PALEOCEANOGRAPHIC CURRENTS PALEOCEANOGRAPHY, VOL. 11, NO. 2, PAGES 147-156,APRIL 1996 Three hundred eighty thousand year long stable isotope and faunal records from the Red Sea: Influence of global sea level change on hydrography Christoph Hemleben, • DieterMeischner, 2 RainerZahn,3 AhuvaAlmogi-Labin, 4 HelmutErlenkeuser, • andBirgitHiller• Abstract. Stableisotopeand faunalrecordsfrom the centralRed Seashowhigh-amplitude oscillations for thepast380,000years.Positive • •80anomalies indicate periods of significantsaltbuildupduringperiodsof loweredsealevel whenwater massexchangewith the ArabianSeawasreduceddueto a reducedgeometryof the Babel MandebStrait. Salinitiesas high as 53%o and 55%o are inferredfrom pteropodandbenthieforaminifera •80, respectively, forthelastglacialmaximum. Duringthisperiodallplanktonic foraminiferavanishedfrom this part of the Red Sea. Environmentalconditionsimproved rapidlyafter 13 ka as salinitiesdecreased dueto risingsealevel. The foraminiferalfauna startedto reappearandwasfully reestablished between9 ka and 8 ka. Spectralanalysisof theplanktonic •80 recorddocuments highest variance in theorbitaleccentricity, obliquity, and precessionbands,indicatinga dominantinfluenceof climatically- driven sealevel changeon environmentalconditionsin the Red Sea. Variancein the precessionbandis enhance•comparedto the global meanmarine climaterecord (SPECMAP), suggestingan additionalinfluenceof the Indianmonsoonsystemon Red Seaclimates. Introduction Quantitative studiesand isotopic analysesof planktonic foraminifera and pteropodafrom the Red Sea revealed a detailedpicture of water massvariation in associationwith global climatic changesduring the latest Pleistocene(from isotopestage6 onward) and early Holocene[Herman, 1968; Chen, 1969; Deuser and Degens, 1969; Deuser et al., 1976; Risch, 1976; Yusuf, 1978; Reisset al., 1980; Almogi-Labin, 1982;Ivanova, 1985;Almogi-Labinet al., 1986, 1991; Locke and Thunell, 1988; Thunell et al. 1988]. During the last glacial maximum (LGM), approximately18,000 years ago, surface and intermediatewater salinitieswere significantly higherthantheyare today.Only onepteropodspecies,Creseis acicula, survived while planktonic foraminifera vanished almostentirelyfrom the Red Sea, resultingin an Maplanktonic zoneM [Thunell et al., 1988]. Only during the PleistoceneHolocene transitionperiod did the planktonicfauna slowly migrate back from the Gulf of Aden into the Red Sea. These changeshavebeenattributedto the Red Sea, being a marginal sea, which makes its hydrographyextremely susceptibleto global climate change. Global sea level variations exert additional control on Red Sea hydrography in that they determinethe water massexchangewith the openoceanand thus residencetime of water massesand salt buildup in the Red Sea [7hunell et al., 1988; Brydenand Kinder, 1991] Piston cores up to 22 m long were recovered from the centralRed SeaandoffshoreSudanduringan expeditionwith the R/V Meteor in 1987. Here we presentstableisotopeand faunal records of one of these cores from the central Red Sea which span380 kyr and significantlyextendthe documented record of environmentalchangein the Red Sea. The records show that Red Sea climatesrespondednot only to glacialinterglacialconditionsbut alsoto higher-frequencyvariations in the orbitalprecessionband. As only fragmentarycontinental recordsare availablefrom the surroundinglandmasses, the recordsmay also extendour understanding of the long-term climatic history of this region. •Institute andMuseumfor GeologyandPaleontology, Universityof Ttibingen,Tiibingen,Germany. 2Department of Sedimentary Geology,Institutefor Geologyand Paleontology,Universityof G6ttingen,G6ttingen,Germany. 3GEOMAR,Research CenterforMarineGeosciences, Kiel, Germany. 4Geological Surveyof Israel,Jerusalem. •Institut fiir ReineundAngewandte Kernphysik, Kiel, Germany. Material and Methods We have generateda planktonicstableisotoperecord and records of foraminiferal abundanceand faunal variability along a 21 m long Meteor Core Sta. 174/KL11 from the centralRedSea(18ø46.3'N, 39ø19.9'E, 825 m water depth), hereafter referred to as core KL11. For •5•80 measurements Copyright1996by the AmericanGeophysical Union. we haveusedthetropical-subtropical planktonicforaminiferal speciesGlobigerinoides nd,er (forma white), which dominates the foraminiferalfaunaat the site of core KL11. An age scale Paper number95PA03838. 0883-8305/96/95 PA-03838510.00 147 148 HEMLEBEN ET AL.' GLOBAL SEA LEVEL AND RED SEA HYDROGRAPHY 5.5 -2• [ ca -1 - ••ßc n • ø • 0- • 1..... 7.0•1. J 909'1 6.06. .0 ............... I 3.