1 EXPERIMENTA6:CONDUCTIVITY LearningOutcomes Uponcompletionofthislab,thestudentwillbeableto: 1) Analyzedifferentsolutionsandclassifythemasbeingastrong electrolyte,weakelectrolyte,oranon-electrolyte. 2) Measuretheconductivityofionicsolutionsanddeterminetheeffectof molarconcentrationaswellasthenumberofionsinsolutiononthe conductivity. Introduction Basedontheirabilitytoconductelectricity,solutionsmaybeclassifiedasbeing strong,weak,ornon-electrolytes.Strongelectrolytesdissociatecompletelyinto theircomponentionsandareasaresultstrongconductors.Weakelectrolytesonly dissociatepartiallyintotheircomponentionsandareasaresultpoorconductors. Non-electrolytes,ontheotherhand,donotdissociateintoionsandasaresultdo notconductelectricity. Solubleioniccompounds(suchasNaCl),andaqueoussolutionsofstrongacids(such asHNO3)andstrongbases(suchasNaOH)areconsideredtobestrongelectrolytes. Thedissociationequationsforthesestrongelectrolytesareshownbelow: NaCl(aq)!Na+(aq)+Cl−(aq) HNO3(aq)!H+(aq)+NO3−(aq) NaOH(aq)!Na+(aq)+OH−(aq) Ineachoftheabovecases,thearrowpointinginonedirectionimpliesthatevery moleculeofthesubstanceontheleftdissociatesintoitsrespectiveions.For instance,onemoleofNaCl(aq)woulddissociateintoonemoleofNa+(aq)andonemole ofCl−(aq). Weakacids(suchasHF)andweakbases(suchasNH3orNH4OH)areconsideredto beweakelectrolytes.Thedissociationequationsfortheseweakelectrolytesare shownbelow: HF(aq) H+(aq)+F−(aq) NH4OH(aq) NH4+(aq)+OH−(aq) 2 Ineachoftheabovecases,thearrowpointinginbothdirectionsimpliestwo importantpoints:1)Notallthemoleculesoftheweakelectrolytedissociateto releasetheirrespectiveions.Infact,amajorityoftheweakelectrolyteremainsas intactmolecules.ForinstanceinthecaseofHF(aq),forevery10,000moleculesof hydrogenfluoridedissolvedinwater,onlyONEdissociatesintoH+(aq)andF−(aq).2) Theprocessisreversible.Thisisbecausethesesubstancesaremadeofcovalent bondsratherthanionicbonds. Molecularcompounds(suchasCH4,CO2etc.)areconsideredtobenon-electrolytes. Sinceconductivityinaqueoussolutionsisapropertythatarisesduetothepresence ofchargedspecies(cationsandanions),itislikelythatagreaterconcentrationof ionsinthesolutionshouldresultingreaterconductivity.Thishypothesiscanbe testedusingdifferentconcentrationsofaparticularsolution.Asthemolar concentrationofthesolutionincreases,theconductivityshouldalsoincrease.An extensionofthishypothesisisthat,whenoneexaminesthesamemolar concentrationofdifferentsolutions,thesolutionthatgeneratesthegreatest concentrationofdissolvedionswillhavethegreatestconductivity. 3 ExperimentalDesign Conductivityofvarioussolutionswillbemeasuredusingaconductivityprobe.The valueoftheconductivityisgiveninunitsofµS/cm-alargervalueindicatesgreater conductivity.Inthefirstpartoftheexperiment,theconductivityofasetofsolutions willbemeasuredandtheconductivityvalueswillbeusedtoclassifythesolutionas beingastrongelectrolyte,weakelectrolyte,oranon-electrolyte.Inthesecondpart oftheexperiment,theconductivityofdifferentmolarconcentrationsofNaCl(aq), CaCl2(aq),andAlCl3(aq)willbemeasuredtodeterminetheeffectofconcentrationand numberofionsinsolutiononconductivity. ReagentsandSupplies ReagentsetforPart1:solutionsofsodiumchloride,calciumchloride,aluminum chloride,hydrochloricacid,phosphoricacid,aceticacid,boricacid,methanol,and ethyleneglycol.Alsoobtaindeionizedwaterandtapwater. ReagentsforPart2:0.05Mconcentrationsofsodiumchloride,calciumchloride,and aluminumchloride. (SeepostedMaterialSafetyDataSheets) Vernierkitwithaconductivityprobe(fromstockroom),laptopcomputer(fromthe lab) Procedure 4 PART1:CLASSIFYTHEGIVENSOLUTIONASASTRONG/WEAK/NONELECTROLYTE 1. Obtainasetofreagentsincluding:0.05MNaCl,0.05MCaCl2,0.05MAlCl3,0.05 MHCl,0.05MH3PO4,0.05MCH3COOH,0.05MH3BO3,CH3OH,C2H6O2,tapwater, deionizedwater.Eachlabbenchwillhaveasetofthesereagentstoshare. 2. Obtainavernierkitcontainingaconductivityprobefromthestockroom.Obtain alaptopcomputerfromtheinstructor. 3. Connectthevernierkitandthelaptopcomputeraccordingto“Instructionsfor ExperimentA6”(foundintheAppendix).Makesurethatthetoggleswitchisset to0–20,000µS/cm. 4. Rinsetheconductivityprobewithdeionizedwaterandwipedrywithapaper towel. 