term111 math002 major2 master 1) (sin 22.5" + cos 22.5 ")' A) 2 + d = 2 B) 1 C) d - 2 A) sin 52 " B) sin 38 " C) - cos 38" D) - sin 52" E) cos 52" 2 = = a 5 ; ~3 . 2 0 ~ ~2 +S ; ~ 2 1 ~ ~ ~ &s°+c~ 22. I + L r ~ 2 2 . 5 'l0 term111 math002 major2 master 3)sin [tan-'[+] - c o s - l [ ~ ] ]= 33 A) 65 = Ga, c,p - CIC ' Siap 63 B' 65 4)If u > 0, then sin 4 (u' - 4) E) U , 2 . -54 * -I 2 '3 - 3 . - < 5 13 term111 math002 major2 master 5) If f(x) = 2 sin 25 - 2 3 6 cos 53 is written in the form Asin (Bx + C) where A > O ,~ > 0 a n d - E c ~ c 0 , t h e n t h e ~ r a ~f hhas: of 2 A) Amplitude 4, phase shift n units to the right. B) Amplitude 2, phase shift 1units to the right. 3 C) Amplitude 4, phase shift n units to the left. D) Amplitude - 4, phase shift E) Amplitude 2 + 2 units to the left. 3 phase shift n units to the left. 6, 6) The sum of all solutions of the equation - 2 cos 2x sin 3x + 2 cos 3x sin 2x = on [- n, n] is A)- n 6 term111 math002 major2 master 7) If sin-'(2x) + cos-'x = 3 ,then x2 = 6 1 8) The graph of the function y = -tanq12x 3 7T A) range = (- -7T, - -), domain = (2 6 7-t n: 8) range = (-, -) , domain = (- m, 6 2 7T 7T C) range = (- - -) , domain = (2' 2 n 7T D) range = (- -, -), 2 2 E) range = (- m, m) 7T -has -I 3 2 m, m) m -- ) 6 <; 6 - "- L. domain = [- 1,1] 2 2 -n -1 'R , ! ton l%-> 3 m, m) 7T -) 72 , domain = (- -, -I C 3 tan~x+ J 3 3 I &n -I 2%-3 Ran e = ( -rp - X 6) z n a-2 <-z d term111 math002 major2 master If tan x = 3 , sin x < 0 , then sin 2x + cos 2x = 1 A) - 5 B) 7 C) 6 5 5 4 DF5 10) If (tan x sin x12 = A tan2x + B sin2x is an identity, then A + B = A) 0 2 B)-2 ( i wG x ) = 4m7~ (l C x ) C) 2 2 = t a n x (I;2W D) 1 - term111 math002 major2 master 11)The number of all vertical asymptotes of the function - 3n 5 x 5 -371 has 12) The graph of y = - csc(2x + n) + 2 , where - I 4 A) B) C) D) E) three x - intercepts. four vertical asymptotes. one y - intercept. two vertical asymptotes. four x - intercepts. (6~ 6 1,62 . p4re see 4 +he 7 FYI J -0 PAasc 5 22;2 x "iet %faph-p- r Y = -7 y 2 622) 6 I I x z3as = x $03 2 - (x $03 + 1) (3 - x,:asp= x uaq ( g term111 math002 major2 master 15) If csc 9 = X+1,x>~,thencot9= X 16) (cot x - csc x)' simplifies to A) 1 - COS X 1 + cos x B) 1+ sinx 1 - sin x C) 1 - tan x 1 + tanx D) 1 + cos x 1 - cos x 1- sinx 1+ sin x = -L- A 5;n'x -- 1- 2Cd+ I + Sj2~ sin' x CI x - . r+CG term111 math002 major2 master 17) csc a + cot a - csc a - cot a is identical to csca-cota csca+cota A) 4 cos a sin2a B) - 4 csc a cot a C) 2 (csc2a + ~ o t ~ a ) ~ 4 sin2a COS a 18)The value of cos 285" is (Hint:use - sum - and difference identities.) term111 math002 major2 master sin 20" cos 110" + cos 20" sin 110" cos 50" cos 80" - cos 40" cos 10" #) - tan50° B) cot 130" C) cot 110" D) - 2 4 3 E) - tan 70" 19) B) C) D) E) cot 2a - 243 - tan 2a 243 -
© Copyright 2026 Paperzz