•0 •o 5.2 • 4.2 6.4 •• 0 11.0, 10.0 8.3 8.4 6.2 I 2 I 4 I 6 I 8 I 10 depth • 1 in core 14 16 18 20 I 22 (m) Figure 1. Pla•to•c (Globi•e•o•e• r•ber, white variety)oxygenisotoperecordof core KL Numbers•ong •e i•m• r•ord •dica• SPECM• eventsa•er I•• et M. [•984] which were used for ageconsol(• Table D. At coredepthof 0.9-1.7 m no pl•to•c forami•fera were availablefor isotopemeasurements due to •e "apla•tonJc zone"which was causedby extremelyhigh •inities during •e last [laci• m•mum •6• at approximately• 8 ka. for coreKL11 wasobtainedthroughcorrelationof the isotope Table 1. Stratigraphic Fix Pointsfor CoreKL 11 records withtheglobalmeanSPECMAP5180curve( (Figure Depth, m 1, Table 1) [lmbrie et al., 1984]. The base of core KL11 reachesSPECMAP interglacialclimatic event 11.2, a shortlived cold spell at approximately375 ka (Figures 1 and 2). The age model suggeststhat mean sedimentationratesat the core site are 5.6 cm kyr. The isotopemeasurementswere carried out at the C 14-Laboratoryat Kiel Universityusinga FinniganMAT 251 massspectrometer, which is linked on-line to a fully automatedcarbonatepreparationdevice. The carbonate samplesare dissolvedin separateglassvials thus minimizingpotentialmemoryeffects.Reproducibilitywas 0.08%0, and all isotopevaluesare referred to the Peedeebelemnite (PDB) scale. The planktonicforaminiferalcountswere done on the size fraction > 150 •m and normalizedto 1 g of sediment. Results Stable Isotopesand Hydrography Theplanktonic 5•SOprofilealongcoreKL11shows highamplitudefluctuations with glacial-interglacialshiftsup to 3.5- 4.0%0(Figure2a).Thecoevalglobalglacial-interglacial variation of the world ocean's water masses was 1.1-1.2%0 [Labeyrieet al., 1987; Fairbanks, 1989], and thusplanktonic •180amplitudes at coreKL11exceed themean-ocean change bya factorof 3-4.Theglacial-interglacial •SO amplitudes are also about2 to 3 timeslarger(A•SO=3-4%0)thanthose observed in planktonic 5•SOrecordsfromthe ArabianSea (A•SO=1.1-1.7%0) [Niitsumaet al., 1991; Zahn and Age, ka Deposition Rate1em/kyr SPECMAP event 0.64 6 2.10 24 1.1 3.23 53 3.90 3.3 3.66 59 7.17 4.0 8.11 3.0 3.88 65 3.67 4.2 4.16 71 4.67 5.0 4.70 80 6.00 5.1 4.85 91 1.36 5.2 5.65 99 10.00 5.3 6.05 109 4.00 5.4 6.63 122 4.46 5.5 6.70 128 1.17 6.0 7.17 135 6.71 6.2 7.61 145 4.40 6.3 8.20 151 9.83 6.4 9.15 174 4.13 6.5 9.64 183 5.44 6.6 9.97 186 11.00 7.0 10.46 194 6.13 7.1 11.00 209 3.60 7.2 11.30 216 4.29 7.3 11.70 228 3.33 7.4 12.63 238 9.30 7.5 12.96 245 4.71 8.0 13.18 249 5.50 8.2 13.60 257 5.25 8.3 14.28 269 5.67 8.4 15.13 287 4.72 8.5 15.67 299 4.50 8.6 16.00 303 8.25 9.0 Pedersen,1991; Sirockoet al., 1993], which may be ascribed to the concentration effect(salt buildup) [cf. Morcos, 1970] of the Red Sea as a marginal sea. In addition, to the glacial- 16.50 310 7.14 9.1 16.80 320 3.00 9.2 interglacialisotopeshiftsthe •sO recorddisplayshigh- 17.48 331 6.18 9.3 amplitudevariationsof more than 1%0 within glacial and 17.93 339 5.62 10.0 interglacialstageswhich exceedthe degreeof variability seen 18.24 341 15.50 10.2 in •sO recordsat open-ocean sites.For the 'aplanktonic' 19.73 362 7.10 11.0 interval during the LGM no planktonic foraminifera were 20.60 375 6.69 11.2 HEMLEBEN ET AL.' GLOBAL SEA LEVEL •80 AGE ( 1000 years B.P. ) 50 100 150 200 250 300 350 400 •: ',.,' ' ' ' ' ;enoe'anX' ' ' o •[ -2 AND Z fø'ø 1.00rn RED SEA HYDROGRAPHY 149 value of +4.7%0 which was obtained for the LGM pteropodsampleto the 8•80-scaleof G. ruber (a bulk sediment sample wasmeasured for reference andgavea 6•80 valueof +6.3%o).Thus,we arriveat a G. ruber6•0 equivalentof +3.3%o for the LGM. Usingthis value, a amplitude of 5.5%o is calculatedbetweenthe LGM and the 34 Holocene,whichis the largestamplituderecordedthroughout 10 the entire profile. In orderto extracta recordof hydrographic variabilitywe have computedthe difference between the record of mean- ocean6•80 (Sw)from Vogelsang [19901andtheplanktonic 6•80record fromcoreKL11.Usingbenthic õ•80records from 3,3%o L W HIGH OW HIGH LOW HIGH L W SEA LEVEL the NorwegianSea and assumingthat bottomwater temperature there remained constantthrough glacial-interglacial times, Vogelsang[1990] composeda recordof mean-ocean 6280(6w)change forthelast400ka. This5• record(Figure 2a,righthandscale) documents global8•O fluctuations of the worldocean'swatermasses whichweredrivenby the growth anddecayof globalice volumein the courseof glacial-inter- glacial climaticchange.The mean-ocean 6w valuesvary between-0.2%o6 •80 and + 1.0%o5 •80 (SMOW,standard meanoceanwater).Cross-spectral coherencyis high between z 0 • 0.05 the mean-ocean 6w recordand planktonic 6•80 from core KLll, thusallowingdirectcomparison of bothrecords(Table 2). The recordof planktonic8•80 changein excessof the mean-ocean 6w changeis shownin Figure2b. This record showsthatthe offset(A6•80)betweenplanktonic •80 and mean-ocean6w was systematically larger duringglacial C , i , i i i arii d 0.025 Lu 0 O -0.025 n' -0.05 humid 0 50 100 150 200 250 300 350 400 Figure2. (a) Planktonic8•80 recordfromcoreKL11 in the centralRedSea,showingglacial-interglacial amplitudeswhich periods,whereasduringfull - interglacialperiodsthe offset wassimilarto or evenslightlylessthantoday.Superimposed on the long-term trend are short-livedanomalieswhich cor- are up(right-hand to3times higher than those ofthe mean-ocean index,reflecting record scale;from Vogelsang, 1990]). The 8••(• relatewith minimain theorbitalprecession value of + 3.3%o for the aplanktoniczone of the LGM was obtainedfromplanktonicpteropodsand is plottedout of scale theinfluence of precessional variabilityon low-latitudeclimate (see below). (see text for description of pteropodversusG. ruber•0 The oxygen isotopecompositionof seawater in the Red Sea changesby 0.29%o for each 1%o changein