached. - 183 - - Chapter 15 - SOLUTIONS TO EXERCISES 1. Conjugate acid – base pairs: (a) NH3 NHþ 4 ; H2 O OH (b) HC2 H3 O2 C2 H3 O2 ; H2 O H3 Oþ 2 (c) H2 PO 4 HPO4 ; OH H2 O (d) HCl Cl ; H2 O H3 Oþ 2. Conjugate acid – base pairs: (a) H2 S HS ; NH3 NH4þ 2 þ (b) HSO 4 SO4 ; NH3 NH4 (c) HBr Br ; CH3 O CH3 OH (d) HNO3 NO3 ; H2 O H3 Oþ 3. (a) (b) (c) (d) (e) (f) ZnðsÞ þ 2 HClðaqÞ ! ZnCl2 ðaqÞ þ H2 ðgÞ AlðOHÞ3 ðsÞ þ 3 H2 SO4 ðaqÞ ! Al2 ðSO4 Þ3 ðaqÞ þ 6 H2 Oðl Þ Na2 CO3 ðaqÞ þ 2 HC2 H3 O2 ðaqÞ ! 2 NaC2 H3 O2 ðaqÞ þ H2 Oðl Þ þ CO2 ðgÞ MgOðsÞ þ 2 HIðaqÞ ! MgI2 ðaqÞ þ H2 Oðl Þ CaðHCO3 Þ2 ðsÞ þ 2 HBrðaqÞ ! CaBr2 ðaqÞ þ 2 H2 Oðl Þ þ 2 CO2 ðgÞ 3 KOHðaqÞ þ H3 PO4 ðaqÞ ! K3 PO4 ðaqÞ þ 3 H2 Oðl Þ 4. Complete and balance these equations: (a) Fe2 O3 ðsÞ þ 6 HBrðaqÞ ! 2 FeBr3 ðaqÞ þ 3 H2 Oðl Þ (b) 2 AlðsÞ þ 3 H2 SO4 ðaqÞ ! Al2 ðSO4 Þ3 ðaqÞ þ 3 H2 ðgÞ (c) 2 NaOHðaqÞ þ H2 CO3 ðaqÞ ! Na2 CO3 ðaqÞ þ 2 H2 Oðl Þ (d) BaðOHÞ2 ðsÞ þ 2 HClO4 ðaqÞ ! BaðClO4 Þ2 ðaqÞ þ 2 H2 Oðl Þ (e) MgðsÞ þ 2 HClO4 ðaqÞ ! MgðClO4 Þ2 ðaqÞ þ H2 ðgÞ (f) K2 OðsÞ þ 2 HIðaqÞ ! 2 KIðaqÞ þ H2 Oðl Þ 5. (a) Zn þ ð2 Hþ þ 2 Cl Þ ! ðZn2þ þ 2 Cl Þ þ H2 (b) Zn þ 2 Hþ ! Zn2þ þ H2 ! 2 Al3þ þ 3 SO2 þ 6 H2 O 2 AlðOHÞ3 þ 6 Hþ þ 3 SO2 4 4 (c) AlðOHÞ3 þ 3 Hþ ! Al3þ þ 3 H2 O þ 2 HC2 H3 O2 ! 2 Naþ þ 2 C2 H3 O 2 Naþ þ CO2 3 2 þ H2 O þ CO2 CO2 3 þ 2 HC2 H3 O2 ! 2 C2 H3 O2 þ H2 O þ CO2 (d) MgO þ ð2 Hþ þ 2 I Þ ! ðMg2þ þ 2 I Þ þ H2 O MgO þ 2 Hþ ! Mg2þ þ H2 O (e) CaðHCO3 Þ2 þ ð2 Hþ þ 2 Br Þ ! ðCa2þ þ 2 Br Þ þ 2 H2 O þ 2 CO2 (f) CaðHCO3 Þ2 þ 2 Hþ ! Ca2þ þ H2 O þ CO2 þ 3 H2 O ð3 Kþ þ 3 OH Þ þ H3 PO4 ! 3 Kþ þ PO3 4 3 OH þ H3 PO4 ! PO3 4 þ 3 H2 O - 184 - - Chapter 15 6. (a) Fe2 O3 þ ð6 Hþ þ 6 Br Þ ! ð2 Fe3þ þ 6 Br Þ þ 3 H2 O (b) Fe2 O3 þ 6 Hþ ! 2 Fe3þ þ 3 H2 O 2 Al þ 6 Hþ ! 3 SO2 ! 2 Al3þ þ 3 SO2 þ 3 H2 4 4 2 Al þ 6 Hþ ! 2 Al3þ þ 3 H2 (c) þ 2 H2 O ð2 Naþ þ 2 OH Þ þ H2 CO3 ! 2 Naþ þ CO2 3 (d) 2 OH þ H2 CO3 ! CO2 3 þ 2 H2 O þ 2þ þ 2 ClO BaðOHÞ2 þ 2 H þ 2 ClO 4 ! Ba 4 þ 2 H2 O (e) BaðOHÞ2 þ 2 Hþ ! Ba2þ þ 2 H2 O 2þ þ 2 ClO Mg þ 2 Hþ þ 2 ClO 4 ! Mg 4 þ H2 Mg þ 2 Hþ ! Mg2þ þ H2 (f) K2 O þ ð2 Hþ þ 2 I Þ ! ð2 Kþ þ 2 I Þ þ H2 O K2 O þ 2 Hþ ! 2 Kþ þ H2 O 7. The following compounds are electrolytes: (a) SO3 , acid in water (b) K2 CO3 , salt (e) CuBr2 , salt (f) HI, acid in water 8. The following compounds are electrolytes: (b) P2 O5 , acid in water (c) NaClO, salt (d) LiOH, base (f) KMnO4 , salt 9. Molarity of ions. (a) (b) (c) (d) 1 mol Cu2þ ¼ 1:25 M Cu2þ ð1:25 M CuBr2 Þ 1 mol CuBr2 2 mol Br ¼ 2:50 M Br ð1:25 M CuBr2 Þ 1 mol CuBr2 1 mol Naþ ¼ 0:75 