5. Placetheprobeintothefirstsolution.Recordtheconductivityofthesolution(it maybenecessarytowaitafewsecondsforthevaluetostabilize). 6. Onceagain,rinsetheconductivityprobewithdeionizedwaterandwipedrywith apapertowel. 7. Placetheprobeinthenextsolution.Repeattheprocessuntiltheconductivityof allthereagentshavebeenmeasured. PART2:DETERMINETHEEFFECTOFMOLARCONCENTRATIONANDNUMBEROFIONSINASOLUTION ONTHECONDUCTIVITYOFTHESOLUTION 1. Obtainaround10-mleachof0.05MNaCl,CaCl2,andAlCl3. 2. Obtainaburettestand,buretteclampandsetupamicroburette. 3. Rinsetheburettewithdeionizedwaterandthenconditiontheburettewith0.05 MNaClandfilltheburettewith0.05MNaCl. 4. Addexactly35.0mlofdeionizedwatertoa125-mlErlenmeyerflask. 5. Obtainavernierkitcontainingaconductivityprobefromthestockroom.Obtain alaptopcomputerfromtheinstructor. 6. Connectthevernierkitandthelaptopcomputeraccordingto“Instructionsfor ExperimentA6”(foundintheAppendix).Makesurethatthetoggleswitchisset to0–2000µS/cm. 5 7. Rinsetheconductivityprobewithdeionizedwaterandwipedry. 8. MeasuretheconductivityofthedeionizedwaterintheErlenmeyerflask(from step4)andrecordthevalue. 9. Add0.1mlof0.05MNaClfromthemicroburetteintotheErlenmeyerflask.Swirl theflasktothoroughlymixthecontentsoftheflask. 10. Measuretheconductivityofthesolutioninstep9andrecordthevalue. 11. Addanother0.1mlof0.05MNaClfromthemicroburetteintothesame Erlenmeyerflask(fromstep9).Swirltheflasktothoroughlymixthecontentsof theflask. 12. Measuretheconductivityofthesolutioninstep11andrecordthevalue. 13. Continueadding0.1mlof0.05MNaClfromthemicroburetteintothe Erlenmeyerflask,swirltomix,measuretheconductivity,andrecordthevalue foranadditionalSIXmoretimes. 14. Rinsetheconductivityprobewithdeionizedwateranddrywithapapertowel. 15. DiscardtheNaClfromtheburetteandtheErlenmeyerflaskintoawastebeaker. 16. Repeatallofthesamestepswith0.05MCaCl2and0.05MAlCl3. DataTable PART1:CLASSIFYTHEGIVENSOLUTIONASASTRONG/WEAK/NONELECTROLYTE Solution Conductivity(µS/cm) NaCl CaCl2 AlCl3 HCl H3PO4 CH3COOH H3BO3 CH3OH C2H6O2 H2O(tap) H2O(deionized) 6 7 PART2:DETERMINETHEEFFECTOFMOLARCONCENTRATIONANDNUMBEROFIONSINASOLUTION ONTHECONDUCTIVITYOFTHESOLUTION Conductivity(µS/cm) Trial Volume NaCl CaCl2 AlCl3 (ml) 1 0.0 2 0.1 3 0.2 4 0.3 5 0.4 6 0.5 7 0.6 8 0.7 9 0.8 DataAnalysis PART1:CLASSIFYTHEGIVENSOLUTIONASASTRONG/WEAK/NONELECTROLYTE 1. Basedonthedatalistallthestrongelectrolytesinthegivensetofreagents. 2. Foreachstrongelectrolytelistedabove,writethedissociationequation. 3. Basedonthedata,listalltheweakelectrolytesinthegivensetofreagents. 4. Foreachweakelectrolytelistedabove,writethedissociationequation. 5. Basedonthedata,listallthenon-electrolytesinthegivensetofreagents. 8 9 PART2:DETERMINETHEEFFECTOFMOLARCONCENTRATIONANDNUMBEROFIONSINASOLUTION ONTHECONDUCTIVITYOFTHESOLUTION 1. Calculatetheconcentrationoftheelectrolyteineachtrial.(NOTE:Trial1hasno electrolyteandhasonlydeionizedwater,sotheconcentrationoftheelectrolyte inthiscaseis0.00M).Calculationsfortrial2areshownbelowasasample. Trial2: Initialmolarity(M1)=0.050M Initialvolume(V1)=0.100ml Finalmolarity(M2)=? Finalvolume(V2)=35.1ml M1V1=M2V2 0.050M×0.100ml=M2×35.1ml M2=0.00014M Trial3: Trial4: Trial5: Trial6: Trial7: Trial8: Trial9: 10 2. Entertheconductivityvaluesasafunctionofconcentrationoftheelectrolytefor eachtrialinthefollowingtable. Conductivity(µS/cm) Trial Concentration,M NaCl CaCl2 AlCl3 1 0.00 2 3 4 5 6 7 8 9 3. Plotagraphoftheconcentrationoftheelectrolyte(x-axis)vs.theconductivityof theelectrolyte(y-axis).Plotallthreelinesonthesamegraphandfiteachlineto theequationofastraightlineandobtaintheslopeofeachline.Attachthegraph toyourworksheets. 11 4. Whataretheslopesofthelinescorrespondingtoeachelectrolytesolutioninthe abovegraph? Electrolyte Slope NaCl CaCl2 AlCl3 5. Writethedissociationequationforeachoftheelectrolytes. NaCl(aq)! CaCl2(aq)! AlCl3(aq)! 6. Commentontherelationshipbetweentheslopesofthethreelinesandthe numberofionsinsolutionforeachelectrolyte. 7. Commentontheeffectofa)molarconcentrationandb)numberofionsin solutionontheelectricalconductivityofasolution.
© Copyright 2026 Paperzz