salinity oxygen isotope stages. (b)Deviation (A•O) of theplanktonic [Craig, 1966]. Usingthis slope,we havecomputeda salinity calibration).Numbersalong the planktonicrecordindicate •O record fromthemean-ocean •wrecord. Right-hand scales scalefromthe A6•80 record(Figure2b, right-hand scale). give salinityanomaly(AS) relativeto today(modern) (S set to zero)andabsolutesalinityestimates.Salinitywas estimated Inferredglacial-interglacial salinitiesin the Red Sea variedby up to 10%oduringthe past380,000 years.For the LGM the wasestimatedby subtracting1.2%ofrom the represent insolation peaks in precession [Rossfgnol- salinityincrease of 5.5%obetween theLGM andtheHolocene $tHck,1983]. (c) Precessionindex of Berger and Loutre 5180amplitude to account for global ice volume change. The residue of [1991].TheA6•O andASanomalies seenin (Figure2b)are coherentwith the precessionindex pointingto low-latitude 4.3%o translatesinto a salinity changeof 14.8%o (i.e., climatic forcing of the isotope-salinity anomalies,perhaps 4.3/0.29). Adding 1%osalinityto allow for a globalsalinity monsoon•variability.The orbitalprecessionrecordhasbeen increase due to the effects of increased ice volume and lower lagged by 3 kyr to accountfor the phaselag which was sea level we arrive at an overall salinityincreaseof 15.8%o determined by cross-spectral analysis(seeFigure5 and Table for theLGM. This numberis reducedby 1.5-2.0%o(salinity) 2). if we allow for a glacial temperaturedecreaseof 2øC [CLIMAP Project Members, 1981; Thunell et al., 1988], availablefor isotopeanalysis.For this intervalwe measured which would be equivalentto a 8•80 increaseof 0.5%o. a sample containingthree clean aragoniticshellswith no Previousstudiesinferredsimilarsalinityor slighlylower insecondary aragonite of theplanktonic pteropodspeciesCreseis creasesfor the glacial maximum Red Sea [Berggrenand acicula.Sediment trapsamples takenoff Bermudahave shown Boersrna,1969; Deuser and Degens, 1969; Deuser et al. that the •sO valueof this species is about0.3%0more 1976;Reisset al., 1980; 7hunellet al., 1988;Almogi-Labin negativethanthe valueof aragonitewhichis precipitatedin et al., 1991].Our estimate is supported by abundance changes isotopicequilibriumwith ambientseawatertemperature and of planktonicforaminiferal specieswhich are sensitiveto isotopecomposition [Jasperand Deuser,1993]. Twenty-six salinitychanges(seebelow). pairedisotopemeasurements on Holocenesamples fromcore In additionto the planktonic 6•80 we havegenerated a usinga ASw:AS ratioof 0.29 [Craig,19661.Theshadepeaks KL11 give a meanfi•sOoffsetbetweenC. aciculaand G. benthic6180recordusinga combined isotopicrecordof tuberof-1.4 +_0.12%0 (20). We usethis value to convertthe epibenthicHanzawaia sp., Cibicidesmabahethiin order to 150 HEMLEBEN ET AL.' GLOBAL SEA LEVEL AND RED SEA HYDROGRAPHY Table 2. Cross-Spectral CoherenceandPhaseAngles Coherence Phase Coherence An•le Mean ocean/•w a 0.877 -6ø+ 14.8ø 0.749 Phase Coherence Phase An•le An•le -15ø+22 ø 0.760 -10ø+22 ø SPECMAP 0.949 -3 ø+9 ø 0.898 July 65øN - - 0.683 -71ø+26 ø 0.903 -3 ø+13 ø 0.966 -50ø+13 ø July15øN - - - -50+ 13ø 0.905 -1 ø+9 ø 80% confidenceintervalfor coherencyis 0.439; 95% confidence intervalis 0.706; band with is 0.01; time stepis 2 ka; negative phaseanglesindicatephaselagsof KL11 •J•80 relative to reference record. aFromVogelsang[1990]. trace the hydrography of the deeper water masses.The benthie õ•80recordshows thesamehigh-amplitude signalas the planktonicõ•80 record(Figure3). Even thoughthe resolution of the benthie record is much lower due to lack of specimens,one can still observethe close correlation between õ•sOmaxima.As in theplanktonic õ180recordthe LGM valuesare the mostpositivevalues(+4.7%0) observedin the entirerecord. This suggeststhat the long-termclimate signal (i.e., the sealevelsignal)was communicatedfrom the surface to the deeper water masses.Convertingthe benthie isotope signal into salinity values, our measurementswould correspond to approximately55%0. The accuracyof our salinityestimatesdependsnot only on theappliedcorrection for theG. ruber-C.aciculaõ•0 offset butalsoonwhetherthemodernõ,•sslopeof 0.29 appliesfor theextremehydrographicsituationof the LGM and previous glacials.As Rohling[1994] hypothesizes, the oxygenisotope fluxes in the Red Sea may have been different during the LGM due to evaporationfluxesunderenhancedwind stress. If true,theassociated enrichmentin !sOof the surfacewaters due to evaporationwould have dropped(Rohling suggestsa dropof some50 %) even if the ratesof evaporationremained the same as todays. This would imply that our salinity estimates, whichwerecalculated usingthe presentrelationship between waterloss to evaporation andIsOenrichment, would underestimate theõ•80andsalinityenrichment duringfull glacial periods. Thatis,thesalinityincrease duringpe,riods of maximumglaciationwould have been even larger than the increasesuggestedaboveof nearly 16%0. I , I , I , I , I , I , I I •o The direct correlationbetweenmaximuminferred salinity and full - glacialclimateclearlysuggeststhat sea level was the drivingforcebehindthe long-term salinitychange[Thunellet a/., 1988]. As sealevel falls, the geometryof