M Naþ ð0:75 M NaHCO2 Þ 1 mol NaHCO2 1 mol HCO 3 ð0:75 M NaHCO3 Þ ¼ 0:75 M HCO 3 1 mol NaHCO3 3 mol Kþ ¼ 10:5 M Kþ ð3:50 M K3 AsO4 Þ 1 mol K3 AsO2 1 mol AsO3 4 ¼ 3: 50 M AsO 3 ð3:50 M K3 AsO4 Þ 4 1 mol K3 AsO4 2 mol NHþ 4 0:65 M ðNH4 Þ2 SO4 ¼ 1: 3 M NH þ 4 1 mol ðNH4 Þ2 SO4 1 mol SO2 4 ¼ 0:65 M SO2 0:65 M ðNH4 Þ2 SO4 4 1 mol ðNH4 Þ2 SO4 - 185 - - Chapter 15 10. Molarity of ions. (a) (b) (c) (d) 1 mol Fe3þ ¼ 2:25 M Fe3þ 1 mol FeCl3 3 mol Cl ð2:25 M FeCl3 Þ ¼ 6:75 M Cl 1 mol FeCl3 1 mol Mg2þ ¼ 1:20 M Mg2þ ð1:20 M MgSO4 Þ 1 mol MgSO4 1 mol SO2 4 ¼ 1:20 M SO2 ð1:20 M MgO4 Þ 4 1 mol MgSO4 1 mol Naþ ¼ 0:75 M Naþ ð0:75 M NaH2 PO4 Þ 1 mol NaH2 PO4 1 mol H2 PO 4 ¼ 0:75 M H2 PO ð0:75 M NaH2 PO4 Þ 4 1 mol NaH2 PO4 1 mol Ca2þ ¼ 0:35 M Ca2þ 0:35 M CaðClO3 Þ2 1 mol CaðClO3 Þ2 2 mol ClO 3 ¼ 0:70 M ClO 0:35 M CaðClO3 Þ2 3 1 mol CaðClO3 Þ2 ð2:25 M FeCl3 Þ 11. We will use the data from No. 9 to solve these problems. 100 mL = 0.100 L 1:25 mol Cu2þ 63:55 g (a) ð0:100 LÞ ¼ 7:94 g Cu2þ L mol 2:50 mol Br 79:90 g ð0:100 LÞ ¼ 20:0 g Br L mol 0:75 mol Naþ 22:99 g ¼ 1:7 g Naþ (b) ð0:100 LÞ L mol 0:75 mol HCO 61:02 g 3 ð0:100 LÞ ¼ 4:6 g HCO 3 L mol 10:5 mol Kþ 39:10 g ¼ 41:1 g kþ (c) ð0:100 LÞ L mol 3:50 mol AsO3 138:9 g 4 ð0:100 LÞ ¼ 48:6 g AsO3 4 L mol 1:3 mol NHþ 18:04 g 4 (d) ð0:100 LÞ ¼ 2:3 g NHþ 4 L mol 12. We will use the data from No. 10 to solve these problems 100 mL = 0.100 L 2:25 mol Fe3þ 55:85 g (a) ð0:100 LÞ ¼ 12:6 g Fe3þ L mol 6:75 mol Cl 35:45 g ð0:100 LÞ ¼ 23:9 g Cl L mol - 186 - - Chapter 15 (b) (c) (d) 1:20 mol Mg2þ 24:31 g ð0:100 LÞ ¼ 2:92 g Mg2þ L mol 1:20 mol SO2 96:07 g 4 ð0:100 LÞ ¼ 11:5 g SO2 4 L mol 0:75 mol Naþ 22:99 g ð0:100 LÞ ¼ 1:7 g Naþ L mol 0:75 mol H2 PO 96:99 g H2 PO 4 4 ¼ 7:3 g H2 PO2 ð0:100 LÞ 4 L mol 0:35 mol Ca2þ 40:08 g ð0:100 LÞ ¼ 1:4 g Ca2þ L mol 0:70 mol ClO 83:45 g 3 ð0:100 LÞ ¼ 5:8 g ClO 3 L mol 13. pH ¼ log½Hþ ½Hþ ¼ 10pH (a) ½Hþ ¼ 1 105 (b) ½Hþ ¼ 3 109 (c) ½Hþ ¼ 6 102 14. pH ¼ log½Hþ ½Hþ ¼ 10pH (a) ½Hþ ¼ 1 107 (b) ½Hþ ¼ 2 104 (c) ½Hþ ¼ 3 1012 0:50 mol HCl ¼ 0:028 mol HCl 15. (a) ð55:5 mLÞ 1000 mL 1:25 mol HCl ð75:0 mLÞ ¼ 0:0938 mol HCl 1000 mL Total mol HCl ¼ 0:028 mol þ 0:0938 mol ¼ 0:122 mol HCl Total volume ¼ 0:0555 L þ 0:0750 L ¼ 0:1305 L 0:122 mol HCl ¼ 0:935 M HCl 0:1305 L 1 mol Hþ ¼ 0:935 M Hþ ð0:935 M HClÞ 1 mol HCl 1 mol Cl ð0:935 M HClÞ ¼ 0:935 M Cl 1 mol HCl 0:75 mol CaCl2 ¼ 0:094 mol CaCl2 (b) ð125 mLÞ 1000 mL 0:25 mol CaCl2 ¼ 0:031 mol CaCl2 ð125 mLÞ 1000 mL - 187 - - Chapter 15 Total mol CaCl2 ¼ 0:094 mol þ 0:031 mol ¼ 0:125 