A CASE STUDY OF GULLY EROSION IN THE ETHIOPIAN HIGHLANDS: THE WARKE WATERSHED A Project Paper Presented to the Faculty of Graduate School of Cornell University in Partial Fulfillment of the Requirement for the Degree Master of Professional Studies (MPS) by Birara Chekol Tarekegn January 2012 © 2012 Birara Chekol Tarekegn ABSTRACT Gully erosion affects large areas in Ethiopia. It is the source of sediment in the rivers and takes agricultural land of production. Understanding factors for gully expansion is essential for application of effective preventive and remedial measures towards sustainable land resources management. Therefore, the objective of this study is to study the underlying causes of the rapid gully expansion, to recommend strategies to prevent further gully formation and to reclaim existing gullies. The research was conducted in Warke watershed at an altitude between 2632- 2500 m in the upper Blue Nile Basin, Ethiopia. The area has a humid monsoon climate with an average annual rainfall of 1300 mm. Thirty years ago, gully formation started after the area became intensively cultivated. Gullies have expanded continuously since that time. Structural and biological conservation measures to try to stop the gully expansion have been installed in the whole watershed and maintained in one part of the watershed. Piezometers were installed at the top hill, middle, and bottom outlet of both watersheds. Average gully width, depth and lengths were measured using measuring tape at the beginning and end of the rainy season. Soil Infiltration rates were also measured using single ring infiltrometer. Long and short term erosion rates were estimated using AGERTIM (Assessment of Gully Erosion Rates through Interviews and Measurements). Fifty years old land users in a group discussion recalled that gully formation started in the1980’s when farm plots were demarcate/separate using traditional small waterways (locally called Fesses) along the slope. Erosion rates since the initiation of the gullies were 22 t/ha/yr and 58 t/ha/yr for the two gullies in the watershed with the conservation practices and 48 t/ha/yr for the gully in the area without conservation practices. Short term soil loss rates were many times greater indicating that these gullies were in their acceleration phase. Since rainfall exceeds the evaporative demand of the crop a perched water table formed over the restrictive layer during the rainy monsoon phase. The water table was generally deeper in the upper watershed than at lower elevations where the slope decreased. Active gully formation occurred in areas where the groundwater was above the gully bottom. Since infiltration was in general greater than the prevailing rainfall intensities and most of the rainfall infiltrated in the soil, gully function was caused by subsurface flow and not by surface flow. Key words: Gully erosion, subsurface flow, saturation excess, infiltration excess, gully expansion, piezometer, treated area, untreated area, and soil loss rate. BIOGRAPHICAL SKETCH Birara Chekol Tarekegn was born from his father Chekol Tarekegn and his mother Enatnesh Netsere in Dangla District of Awi Administrative Zone of Amhara National Regional State, Ethiopia. He graduated with BSc degree of Land Resource Management and Environmental Protection major in Soil and Water Conservation from Mekelle University in July 16, 2006 and diploma of Agricultural Engineering and Technology in 1990 at Awassa College of Agriculture in Addis Ababa University. He worked for Bureau of Agriculture and Rural development with different positions. Then he attended Master’s Program in integrated watershed management and water supply from 2010 to 2011. He also has a great interest to pursue his PhD on sediment modeling, soil physics, climatic changes or water resources management. iii ACKNOWLEDGMENTS My profound sincere thanks go to professor Tammo Steenhuis for his enthusiastic and unlimited support from shaping the idea up to materializing the work. I am grateful for his frequent supervision both in the field and in class as well as other social matters. He also provided me relevant literatures in due work. I extend my special sincere thanks and appreciations to Dr. Amy S. Collick, the coordinator of the master program, for her untiring effort in fulfilling the essential academic and logistic services in the university. My special thanks also go to Seifu Admassu for the friendly assistance and continuous interest to help me on the study and providing me important literatures. Special thanks to First Presbyterian Church, Ithaca, New York for the financial help I got from International Hunger Student Field Support program. The support allowed solving financial problems which my family was facing. I utilized the money for my family during the time that the monthly salary which I was getting from BoA was quitted for three months. My family would have been in problem without the support. I am pleased for the help I received from Essayas Kaba (lecturer, School of Civil and Water Resources Engineering) and Addisalem who helped me in GIS works, Wubneh Belete allowed me to use Soil Auger for drilling piezometer holes, Birkneh Abebe, Getachew Engidayehu and Nigist Birhanu allowed me to use their computers, other office equipments and surveying materials for my work. It was not possible to accomplish the manuscript with out there help. My admiration goes to my wife, Adanech Wolel and my children Hiwot and Mehari who, their love and encouragement. My wife was courageous enough to handle household matters. iv Last but not least, I would like to acknowledge the scholarship from the Cornell University and financial support from HED for the whole study program. v TABLE OF CONTENTS BIOGRAPHICAL SKETCH .........................................................................................iii ACKNOWLEDGMENTS ............................................................................................. iv TABLE OF CONTENTS .............................................................................................. vi LIST OF FIGURES ....................................................................................................... ix LIST OF TABLES ........................................................................................................ xi LIST OF ABREVIATIONS ......................................................................................... xii CHAPTER ONE ............................................................................................................. 