Bab el Mandeb (thestraitconnecting the Red Sea and the Gulf of Aden) becomesnarrower,andwater massexchangebetweenthe Red Sea andthe openoceanbecomeseven more restrictedthan today. Thus salt builds up in the Red Sea until an equilibriumis reached between salt import from the open ocean and freshwaterloss(due to evaporation)and salt exportfrom the Red Seathroughoutflowto the Gulf of Aden. Figure 4 shows the correlationbetweensea level and water masssalinity in the Red Sea. This correlation was calculated using the numericalmodel of Assafand Hecht [1974], which is similar to other sea strait models [e.g. Anati, 1980; Bryden and Stornrnel,1984; Brydenand Kinder, 1991] and predictsRed Seasalinity as a functionof the sea strait'sgeometry,evaporation, and salt import. For the model's parameterizationwe useda modernsurfaceareaof the Red Seaof 424 x 103km2, width and depth of Bab el Mandeb of 37 km and 160 m, respectively, anda salinityof 36.6%o of the intowing surface waters.For the LGM sea level was set to -120 m [Fairbanks, 1989; Brachertand Dullo, 1991], surfacearea to 219 x 103 km2 (i.e. 50 % of the modernsurfacearea),andwidthand depth of Bab el Mandeb to 12 km and 40 m; water loss to evaporation waskeptconstant (i.e., 6.3 x 10'8m s-I) [Thunell et al., 1988; Rohling, 1994]. All parameterswere changed linearily betweentheir LGM and modern valuesas sea level was raised from glacial maximumlow standto interglacial high stand. The commonlypreferreddepthat Bab el Mandeb is 137 m [Locke and Thunell, 1988; Bethoux, 1988], which would imply a LGM sill depthof 17 m. Using suchshallowsill depth, the Assaf and Hecht model is no longer stableand breaksdown. Thunellet al. [ 1988]useda LGM sill depthof 60 m to be able to run the Assaf and Hecht model. Based on the sporadicpresenceof planktonicforaminifera and continuous occurrence ' 0 I 50 ' I 100 ' I 150 ' I 200 ' J ' 250 I 300 ' I 350 of benthie foraminifera in low numbers throughoutthe LGM [Risch, 1976; Locke and Thunell, 1988; 400 AGE (1000 ¾oars B.P.) Figure3. pibenthic õ!SOrecordfromHanzawaia sp. and Yusuf, 1978], we concludethat a moderatewater exchange throughBab el Mandeb still existedat the LGM and that the sill musthavebeentectonicallyupliftedsincethen.Despite these uncertainties, we use the Assaf and Hecht model to Cibicides mabahethi. The record showsthe same high- estimatethe effectsof global sea level changeon the Red amplitudepatternas the planktonicõlsOrecordshownin Sea's salinity. Figure2a. The epibenthicfree zone characterizesan interval during isotopestage3. 60 m during the LGM) a LGM sea level fall of 120 m would Usingtheaboveparameterization (includinga sill depthof HEMLEBEN Sa ET AL.' GLOBAL SEA LEVEL AND RED SEA HYDROGRAPHY I i n ity 40 45 (est.) periods(Table2). Thishighcoherencyis expectedbecausewe have usedthe SPECMAP record to calibratethe age model for core KL11. The high coherenciesand low phaseangles confirm that the age model of core KL11 reproducesthe orbital SPECMAP age model to within 0.4-1.3 ka (Table 2). 50 -2O Thecross-spectrum showsphasedifferences between5180 49.9 / '40 151 and insolation of 71ø_+26 ø and 50 ø_+13 ø in the orbital S(est) obliquity and precessionbandswhich are equivalentto time lagsof 8 kyr and3 kyr (5180lagsinsolation (Figure5, Table -6O 2)). UsingJuneinsteadof July 65 øN insolationas the forcing -80 LGM' AS = 15.8 S = 53.8 AS 11.9 ß-100 / e -12o LGM referencewouldshiftthelag between5180andinsolation in the precessionband to 5 kyr. These are establishedlags between orbitally tunedclimate proxiesand climate forcing [lmbtieet al., 1984].The planktonic 5180recordfromcore KL11 thusdirectly reproducesthe globalclimaterecordand confirms that the record primarly shows global climate variationwith a strongoverprintof sealevel effectswhich are documented in the greatlyenhanced amplitudes of the 5180 -140 0 5 10 15 20 signal. Spectralanalysisof paleoclimaticrecordsfrom the Arabian Salinity Sea has shown significantcoherencebetween biological, chemical,andlithogenictracersand insolationvariancein the Figure 4. Red Sea salinityas a functionof globalsealevel. precessionband with a phaselag of 122ø correspondingto a The salinitywasestimated usingthe empiricalseastraitmodel time lag of 8 kyr [Clemensand Prell, 1990; Clemenset al., ofAssafandHecht[1974].Model parameters are givenin the 1991]. This has been used as evidence for a strong text.Theglacial-interglacial 5180amplitude of 5.5%0implies contribution of monsoonalcirculation to the paleoclimatic a salinity increaseof nearly 16%oat the LGM. This high signalsin responseto radiativeforcing, cross-equatorial heat salinityis not predictedby the waterbalancemodel,pointing transportand heat releasefrom the Tibetan plateau[Clemens to climatically - driven salinity changes(evaporationover precipitation)which add to the sea level effect on the Red et al., 1991]. At presentwe have no independenttracer from core KL11 Sea's salinitychanges. to test the monsoonal influence on the Red Sea area. Variance in the precessionband is slightlyenhancedin the planktonic resultin a salinityincreaseof 12%obringingsalinitiesin the centralRedSeato 50%o(Figure4). The numericallyderived