mol CaCl2 Total volume ¼ 0:125 L þ 0:125 L ¼ 0:250 L 0:125 mol CaCl2 ¼ 0:500 M CaCl2 0:250 L 1 mol Ca2þ ð0:500 M CaCl2 Þ ¼ 0:500 M Ca2þ 1 mol CaCl2 2 mol Cl ¼ 1:00 M Cl ð0:500 M CaCl2 Þ 1 mol CaCl2 (c) NaOH þ HCl ! NaCl þ H2 O 0:333 mol NaOH ¼ 0:0117 mol NaOH ð35:0 mLÞ 1000 mL 0:250 mol HCl ð22:5 mLÞ ¼ 0:00563 mol HCl 1000 mL 0.00563 mol HCI reacts with 0.00563 mol NaOH. 0.0061 mol NaOH remains uareacted and 0.00563 mol NaCl is produced. The final volume is 0.0575 L and contains 0.0061 mol NaOH and 0.00563 mol NaCl. Moles of ions are: (0.0061 mol Naþ þ 0.00563 mol Naþ) ¼ 0.0117 mol Naþ, 0.0061 mol OH , and 0.00563 mol Cl . Concentrations of ions are: 0:0177 mol Naþ ¼ 0:203 M Naþ 0:0575 L 0:0061 mol OH ¼ 0:11 M OH 0:0575 L 0:00563 mol Cl ¼ 0:0979 M Cl 0:0575 L (d) H2 SO4 þ 2 NaOH ! Na2 SO4 þ 2 H2 O 0:500 mol H2 SO4 ð12:5 mLÞ ¼ 0:00625 mol H2 SO4 1000 mL 0:175 mol NaOH ð23:5 mLÞ ¼ 0:00411 mol NaOH 1000 mL 1 mol H2 SO4 ¼ 0:00206 mol H2 SO4 reacted ð0:00411 mol NaOHÞ 2 mol NaOH 0.00206 mol H2SO4 reacts with 0.00411 mol NaOH. 0.00419 mol H2SO4 remains unreacted and 0.00206 mol Na2SO4 is produced. The final volume is 0.0360 L and contains 0.00206 mol Na2SO4 and 0.00419 mol H2SO4. Moles of ions are 0.00412 mol Naþ, 0.00838 mol Hþ, and (0.00206 þ 0.00419) ¼ 0.00625 mol SO2 4 . Concentration of ions are: 0:0412 mol Naþ 0:0838 mol Hþ ¼ 0:114 M Naþ ¼ 0:233 M Hþ 0:0360 L 0:0360 L 0:00625 mol SO2 4 ¼ 0:174 M SO2 4 0:0360 L - 188 - - Chapter 15 0:10 mol NaCl 16. (a) ð45:5 mLÞ ¼ 0:0046 mol NaCl 1000 mL 0:35 mol NaCl ð60:5 mLÞ ¼ 0:021 mol NaCl 1000 mL Total mol NaCl ¼ 0:0046 mol þ 0:021 mol ¼ 0:026 mol NaCl Total volume ¼ 0:0455 L þ 0:0605 L ¼ 0:1060 L 0:026 mol NaCl ¼ 0:25 M NaCl 0:1060 L 1 mol Naþ ¼ 0:25 M Naþ ð0:25 M NaClÞ 1 mol NaCl 1 mol Cl ¼ 0:25 M Cl ð0:25 M NaClÞ 1 mol NaCl 1:25 mol HCl (b) ð95:5 mLÞ ¼ 0:119 mol HCl 1000 mL 2:50 mol HCl ð125:5 mLÞ ¼ 0:314 mol HCl 1000 mL Total mol HCl ¼ 0:119 mol þ 0:314 mol ¼ 0:433 mol HCl Total volume ¼ 0:0955 L þ 0:1255 L ¼ 0:2210 L 0:433 mol HCl ¼ 1:96 M HCl 0:2210 L 1 mol Hþ ¼ 1:96 M Hþ ð1:96 M HClÞ 1 mol HCl 1 mol Cl ¼ 1:96 M Cl ð1:96 M HClÞ 1 mol HCl 0:10 mol BaðNO3 Þ2 (c) ð15:5 mLÞ ¼ 0:0016 M BaðNO3 Þ2 1000 mL 0:20 mol AgNO3 ð10:5 mLÞ ¼ 0:0021 M AgNO3 1000 mL Number of moles of each substance: mol þ 0:0021 molÞ ¼ 0:0053 mol NO 3 Total volume ¼ 0:0155 L þ 0:0105 L ¼ 0:0260 L 0:0016 mol Ba2þ ¼ 0:062 M Ba2þ 0:0260 L 0:0021 mol Agþ ¼ 0:081 M Agþ 0:0260 L 0:0053 mol NO 3 ¼ 0:20 M NO 3 0:0260 L - 189 - 0:0016 mol Ba2þ , 0:0021 