Math 241, Quiz 2 Solutions March 3, 2014 There are four questions. Each one is worth 5 points. 1. Circle T for true or F for false. Z πZ 1p a) The integral 1 − r2 r dr dθ is the volume of a hemisphere of radius 1. 0 T F T F 0 The integral is half the volume. Z πZ 2 1 r cos(θ) r dr dθ evaluates to the y-coordinate of the centroid b) The expression 2π 0 0 of the semi-circular region x2 + y 2 ≤ 4, y ≥ 0. The expression evaluates to 0, the x-coordinate of the centroid. c) The mass of the solid region between the paraboloids z = x2 + y 2 andpz = 8 − x2 − y 2 and inside the cylinder x2 + y 2 = 1 with density function δ(x, y, z) = x2 + y 2 can be Z 2π Z 1 Z 8−r2 r2 dz dr dθ . found by evaluating the integral 0 0 Z −C F r2 Z f (x, y) ds = − d) T f (x, y) ds T F T F C Arc length integrals are not oriented. e) If C is the oriented line starting at (−1, 1) and ending at (3, 3), then Z (x + y) dx − y dy = 10. C The line integral evaluates to 8 via the parametrization x = −1+4t, y = 1+2t, 0 ≤ t ≤ 1. 2. Set up an integral for the second moment (the moment of inertia) about the z-axis of the homogeneous (mass density=1) solid region in the first octant bounded by the paraboloid z = 12 − x2 − 3y 2 and the planes y = 1, x = 1, and y = 1 − x. Do not evaluate the integral. The moment of inertia about the z-axis for solid E whose mass density is 1 is Iz = RRR E (x2 + y 2 ) dV . The paraboloid is the top of E. It lies over the triangle 0 ≤ x ≤ 1, 1 − x ≤ y ≤ 1, in the xy-plane, and 0 ≤ z ≤ 12 − x2 − 3y 2 . Consequently, Z 1 Z 1 Z Iz = 0 1−x 0 12−x2 −3y 2 x2 + y 2 dz dy dx. 3. Let H be the solid hemisphere x2 + y 2 + z 2 ≤ 9, z ≥ 0 and I = ZZZ (9 − x2 − y 2 ) dV . H Write the iteration of this integral in a) Rectangular Coordinates √ √ The base of H is the disk x2 + y 2 ≤ 9. Therefore, −3 ≤ x√ ≤ 3 and√− 9 − x2 ≤ y ≤ 9 − x2 . For each Z 3 Z 9−x2 Z 9−x2 −y2 p point (x, y), 0 ≤ z ≤ 9 − x2 − y 2 . Therefore, I = 9 − x2 − y 2 dz dy dx. √ −3 − 9−x2 0 b) Cylindrical Coordinates In cylindrical coordinates √ the disk is 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 3, and for each point (r, θ), 0 ≤ z ≤ Z 2π Z 3 Z 9−r2 Therefore, I = (9 − r2 ) r dz dr dθ. 0 0 √ 9 − r2 . 0 c) Spherical Coordinates In spherical coordinates the hemisphere is 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π/2, and 0 ≤ ρ ≤ 3. Since r = ρ sin(φ), Z 2π Z π/2 Z 3 I= (9 − ρ2 sin2 (φ)) ρ2 sin(φ) dρ dφ dθ. 0 0 0 4. Evaluate one of the integrals in problem 3 (exact answer). Show all of your work. (no calculator) I will evaluate the integral in part Z 2π Z a 3 √ Z I= 0 Z 2π Z 0 Z (circle one) 9−r 2 (9 − r2 ) r dz dr dθ 3 (9 − r2 )3/2 r dr dθ 0 2π = 0 = 2π · = c 0 0 = b 3 1 2 5/2 2 dθ (9 − r ) · · − 5 2 0 1 5/2 ·9 5 2 · 81 · 3 · π 486 = π 5 5
© Copyright 2026 Paperzz