salinityincreaseis about4ø6obelow the estimatederived from 5180recordcompared to theSPECMAPstack(Figure6). Sincethe KLll 5•80 recordis phase-locked to globalice volumeby usingtheSPECMAPagemodel,we cannotusethis the planktonic5180 enrichment duringthe LGM. This enhancedvarianceas independentevidencefor monsoonal discrepancy may be a resultof our modelparameterization, signals. However, in view of the presence of strong namely, the assumeddepth of the Bab el Mandeb sill. monsoonalsignalsin palcoclimaticrecordsfrom the Arabian However,aswe will showbelow,thepresence of distinct5180 Sea [e.g., Prell, 1984; Kutzbach and Street-Perrot, 1985; andfaunalanomalies throughout our recordsimpliesthatlocal Prell and van Carnpo,1986; Andersonand Prell, 1992; Prell climaticinfluences affectedsalinityin additionto the dominant and Kutzbach,1992] just outsidethe Red Sea, we speculate thattheenhanced precessional 5180variancein coreKL11, in sealevel forcing. conjunctionwith faunalanomalies(seebelow), is a prelimiSpectral Analysis nary indicationof palcomonsoon signalsin the Red Sea. Faunal Recordsof Paleohydrographyand Paleoclimate In ordertocompare statistically ourplanktonic 5180record withtherecordof climatechange we performedcross-spectral The abundance patternof planktonicforaminiferaalong analysis usingthe recordof 65øN July insolation[Bergerand core KLll may be used as an independentindicator of Loutre, 1991] as climaticforcingreference(Figure5). We palcosalinity,sincemostforaminiferalspecieshavea narrow have smoothed the planktonic5180recordwith a Gaussian rangeof tolerancewith respectto salinity.The abundanceof filter applyinga 6 kyr wide filter window and an effective planktonic foraminifera closely followsthe5•80-climate signal time step of 2 kyr. The cross-spectral procedurefollows in that abundances decreasefrom full - interglacialto full standard routinesdescribedby Imbtie et al. [1984]. The cross glacial conditionswhen salinitiesincrease(Figure 7a). The spectrum shows siginificant coherencebetween the KLll distribution pattern shows short-term abundance maxima planktonic 5•80recordand65øNJulyat theorbitalobliquity duringhighsealevel stands,which correlatewith low, close(41 kyr) and precession(23 kyr) periods(Figure6). High- to-modern salinityvaluesasdeducedfromtheplanktonic5•80 latitudeinsolationvarianceis low in the orbitaleccentricity record,implyingthat rich planktoniccommunitiesdominated period (100 kyr; (Figure 6, Table 2)), and thusthe crossduringhumidclimateswhen salinitywas low due to increased spectrumcannotevaluatethe coherenciesin this frequency moisture transport by themonsoonal winds.Duringperiodsof band.UsingtheSPECMAP5•O stack[ImbrUe et al., 1984]as enhancedaridity and increasedsalinity the planktonic a reference shows higheohereneies at all threeprimaryorbital community wasdecreased anddominatedby Globigerinoides 152 HEMLEBEN ET AL.' GLOBAL SEA LEVEL Bandwidth for65 lags AND RED SEA HYDROGRAPHY Coherency cc•fidence interval at the5 % level 1.00 + ++ +++'•-++ + ! ++ / + + •+%I + + KLll 6180 + +++ + JULY 65• + ++++-•- +-•-+ ++ + + ++++ + ++ +++ .90 .80 Non-zero coherency .70 •5 level) .60 .50 pFr•1o d .01 100.00 .02 50.00 Bandwidth for65 Phase .03 33.33 .04 .05 25.00 20.00 Confidence lags .06 16.67 interval .07 14.29 at .08 12.50 the5% .09 11.11 .10 10.00 level 124 Angle 93 Precession 31' o', ......... :................ .-•....... . .... ....... ......:.08 .........:.o• .........'.•o -31i 100.0025.00 20.D0 I1I'67 14.29 12.50 11.11 10.00 Period -62! (aT,kyr) ,C•, l,i, ,•,,,,t,y '] Til• Lag ................. Obl: AT = 8.04!3.04 kyr ß i;;•; Period 100.00 - •0 0 33 ,, 25.00 20.00 .67 . Figure 5. Cross-spectral analysis of planktonic 5'80 fromcoreKLll and 65øN Julyinsolation calculated from algorithsof Berger and Loutre [1991]). Both time seriesare coherentat the orbital obliquityand precession periods.Phaselagsof 70ø and50ø are observedfor KL11 6'80 whichare equivalentto timelagsof 8 kyr and3 kyr. Theseare characteristic lagsbetween6'80 andclimatic forcing[e.g./mbr/eet al., 1984],thuspointingto high-latitude climateastheprimarycontrolon 6•80 in core KL11. Positivephaseanglesindicatephaselags. HEMLEBEN ET AL.' GLOBAL SEA LEVEL AND RED SEA HYDROGRAPHY 153 PREC % 100 July insolation, 15øN Julyinsolation,65øN 95% %100 SPECMAP, (•180 90 %100 KL11, (•180 • PREC 90 78% •0 80 , , ECC 65% 70 a) 60 6O • 50 50 > 40 ECC 58% 4O OBL OBL 27 % 3O 27 % PREC OBL PREC 16% 14% 6% ECC 20• 17% OBL 0.2 % 0.3 % O" 0• 0 Figure6. Percent contribution of variance in theeccentricity (ECC),obliquity (OBL),andprecession (PREC)periodsto thetotalvarianceof Julyinsolation at 65ø and 15øN,andof b•80 in theSPECMAP stack[ImbHeet al., 19841andalongcoreKL11.Variance in theorbitalprecession bandis slightly enhanced inKL11b•80,pointing tolow-latitude climatic forcing, possibly monsoonal variability. 0 • 'gg 6.•E ._ •-• ' 50 100 150 200 250 300 350 a ' ' ' ' ' ' !:'..,• ,• 4- i",,", i l ,. 400 rn ,4 -46 • -42 • 2- -38.