mol Agþ , and ð0:0032 - Chapter 15 (d) 0:25 mol NaCl ð25:5 mLÞ ¼ 0:0064 mol NaCl 1000 mL 0:15 mol CaðC2 H3 O2 Þ2 ¼ 0:0023 mol CaðC2 H3 O2 Þ2 ð15:5 mLÞ 1000 mL Number of moles of each substance: 0:0064 mol Naþ , 0:0064 mol Cl , 0:0023 mol Ca2þ , 0:0046 mol C2 H3 O 2. Total volume ¼ 0:0255 L þ 0:0155 L ¼ 0:0410 L 0:0064 mol Naþ ¼ 0:16 M Naþ 0:0410 L 0:0064 mol Cl ¼ 0:16 M Cl 0:0410 L 0:0023 mol Ca2þ ¼ 0:056 M Ca2þ 0:0410 L 0:0046 mol C2 H3 O 2 ¼ 0:11 M C2 H3 O 2 0:0410 L 17. The reaction of HCl and NaOH occurs on a 1:1 mole ratio. HCl þ NaOH ! NaCl þ H2 O At the endpoint in these titration reactions, equal moles of HCl and NaOH will have reacted. Moles ¼ (molarity) (volume). At the endpoint, mol HCl ¼ mol NaOH. Therefore, at the endpoint, M B VB M A VA ¼ M B VB MA ¼ VA ð37:70 mLÞð0:728 M Þ (a) ¼ 0:681 M HCl 40:3 mL (b) ð33:66 mLÞð0:306 M Þ ¼ 0:542 M HCl 19:00 mL (c) ð18:00 mLÞð0:555 M Þ ¼ 0:367 M HCl 27:25 mL 18. The reaction of HCl and NaOH occurs on a 1:1 mole ratio. HCl þ NaOH ! NaCl þ H2 O At the endpoint in these titration reactions, equal moles of HCl and NaOH will have reacted. Moles ¼ (molarity)(volume). At the endpoint, mol HCl ¼ mol NaOH. Therefore, at the endpoint, M A VA ¼ M B VB (a) MB ¼ M A VA VB ð37:19 mLÞð0:126 M Þ ¼ 0:147 M NaOH 31:91 mL - 190 - - Chapter 15 - (b) ð48:04 mLÞð0:482 M Þ ¼ 0:964 M NaOH 24:02 mL 19. (a) (b) (c) ð13:13 mLÞð1:425 M Þ ¼ 0:4750 M NaOH 39:39 mL 3 2þ 2 PO3 4 ðaqÞ þ 3 Ca ðaqÞ ! Ca3 PO4 2 ðsÞ 2 AlðsÞ þ 6 Hþ ðaqÞ ! 3 H2 ðgÞ þ 2 Al3þ ðaqÞ þ CO2 3 ðaqÞ þ 2 H ðaqÞ ! H2 OðaqÞ þ CO2 ðgÞ 20. (a) (b) (c) MgðsÞ þ Cu2þ ðaqÞ ! CuðsÞ þ Mg2þ ðaqÞ Hþ ðaqÞ þ OH ðaqÞ ! H2 Oðl Þ þ SO2 3 ðaqÞ þ 2 H ðaqÞ ! H2 Oðl Þ þ SO2 ðgÞ (c) 21. The more acidic solution is listed followed by an explanation. (a) (b) 1 molar H2SO4. The concentration of Hþ in 1 M H2SO4 is greater than 1 M since there are two ionizable hydrogens per mole of H2SO4. In HCl the concentration of Hþ will be 1 M, since there is only one ionizable hydrogen per mole HCl. 1 molar HCl. HCl is a strong electrolyte, producing more Hþ than HC2H3O2 which is a weak electrolyte. 22. The more acidic solution is listed followed by an explanation. (a) (b) 2 molar HCl. 2 M HCl will yield 2 M Hþ concentration. 1 M HCl will yield 1 M Hþ concentration. 1 molar H2SO4. Both are strong acids. The concentration of Hþ in 1 M H2SO4 is greater than in 1 M HNO3 because H2SO4 has two ionizable hydrogens per mole whereas HNO3 has only one ionizable hydrogen per mole. 23. 