logb m

www.iTutoring.com -­‐ NOTES Name _________________________________ Expanding and Condensing Logarithmic Expressions Date ___________________ Period _______ Product Property
Power Property
logb m·n = logb m + logb n
logb mx = x·logb m
Quotient Property
Special Log Properties
logb m = logb m – logb n
n
logb b = 1
logb 1 = 0
Inverse Properties
logb bx = x
b
log x
b
=x
Product Property
logb m·n = logb m + logb n
Expand
Quotient Property
logb m
n = logb m – logb n
Power Property
logb mx = x·logb m
Expand
Expand
Expand the following logarithmic expressions
log7 3x
log2 5y3
log 6x2y4
Product Property
logb m·n = logb m + logb n
Expand
Quotient Property
logb m
n = logb m – logb n
Power Property
logb mx = x·logb m
Expand
Expand
Expand the following logarithmic expressions
5x
log3
7
log4
3x2
7y4
Product Property
logb m·n = logb m + logb n
Condense
Quotient Property
logb m
n = logb m – logb n
Power Property
logb mx = x·logb m
Condense
Condense
Condense the following into one logarithmic expression
log3 5 + log3 x
log5 3 + 2·log5 x
log 5 + 3·log a + 5·log b
© iTutoring.com
Expanding and Condensing Logarithmic Expressions Pg. 2 Product Property
logb m·n = logb m + logb n
Quotient Property
logb m
n = logb m – logb n
logb mx = x·logb m
Condense
Condense
Condense
Power Property
Condense the following into one logarithmic expression
log4 2 + log4 y – log4 5
log 2 – 2·log y – log 5 + 3·log x
Product Property
Power Property
logb m·n = logb m + logb n
logb mx = x·logb m
Quotient Property
Special Log Properties
logb m = logb m – logb n
n
logb b = 1
logb 1 = 0
Inverse Properties
logb bx = x
b
log x
b
=x
© iTutoring.com
Expanding and Condensing Logarithmic Expressions Pg. 3