• ! '1 "1 • 1øø i -, 54 FFI 502 • 60 o o 40 ..o 20 i - - 0 5'0 1•)0 1•0 2•)0 AGE (1000years 2•;0 ",,,,,,. ?,,,:![ 42 • '/ , i-:i 38 • 3•0 3•0 400 B.P.) Figure 7. (a) Correlation of planktonic foraminifera with salinity.The abundance distribution of planktonic foraminifera (solidline)followstheclimaticsignalalongcoreKL11 andcorrelates withthe inferredchanges of paleosalinity (dotted line).Theincrease of salinityduringfull - glacialperiods resulted in anabundance decrease of planktonic foraminifera. (b) Correlation of Globigerinoides ruber withsalinity.G. rubertolerates maximum salinities up to 49%o[Bijrnaet al., 1990].Theabundance patternof thisspecies(solidline) confirmsour paleosalinity reconstruction (dottedline) in that it disappeared only duringthe LGM whenour inferredsalinitiesincreasedto 53%oor more. 154 HEMLEBEN ET AL.: GLOBAL SEA LEVEL AND RED SEA HYDROGRAPHY ruber, which is one of the most flexible species among planktonicforaminiferaand can toleratesalinitiesbetween22 and49%o [Bijrnaet al., 1990]. The continuouspresenceof G. ruberthroughoutthe record, exceptduringthe LGM (Figure 7b), supports our palcosalinity reconstruction in that it implies that salinitiesnever exceeded49%o. It is only during the LGM, thatG. ruberdisappears from the centralRed Sea. Our salinityreconstructions imply a palcosalinity above53%ofor the LGM whichwouldhave been abovethe upper limit of the salinity range which this speciescan tolerate in laboratory cultures, thus causingG. ruber to vanish. By identifying the abundancyof G. ruber, we obtaineda pattern which may reflect the variationsof the incoming nutrient rich intermediatewater driven by the SW monsoon (Morcos, 1970). Today this water massreachesup to 18øN andaffectsthe distributionpatternof planktonicforaminifera. During times of weaker or strongermonsoonactivity, this boundarymay have shiftedfarther north (strongermonsoon) or south (weaker monsoon).However, this can be verified only by investigatingcoresin areasnorth and southof our core location, which will be done in the future. A general trend toward lower glacial-interglacial amplitudes is observed in total abundancevariations of planktonicforaminifera,whichgoesalong with a trend toward more enhancedchangesin G. ruber, may indicatea general increasein Red Sea salinitiespotentiallyin conjunctionwith a tectonicuplift of the sill at Bab el Mandeb during the past 380 kyr. Between13 and21 ka all planktonicforaminiferavanished from the Red Sea resultingin a so-calledaplanktoniczone (Figure 7) [e.g., Locke and Thunell, 1988; Almogi-Labinet a/., 1991].Duringthisperiod,lithitler aragonitelayers(LAL) up to 1 m thick [Milliman et al., 1969] were depositedand seemto be almostbarrenof planktonicforaminifera.It is only 1 cm abovethe LAL, or about180 yearsafter the aplanktonic zone [cf./llmogi-Labin et al., 1991] that the first planktonic foraminiferareappearedat site KL11 and another 1-4 cm, or up to 720 yearsaRer the end of the aplanktoniczone, that the planktonic foraminiferal community was almost fully reestablished.Apparently, environmentalconditionsimproved very rapidly after 13 ka due to rising sea level. Thus the foraminiferal fauna appearedagain, but was presentstill in low abundances. Between 9 and 8 ka, when climatic conditionswere at an optimum, the total planktonicand benthicfaunawas fully reestablished. During the last deglaciationeastAfrican climateschanged from arid to fully humidconditionsin responseto an orbitally - driven increaseof monsoonalrainfall [Kutzbach and Guetter, 1986;Pachurand KrOpelin,1987; COHMAP Members, 1988; Pachur et al., 1990; Bonnefilleet al., 1990; Gasseet al., 1990;Lezineand Casanova,1991]. Even thoughthe Red Sea today receiveslittle or no freshwater from surroundingland areas,we speculatethatincreasedhumidity may have lowered evaporation rates over the Red Sea, thereby enhancingthe effectsof sealevel riseon loweringsalinities.This would have contributed to the speedat which the faunal communityreestablisheditself during the last deglaciation.Together with thepresence of strong precessional variancein the/5•80record from coreKL11, thisleadsus to concludethat duringthe past 380 kyr not only was the hydrography of the Red Sea controlledby global sea level variation but that variationsin monsoonal strengthalsocontributedto the freshwater balance by altering humidity and evaporation. Summary CoreKL11 from the centralRed Sea providesa continuous sedimentaryrecord for the last 380 kyr showingglacial- interglacial 5•80amplitudes thatareupto 3 timeshigherthan those of the mean-ocean5•80 record. Correctingthe planktonic5•sO recordfor mean-ocean•S5 O, we derive salinifiesof up to 53%o or even slightlyhigherfor the LGM. Thesemeasured andcalculatedvaluesare approximately 3%o higher than previouslyassumedvalues. During the glacial maximum, isotope stage 6 and 10 salinities were also significantlyincreasedbut lower than the maximumvalues inferredfor the LGM. The planktonicfaunavaried alongwith thesalinitychanges andwasdrasticallyreducedduringglacial maxima due to the high salinitylevels;duringthe LGM an aplanktoniczone developedowing to the highestsalinities inferred for the entire 380 kyr period which apparently resulted in extremely hostile conditions.Global sea level variationsare the main factor in controlingthe Red Sea's salinity. However, sea level cannotexplainthe full rangeof salinitiychanges