2 HClO4 ðaqÞ þ CaðOHÞ2 ðsÞ ! CaðClO4 Þ2 ðaqÞ þ 2 H2 Oðl Þ g CaðOHÞ2 ! mol CaðOHÞ2 ! mol HClO4 ! mL HClO4 mol 2 mol HClO 1000 mL 50:25 g CaðOHÞ2 ¼ 2:58 103 mL 74:10 g 1 mol CaðOHÞ2 0:525 mol 24. 3 HClðaqÞ þ AlðOHÞ3 ðsÞ ! AlCl3 ðaqÞ þ 3 H2 Oðl Þ mL HCl ! mol HCl ! mol AlðOHÞ3 ! g AlðOHÞ3 0:125 mol 1 mol AlðOHÞ3 78:00 g ð275 mL HClÞ ¼ 0:894 g AlðOHÞ3 3 mol HCl 1000 mL mol 25. NaOH þ HCl ! NaCl þ H2 O First calculate the grams of NaOH in the sample. L HCl ! mol HCl ! mol NaOH ! g NaOH 0:2406 mol 1 mol NaOH 40:00 g ð0:01825 L HClÞ ¼ 0:1756 g NaOH in the sample L 1 mol HCl mol 0:1756 g NaOH ð100Þ ¼ 87:8% NaOH 0:200 g sample - 191 - - Chapter 15 26. NaOH þ HCl ! NaCl þ H2 O L HCl ! mol HCl ! mol NaOH ! g NaOH 0:466 mol 1 mol NaOH 40:00 g ð0:04990 L HClÞ ¼ 0:930 g NaOH in the sample L 1 mol HCl mol 1:00 g sample 0:930 g NaOH ¼ 0:070 g NaCl in the sample 0:070 g NaCl ð100Þ ¼ 7:0% NaCl in the sample 1:00 g sample 27. Zn þ 2 HCl ! ZnCl2 þ H2 This is a limiting reactant problem. First find the moles of Zn and HCl from the given data and then identify the limiting reactant. 1 mol ð5:00 g ZnÞ g Zn ! mol Zn ¼ 0:0765 mol Zn 65:39 g 0:350 mol ð0:100 L HClÞ ¼ 0:0350 mol HCl L Therefore Zn is in excess and HCl is the limiting reactant. 1 mol H2 ¼ 0:0175 mol H2 produced in the reaction ð0:0350 mol HClÞ 2 mol HCl 1 atm P ¼ ð700:torrÞ T ¼ 27 C ¼ 300: K ¼ 0:921 atm 760 torr PV ¼ nRT nRT ð0:0175 mol H2 Þð0:0821 L atm=mol KÞð300:KÞ ¼ ¼ 0:468 L H2 P 0:921 atm 28. Zn þ 2 HCl ! ZnCl2 þ H2 V¼ This is a limiting reactant problem. First find moles of Zn and HCl from the given data and then identify the limiting reactant. 1 mol ¼ 0:0765 mol Zn g Zn ! mol Zn ð5:00 g ZnÞ 65:39 g 0:350 mol ð0:200 L HClÞ ¼ 0:0700 mol HCl L Zn is in excess and HCl is the limiting reactant. 1 mol H2 ¼ 0:0350 mol H2 ð0:0700 mol HClÞ 2 mol HCl 1 atm T ¼ 27 C ¼ 300: K P ¼ ð700: torrÞ ¼ 0:921 atm 760 torr PV ¼ nRT V¼ nRT ð0:0350 mol H2 Þð0:0821 L atm=mol KÞð300: KÞ ¼ ¼ 0:936 L H2 P 0:921 atm - 192 - - Chapter 15 29. pH ¼ log½Hþ (a) (b) (c) ½Hþ ¼ 0:35 M; ½Hþ ¼ 1:75 M; ½Hþ ¼ 2:0 105 M; pH ¼ logð0:35Þ ¼ 0:46 pH ¼ logð1:75Þ ¼ 0:243 pH ¼ log 2:0 105 ¼ 4:70 30. pH ¼ log½Hþ (a) (b) (c) 31. (a) (b) 32. (a) (b) 33. (a) ½Hþ ¼ 0:0020 M; ½Hþ ¼ 7:0 108 M; ½Hþ ¼ 3:0 M; pH ¼ logð0:0020Þ ¼ 2:70 pH ¼ log 7:0 108 ¼ 7:15 pH ¼ logð3:0Þ ¼ 0:48 4 þ Orange juice ¼ 3:7 410 M H ¼ 3:43 pH ¼ log 3:7 10 3 þ Vinegar ¼ 2:8 10 3M H ¼ 2:55 pH ¼ log 2:8 10 Black coffee ¼ 5:0 105 M Hþ pH ¼ log 5:0 105 ¼ 4:30 þ Limewater ¼ 3:4 1011 MH 11 ¼ 10:47 pH ¼ log 3:4 10 H2 O NH3 is a weak