EXAM I​I

term111 math002 major2 master
1) (sin 22.5" + cos 22.5 ")'
A) 2 + d
=
2
B) 1
C)
d
-
2
A) sin 52 "
B) sin 38 "
C) - cos 38"
D) - sin 52"
E) cos 52"
2
=
=
a
5 ; ~3 . 2 0 ~ ~2 +S ; ~ 2 1 ~ ~ ~ &s°+c~
22.
I
+ L r ~ 2 2 . 5 'l0
term111 math002 major2 master
3)sin [tan-'[+]
-
c o s - l [ ~ ] ]=
33
A)
65
= Ga, c,p - CIC
' Siap
63
B'
65
4)If u > 0, then sin
4 (u' - 4)
E) U ,
2
.
-54
* -I 2
'3
- 3 . -
<
5
13
term111 math002 major2 master
5) If f(x) = 2 sin 25 - 2
3
6 cos 53
is written in the form Asin (Bx + C) where
A > O ,~ > 0 a n d - E c ~ c 0 , t h e n t h e ~ r a ~f hhas:
of
2
A) Amplitude 4, phase shift n units to the right.
B) Amplitude 2, phase shift 1units to the right.
3
C) Amplitude 4, phase shift n units to the left.
D) Amplitude - 4, phase shift
E) Amplitude 2 + 2
units to the left.
3
phase shift n units to the left.
6,
6) The sum of all solutions of the equation
- 2 cos 2x sin 3x + 2 cos 3x sin 2x =
on [- n, n] is
A)- n
6
term111 math002 major2 master
7) If sin-'(2x) + cos-'x = 3 ,then x2 =
6
1
8) The graph of the function y = -tanq12x
3
7T
A) range = (- -7T, - -),
domain = (2
6
7-t n:
8) range = (-, -) , domain = (- m,
6 2
7T 7T
C) range = (- - -) , domain = (2' 2
n 7T
D) range = (- -, -),
2 2
E) range = (-
m, m)
7T
-has
-I
3
2
m, m)
m
--
)
6
<;
6
- "- L.
domain = [- 1,1]
2 2
-n
-1
'R
,
!
ton l%->
3
m, m)
7T -)
72
, domain = (- -,
-I
C 3 tan~x+
J
3
3
I
&n
-I
2%-3
Ran e = ( -rp - X
6)
z
n
a-2
<-z
d
term111 math002 major2 master
If tan x = 3 , sin x < 0 , then sin 2x + cos 2x =
1
A) - 5
B)
7
C)
6
5
5
4
DF5
10) If (tan x sin x12 = A tan2x + B sin2x is an identity, then A + B =
A) 0
2
B)-2
( i wG x ) = 4m7~
(l C x )
C) 2
2
= t a n x (I;2W
D) 1
-
term111 math002 major2 master
11)The number of all vertical asymptotes of the function
-
3n 5 x 5 -371 has
12) The graph of y = - csc(2x + n) + 2 , where - I
4
A)
B)
C)
D)
E)
three x - intercepts.
four vertical asymptotes.
one y - intercept.
two vertical asymptotes.
four x - intercepts.
(6~
6 1,62
.
p4re
see
4
+he
7 FYI J -0
PAasc
5
22;2
x "iet
%faph-p-
r
Y = -7 y
2
622)
6
I
I
x z3as = x $03 2 - (x $03 + 1) (3
- x,:asp=
x uaq ( g
term111 math002 major2 master
15) If csc 9 = X+1,x>~,thencot9=
X
16) (cot x - csc x)' simplifies to
A) 1 - COS X
1 + cos x
B) 1+ sinx
1 - sin x
C) 1 - tan x
1 + tanx
D) 1 + cos x
1 - cos x
1- sinx
1+ sin x
= -L- A
5;n'x
--
1-
2Cd+ I +
Sj2~
sin' x
CI x - .
r+CG
term111 math002 major2 master
17)
csc a + cot a - csc a - cot a is identical to
csca-cota
csca+cota
A) 4 cos a
sin2a
B) - 4 csc a cot a
C) 2 (csc2a + ~ o t ~ a ) ~
4 sin2a
COS a
18)The value of cos 285" is
(Hint:use
- sum
- and difference identities.)
term111 math002 major2 master
sin 20" cos 110" + cos 20" sin 110"
cos 50" cos 80" - cos 40" cos 10"
#)
- tan50°
B) cot 130"
C) cot 110"
D) - 2 4 3
E) - tan 70"
19)
B)
C)
D)
E)
cot 2a
- 243
- tan 2a
243
-