deduced fromour isotopedata. An additional climatically - driven componentis neededto add to the sealevel-drivensalinitychanges.This componentis conceivably linked to variationsin monsoonalstrength.Supportfor this contentionis provided by enhancedvarianceof planktonic 5•sOin theorbitalprecession band. Acknowledgements. We thank the master,crew and scientists aboardR/V Meteor (cruise5) for their helpandassistance. We also thankI. Breitinger,J. Erbaeher,G. Sehmiedl,D. Mfihlen,and R. Ott,(allat University of Tfibingen),F. Clasen,B. Gehrke,U. MeliB (all at Universityof Gtttingen)and H.H. Cordt, I. Klein, and H. Heeht(allat University of Kiel)for theirhelpduringdataacquisition andin preparing themanuscript andW. Prell, BrownUniversity,for using freely distributedsoftware. We are also grateful to D. Andersonand an anonymous reviewerfor constructive criticism whichhelpedto improvethismanuscript. This research wasfunded bytheDeutscheForsehungsgemeinsehaft undercontracts He 697/7 and Me 267/28, and the G.I.F., the German-lsraeliFoundationfor ScientificResearchand Development. References Almogi-Labin, A., Stratigraphic andpaleoceanographic significance of late Quaternary pteropods fromdeep-sea coresin theGulf of Aqaba(Elat)andnorthennnost RedSea,Mar.Micropaleontol., 7, 53-73,1982. Almogi-Labin, A., B.Luz,B.andJ.-C. Duplessy,Quaternary paleo-oceano•hy, pteropod preservation andstable-isotope recordof the Red Sea. Palaeogeogr.Palaeoclimatol. Palaeoecol.,75, 195-211, 1986. Almogi-Labin, A., Ch. Hemleben, D. Meischner, and H. Efienkeuser,Palcoenvironmental eventsduringthe last 13,000 years in the central Red Sea as recordedby Pteropoda: Paleoceanography, 6, 83-98, 1991. Anati, D.A., A parameterization of the geometryof sea straits, Oceanol. Acta, 3, 395-397, 1980. Anderson, D.M., and W.L. Prell, The structureof the southwest monsoon windsovertheArabianSeaduringthe Late Quaternary: Observations,simulations,and marine geologicevidence,J. Geophys. Res., 97, 481487, 1992. Assaf,G., andA. Hecht, Seastraits:A dynamicalmodel,Deep Sea Res., 21,947-958, 1974. HEMLEBEN ET AL.: GLOBAL SEA LEVEL AND RED SEA HYDROGRAPHY Berger,A., andM.F. Loutre,Insolation valuesfor the climateof the last 10 millionyears,Quat. Sci. Rev., 10, 297-317, 1991. Berggren,W.A., and A. Boersma,Late Pleistocene and Holocene planktonicforaminiferafrom the Red Sea, in Hot Brinesand Recent Heavy Metal Depositsin the Red Sea, edited by E.T. Degensand D.A. Ross, pp. 282-298, Springer-Verlag,New York, 1969. Bethoux,J.P., RedSeageochemical budgetsandexchanges with the Indian Ocean, Mar. C-hem.,24, 83-92, 1988. Bijma, J., W.W. Faber Jr., and Ch. Hemleben,Temperatureand salinity limits for growth and survival of some planktonic fomminifers in laboratory cultures,J. ForaminiferalRes., 20, 95116, 1990. Bonnet'die, R., J.C. Roeland,andJ. Guiot, Temperatureand rainfall estimatesfor the past40,000 yearsin equatorialAfrica, Nature, 346, 347-349, 1990. ~ Bracheft, T.C., and W.C. Dullo, Laminar micrite crusts and associated foreslope processes, Red Sea,J. Sediment.Petrol., 61, 354-363, 1991. Bryden,H.L. andT.H. Kinder, Recentprogressin straitdynamics, U.S. Natl. Rep. lnt. Union Geod. Geophys.1987-1990, Rev. Geophys.,29, 617-631, 1991. Bryden, H. L., and H. M. Storereel, Limiting processesthat determine basic features of the circulation in the Mediterranean Sea, Oceanol. Acta, 7, 289-296, 1984. Chen, C., Pteropodsin hot brine sedimentsof the Red Sea, in Hot Brinesand RecentHeavy Metal Depositsin the Red Sea, edited by E.T. DegensandD.A. Ross,pp. 313-316, Springer-Verlag, New York, 1969. Clemens, S.C. and W.L. Prell, Late Pleistocenevariability of 155 Jasper,J.P., and W.G. Deuser,Annualcyclesof massflux and isotopiccomposition of pteropodshellssettlinginto the deep Sargasso Sea,Deep SeaRes.,40, 653-669, 1993. Kutzbach,J.E., and P.J. Guetter,The influenceof changingorbital parameters and surface boundary conditionson elimate simulations for thepast18,000years,J. Atmos.Sci., 43, 17261759, 1986. Kutzbaeh,J.E.,, and F.A. Street-Perrot,Milankoviteh forcing on fluctuationsin the level of tropicallakesfrom 18 to 0 ka BP, Nature, 317, 130-134, 1985. Labeyrie, L. D., J.-C. Duplessy,and P.L. Blanc, Variationsin modeof formationandtemperatureof oceanicdeepwatersover thepast125,000years,Nature,327, 477-482, 1987. Lezine,A.-M., andJ. Casanova,Correlatedoceanicand continental recordsdemonstrate pastelimateandhydrologyof NorthAfrica (0-140 ka), Geology,19, 307-310, 1991. Locke, S. and R.C. Thunell, Paleoceanographic recordof the last glacial/interglacialcycle in the Red Sea and Gulf of Aden. Palaeogeogr. , Palaeoclimatol.Palaeoecol. , 64, 163-187, 1988. Milliman, J.D., D.A. Ross and T.