base NH3 ðaqÞ Ð NHþ 4 ðaqÞ þ H2 OðaqÞ H2 O (b) HCl is a strong acid HClðaqÞ ! Hþ ðaqÞ þ Cl ðaqÞ (c) KOH is a strong base (d) HC2 H3 O2 is a weak acid HC2 H3 O2 ðaqÞ Ð Hþ ðaqÞ þ C2 H3 O 2 ðaqÞ H2 O KOH ! Kþ ðaqÞ þ OH ðaqÞ H2 O H2 O 34. (a) H2 C2 O4 is a weak acid H2 C2 O4 ðaqÞ Ð Hþ ðaqÞ þ HC2 O 4 ðaqÞ (b) BaðOHÞ2 is a strong base BaðOHÞ2 ! Ba2þ ðaqÞ þ 2 OH ðaqÞ (c) (d) HClO4 is a strong acid HClO4 ðaqÞ ! Hþ ðaqÞ þ ClO 4 ðaqÞ þ HBr is a strong acid HBrðaqÞ ! H ðaqÞ þ Br ðaqÞ H2 O H2 O 35. (a) basic (b) acidic (c) neutral 36. (a) (d) acidic (e) acidic (f) basic ! Ca2þ ðaqÞ þ 2 Cl ðaqÞ CaCl2 ðsÞ For each CaCl2 ionic compound, 1 calcium ion and 2 chloride ions result. Ca2+ Cl– Cl– - 193 - - Chapter 15 (b) KFðsÞ ! Kþ ðaqÞ þ F ðaqÞ For each KF ionic compound, 1 potassium ion and 1 fluoride ion result. K+ (c) F– AlBr3 ðsÞ ! Al3þ ðaqÞ þ 3 Br ðaqÞ For each AlBr3 ionic compound, 1 aluminum ion and 3 bromide ions result. Al3+ 37. Br– Br– Br– ! Ca2þ þ 2 I CaI2 0:520 mol I 1 mol Ca2þ 0:260 mol Ca2þ ¼ ¼ 0:260 M Ca2þ L 2 mol I L 38. H2 SO4 þ 2 NaOH ! Na2 SO4 þ 2 H2 O mol H2 SO4 ¼ M H2 SO4 mL NaOH ! mol NaOH ! mol H2 SO4 ; L 0:313 mol 1 mol H2 SO4 ð35:22 mL NaOHÞ ¼ 0:00551 mol H2 SO4 2 mol NaOH 1000 mL 0:00551 mol H2 SO4 ¼ 0:218 M H2 SO4 0:02522 L 39. The acetic acid solution freezes at a lower temperature than the alcohol solution. The acetic acid ionizes slightly while the alcohol does not. The ionization of the acetic acid increases its particle concentration in solution above that of the alcohol solution, resulting in a lower freezing point for the acetic acid solution. 40. It is more economical to purchase CH3OH at the same cost per pound as C2H5OH. Because CH3OH has a lower molar mass than C2H5OH, the CH3OH solution will contain more particles per pound in a given solution and therefore, have a greater effect on the freezing point of the radiator solution. Assume 100. g of each compound. 100: g CH3 OH: ¼ 2:84 mol 34:04 g=mol CH3 CH2 OH: 100: g ¼ 2:17 mol 46:07 g=mol - 194 - - Chapter 15 41. A hydronium ion is a hydrated hydrogen ion. þ H2 O ! H 3 Oþ Hþ ðhydrogen ionÞ ðhydronium ionÞ 42. Freezing point depression is directly related to the concentration of particles in the solution. C12 H22 O11 > HC2 H3 O2 > HCl > CaCl2 Highest freezing point 2 mol 3 mol ðparticles in solutionÞ 100 C pH ¼ log 1 106 ¼ 6:0 25 C pH ¼ log 1 107 ¼ 7:0 pH of H2 O is greater at 25 C 1 106 > 1 107 so, Hþ concentration is higher at 100 C. The water is neutral at both temperatures, because the H2 O ionizes into equal concentrations of Hþ and OH at any temperature. 