-L. Ku, Precipitationand lithifieationof deepseacarbonates in the Red Sea,J. Sediment. Petrol., 39, 724-736, 1969. Moreos,S.A., Physicalandchemicaloceanography of the Red Sea, Oceanogr.Mar. Biol. Annu.Rev., 8, 73-202, 1970. Niitsuma, N., T. Oba, and M. Okada, Oxygenand carbonisotope stratigraphyat Site 723, Oman Margin, Proc. Ocean Drill. Program.,Sci. Results,117, 321-341, 1991. Pachur,H.J., andS. Kr6pelin,Wadi Howar:palcoclimatic evidence fromanextinctfiver systemin the southeastern Sahara,Science, 237, 298-300, 1987. Arabian Sea summermonsoonwinds and continentalaridity: Paehur, H.J., S.T. Kr/Spelin,P. Hflzmann, M. Gfsehin, and N. Altmann, Late Quaternaryfluvio-laeeustrineenvironmentsof Eolian recordsfrom the lithogeniccomponentof deep-sea westernNubia, Berliner Geowiss.Abh. ,1, 120, 203-260, 1990. sediments,Paleoceanography, 5, 109-145, 1990. Clemens,S., W. Prell, D. Murray, G. Shimmield,and G. Weedon, Prell, W.L., Monsoonalelimateof the ArabianSeaduringthe late Quaternary:a responseto changingsolar radiation,in MilanForcingmechanisms of the Indian Ocean monsoon,Nature, 353, kovitchand Climate, editedby A.L. Bergeret al., pp. 349-366, 720-725, 1991. CLIMAP ProjectMembers,Seasonalreconstruction of the Earth's surfaceat the lastglacialmaximum,Geol. Soc.Am., Map Chart Ser., MC-36, 1981. COHMAP Members, Climatic changeof the last 18,000 years: Observations and model simulations,Science, 241, 1043-1052, 1988. Craig,H., Isotopiccomposition andoriginof the Red SeaandSalton Seageothermalbrines.Science,154, 1544-1548, 1966. Deuser, W.G. and E.T. Degens,O18/O16 and C13/C12 ratiosof fossilsfromthehot-brinedeepareaof the centralRed Sea, in Hot Brinesand RecentHeavyMetal Depositsin the Red Sea, edited by E.T. Degensand D.A. Ross,pp. 336-347, Springer-Verlag, New York, 1969. _ Deuser,W.G., E.H. Ross,and L.S. Waterman,Glacialandpluvial periods:Their relationshiprevealedby Pleistocene sediments of D. Reidel, Norwell, Mass., 1984. Prell, W.L. andJ.E. Kutzbaeh,Sensitivityof the Indian monsoonto forcing parametersand implicationsfor its evolution,Nature, 360, 647-652, 1992. Prell, W.L. and E. van Campo, Coherentresponseof ArabianSea upwelling and pollen transportto late Quaternarymonsoonal winds, Nature, 323, 526-528, 1986. Reiss, Z., B. Luz, A. Almogi-Labin, E. Halicz, A. Winter, M. Wolf, andD.A. Ross,Late Quaternarypaleoceanography of the Gulf of Aqaba(Elat), Red Sea, Quat. Res.,14, 294-308, 1980. Risch, H., Microbiostratigraphy of core-sections of the Red Sea, Geol. Jahrb. 17, 3-14,1976. Rohling, E.J.,Glacial conditions in theRedSea,Paleoceanography, 9, 653-660, 1994. Rossignol-Strick, M., African monsoons,an immediateclimate response to orbitalinsolation,Nature, 304, 46-49, 1983. the Red Sea and Gulf of Aden, Science, 191, 1168-1170, 1976. Sirocko,F., M. Sarnthein,H. Erlenkeuser,H. Lange, M. Arnold, Fairbanks, R.G., A 17,000-yearglacio-eustaticsea level record: andJ.-C. Duplessy,Century-scale eventsin monsoonal climate Influenceof glacialmeltingrateson the YoungerDryas eventand overthe past24,000 years,Nature, 364, 322-364, 1993. deep-oceancirculation,Nature, 342, 637-642, 1989. Thunell,R.C., S.M. Locke,andD.F. Williams, Glacio-eustaticseaGasse,F., R. T6het, A. Durant, E. Gilbert, and J.-C. Fontes, The level controlon Red Seasalinity,Nature, 334, 601-604, 1988. add-humidtransitionin the Saharaandthe Sahelduringthe last Vogelsang, E., Pal•.o-Ozeanographie desEuropiiischen Nordmeeres deglaciation,Nature, 346, 141-146, 1990. an Hand stabiler Kohlenstoff-und Sauerstoffisotope, Ph.D. Herman, Y., Evidenceof climatic changesin Red Sea cores, in thesis,Rep. SFB 313, 23, Kiel Univ. Kiel, Germany,136 pp., Means of Correlationsof QuaternarySuccessions, Proceedings 1990. Vll Congress InternationalAssociation for QuaternaryResearch, Yusuf, N., Mikropal•iontologische und geochemische vol. 8, editedby R.B. MorrisonandH.E. Wright, pp. 325-348, Untersuehungenan Borhkernenaus dem Roten Meer, Berl. Univ. of Utah Press,Salt Lake City, 1968. Geowiss.Abh. Reihe A, 6, 1-77, 1978. Imbrie, J., J.D. Hays, D.G. Martinson,A. Mcintyre, A.C. Mix, Zahn, R. and T. F. Pedersen,Late Pleistoceneevolutionof surface J.J. Morley, N.G. Pisias,W.L. Prell, and N.J. Shackleton,The andmid-depth hydrography at the OmanMargin:Planktonicand orbital theoryof Pleistocene climate:Supportfrom a revised benthicisotoperecordsat ODP Site 724, Proc. OceanDrill. chronologyof the marine 61sOrecord, in Milankovitchand Program,Sci. Results,117, 291-308, 1991. Climate,editedby A.L. Bergeret al., pp. 269-305,D: Reidel, Norwell, Mass., 1984. Ivanova, E.V., Late Quaternary biostratigraphy and palcotemperatures of the Red Seaand the Gulf of Aden basedon planktonic foraminiferaandpteropods. Mar. Micropaleontol.,9, 335-364, 1985. A. Almogi-Labin,GeologicalSurveyof Israel, 30 Malkhe YisraelSt., 95501 Jerusalem,Israel. (e-mail: [email protected]) H. Erlenkeuser,Institutfiir Reineund AngewandteKernphysik,C14- 156 HEMLEBEN ET AL.: GLOBAL SEA LEVEL AND RED SEA HYDROGRAPHY Labor, University of Kiel, Olshausenstr.40-60, D-24098 Kiel, FR Germany.(e-mail:[email protected]) C. Hemleben (corresponding author) and B. Hiller, Institut und Museum far Geologieund Palfiontologie,University of Tiibingen, Sigwartstrasse 10, D-72076Tiibingen,FR Germany.(e-mail:Christoph. [email protected]) D. Meischner,Institutfar Geologieund Pal•iontologie, Abt. SedimentGeologie, University of G6ttingen, Goldschmidtstrasse 3, D-37077 G6ttingen,FR Germany.(e-mail:[email protected]) R. Zahn, GEOMAR, Research Center for Marine Geosciences, Wischhofstr. 1-3, D-24148Kiel, FR Germany.(e-mail:RZahn@Geomar. de) (Received May 5, 1995;revisedDecember11, 1995; accepted December20, 1995.)
© Copyright 2025 Paperzz