1 mol 43. (a) (b) (c) Lowest freezing point 1 þ mol 44. As the pH changes by 1 unit, the concentration of Hþ in solution changes by a factor of 10. For example, the pH of 0.10 M HCl is 1.00, while the pH of 0.0100 M HCl is 2.00. 45. A 1.00 m solution contains 1 mol solute plus 1000 g H2 O. We need to find the total number of moles and then calculate the mole percent of each component. 1000 g H2 O ¼ 55:49 mol H2 O 18:02 g=mol 55:49 mol H2 O þ 1:00 mol solute ¼ 56:49 total moles 1:00 mol solute ð100Þ ¼ 1:77% solute 56:49 mol 55:49 mol H2 O ð100Þ ¼ 98:23% H2 O 56:49 mol 46. Na2 CO3 þ 2 HCl ! 2 NaCl þ CO2 þ H2 O ! mol Na2 CO3 ! mol HCl ! M HCl g Na2 CO3 1 mol 2 mol HCl 1 ð0:452 g Na2 CO3 Þ ¼ 0:201 M HCl 106:0 g 1 mol Na2 CO3 0:0424 L ! CaCl2 þ 2 H2 O 47. 2 HCl þ CaðOHÞ2 ! mol CaðOHÞ2 ! mol HCl ! mL HCl g CaðOHÞ2 1 mol 2 mol HCl 1000 mL 2:00 g CaðOHÞ2 ¼ 437 mL of 0:1234 M HCl 74:10 g 1 mol CaðOHÞ2 0:1234 mol ! KNO3 þ H2 O 48. KOH þ HNO3 L HNO3 ! mol HNO3 ! mol KOH ! g KOH 0:240 mol 1 mol KOH 56:11 g ð0:05000 L HNO3 Þ ¼ 0:673 g KOH L 1 mol HNO3 mol - 195 - - Chapter 15 49. pH of 1.0 L solution containing 0.1 mL of 1.0 M HCl 1:0 L 1 mol HCl ð0:1 mLÞ ¼ 1 104 mol HCl added 1000 mL L 1 104 mol HCl ¼ 1 104 M HCl 1:0 L 1 104 M HCl produces 1 104 M Hþ pH ¼ log 1 104 ¼ 4:0 50. Dilution problem: V1 M 1 ¼ V2 M 2 M1 ¼ V1 M 2 V1 M1 ¼ ð10:0 mLÞð12 M Þ ¼ 0:462 M HCl ð260:0 mLÞ 51. NaOH þ HCl ! NaCl þ H2 O 1 mol ð3:0 g NaOHÞ ¼ 0:075 mol NaOH 40:00 g 1L 0:10 mol ð500: mL HClÞ ¼ 0:050 mol HCl 1000 mL L This solution is basic. The NaOH will neutralize the HCl with an excess of 0.025 mol of NaOH remaining unreacted. 52. BaðOHÞ2 ðaqÞ þ 2 HClðaqÞ ! BaCl2 ðaqÞ þ 2 H2 Oðl Þ 0:35 mol 0:38 L BaðOHÞ2 ¼ 0:13 mol BaðOHÞ2 L 0:13 mol BaðOHÞ2 ! 0:26 mol OH 0:65 mol ð0:500 L HClÞ ¼ 0:33 mol HCl L 0:33 mol HCl ! 0:33 mol Hþ 0.33 mol Hþ will neutralize 0.26 mol OH and leave 0.07 mol Hþ ð0:33 0:26Þ remaining in solution. Total volume ¼ 500: mL þ 380 mL ¼ 880 mLð0:88 LÞ 0:07 mol Hþ ¼ 0:08 M Hþ 0:88 L pH ¼ log½Hþ ¼ log 8 102 ¼ 1:1 ½Hþ in solution ¼ 0:2000 mol 53. ð0:05000 L HClÞ ¼ 0:01000 mol HCl ¼ 0:01000 mol Hþ in 50:00 mL HCl L (a) no base added: pH ¼ logð0:2000Þ ¼ 0:700 - 196 - - Chapter 15 - (b) 0:2000 mol 10:00 mL base added: ð0:01000 LÞ ¼ 0:002000 mol NaOH L ¼ 0:002000 mol OH ð0:01000 mol Hþ Þ ð0:002000 mol OH Þ ¼ 0:00800 mol Hþ in 60:00 mL solution 0:00800 mol 0:00800 þ ½H ¼ pH ¼ log ¼ 0:880 0:06000 L 0:06000 (c) 25:00 mL base added: 0:2000 mol ¼ 0:005000 mol NaOH ¼ mol OH ð0:02500 LÞ L ð0:01000 mol Hþ Þ ð0:005000 mol OH Þ ¼ 0:00500 mol Hþ in 75:00 solution 0:00500 mol 0:00500 þ H ½ ¼ pH ¼ log ¼ 1:2 0:07500 L 0:07500 (d) 49.00 mL base added: 0:2000 mol ¼ 0:009800 mol NaOH ¼ mol OH ð0:04900 LÞ L ð0:01000 mol Hþ Þ ð0:009800 mol OH Þ ¼ 0:00020 mol Hþ in 99:00 mL solution 0:00020 mol 0:00020 þ ½H ¼ pH ¼ log ¼ 2:69 0:09900 L 0:09900 (e) 49.90 mL base added: 0:2000 mol ¼ 0:009980 mol NaOH ¼ mol OH ð0:04990 LÞ L ð0:01000 mol Hþ Þ ð0:009800 mol OH Þ ¼ 2 105 mol Hþ in 99:00 mL solution 2 105 mol 2 105 þ ¼ 3:7 ½H ¼ pH ¼ log 0:09990 0:09990 L (f) 49.99 mL base added: 0:2000 mol ð0:04999 LÞ ¼ 0:009998 mol NaOH ¼ mol OH L ð0:01000 mol Hþ Þ ð0:009998 mol OH Þ ¼ 2 106 mol Hþ in 99:99 mL solution 2 106 2 106 þ ¼ 4:7 ½H ¼ pH ¼ log 0:09999 L 9:999 102 - 197 - - Chapter 15 (g) 50.00 mL of 0.2000 M NaOH neutralizes 50.00 mL of 0.2000 M HCl. No excess acid or base is in the solution. Therefore, the solution is neutral with a pH ¼ 7.0 8 7 6 pH 5 4 3 2 1 0 54. (a) (b) (c) 0 10 20 30 mL NaOH 40 50 2 NaOHðaqÞ þ H2 SO4 ðaqÞ ! Na2 SO4 ðaqÞ þ 2 H2 Oðl Þ ! mol NaOH ! mL NaOH mol H2 SO4 2 mol NaOH 1000 mL ð0:0050 mol H2 SO4 Þ ¼ 1:0 102 mL NaOH 1 mol H2 SO4 0:10 mol 1 mol NaOH 142:1 g ð0:0050 mol H2 SO4 Þ ¼ 0:71 g Na2 SO4 1 mol H2 SO4 mol 55. HNO3 þ KOH ! KNO3 þ H2 O M A VA ¼ M B VB ðM A Þð10:0 mLÞ ¼ ð1:2 M Þð100:00 mLÞ M A ¼ 1:2 M ðdiluted solutionÞ Dilution problem M 1 V1 ¼ M 2 V2 ðM 1 Þð25 mLÞ ¼ ð0:60 M Þð50:0 mLÞ M 1 ¼ 12 M HNO3 ðoriginal solutionÞ 56. Yes, adding water changes the concentration of the acid, which changes the concentration of the ½Hþ , and changes the pH. The pH will rise. No, the solution theoretically will never reach a pH of 7, but it will approach pH 7 as water is added. 57. First determine the molarity of the two HCl solutions. Take the antilog of the pH value to obtain the ½Hþ . pH ¼ 0:300; Hþ ¼ 2:00 M ¼ 2:00 M HCl pH ¼ 0:150; Hþ ¼ 1:41 M ¼ 1:41 M HCl Now treat the calculation as a dilution problem. V1 M 1 V2 ¼ V1 M 1 ¼ V 2 M 2 M2 ð200 mL HClÞð2:00 M Þ ¼ 284 mL solution 1:41 M 284 mL 200 mL ¼ 84 mL H2 O to be added - 198 - - Chapter 15 58. mol acid ¼ mol base (lactic acid has one acidic H) 1:0 g acid 0:65 mol ¼ ð0:017 LÞ ¼ 0:01105 mol molar mass L 1:0 g ¼ 0:01105 mol molar mass 1:0 g ¼ 90:17 g=mol 0:01105 mol mass of empirical formula ðHC3 H5 O3 Þ ¼ 90:17 g=mol molar mass ¼ mass of empirical formula Therefore the molecular formula is HC3 H5 O3 - 199 -
© Copyright 2026 Paperzz