1 1 GENERAL BACKGROUND ..................................................................... 1 1.1 Introduction ................................................................................................. 1 CHAPTER TWO ............................................................................................................ 4 2 MATERIALS AND METHODS ................................................................ 4 2.1 Description of the Warke watershed ........................................................... 4 2.2 Methodology ............................................................................................... 4 2.2.1 Meteorological data ........................................................................... 5 2.2.2 Soil infiltration test ............................................................................ 6 2.2.3 Sub-surface water table measurement ............................................... 6 2.2.4 Gully volume determination .............................................................. 7 2.2.5 Runoff data......................................................................................... 9 2.2.6 Soil physical properties ...................................................................... 9 CHAPTER THREE ...................................................................................................... 11 3 RESULT AND DISCUSSION ................................................................. 11 3.1 Long term evolution of gully in Warke watershed ................................... 11 3.2 Soil infiltration rate, bulk density and texture........................................... 15 3.3 Ground water table trigger gully expansion .............................................. 17 vi 3.4 Runoff ....................................................................................................... 24 3.4.1 Short term evolution of gully volume and soil erosion rate in the study watershed ................................................................................ 25 CHAPTER FOUR ........................................................................................................ 29 4 5 Conclusions and Recommendations ......................................................... 29 4.1 Conclusions ............................................................................................... 29 4.2 Recommendations ..................................................................................... 30 REFERENCES.......................................................................................... 32 APPENDICES .............................................................................................................. 36 Appendix 1: Example of a measured gully cross-section .................................. 36 Appendix 2: Short term evolution of the three considered gullies measured at the beginning and end of rainy season .............................................................. 38 Appendix 3: Surface Runoff Discharge in the Untreated Area (measured under weir_1) ............................................................................................................... 39 Appendix 4: Surface Runoff Discharge in the Treated Area (measured under weir_2) ............................................................................................................... 40 Appendix 5: Measurements and observations undertaken at different parts of the watershed for the identification and determination: gully incision and expansion factors. .............................................................................................. 41 Apendix 6: Figures at the top part of the watershed; left side before 9years, right side after reclamation. Birara was working there in the district. The result seems good at the top part of the watershed while, gullies are expanding at middle of the watershed due to subsurface flow and ground water push effect in the bottom saturation area. ............................................................................... 42 Appendix 7: Figures at the bottom outlet of the watershed showing gully slides due to subsurface water rise up to the surface and soils saturation. ................ 43 vii Appendix 8: Observed Gully incision due to subsurface water flow in the middle treated area of gully_1 and outlet bottom saturated area of the watershed. .......................................................................................................... 44 Appendix 9: Daily recorded water table depth (m) in Warke watershed from July to October 2010. ........................................................................................ 45 Appendix10: Questionnaire for the study Gully formation and expansion Characteristics in the high lands of Blue Nile basin, Ethiopia. ........................ 48 viii LIST OF FIGURES Figure 1: Photos describing Gully I at different locations in time and space. A) Gully in the upper part of the watershed in 2000. B) Same gully as in a depicted in 2010 when it fully reclaimed. C) Recent gully formed in the middle part of the watershed. D) Recent gully formed in the bottom part of the watershed. ........................................ 3 Figure 2: Location of the research area; gully I located west watershed boarder (flame red) and parallel to the road, gully II (topaz sand), gully III (quetzal green) and gully IV (medium apple) east of the watershed consecutively to the right. ............................ 5 Figure 3: Gully I parallel to the road and getting (sub) surface flow from the treated part of the watershed. Slumping from its right side and increasing in width. ................ 8 Figure 4: Short term evaluation of saturation bottom gully (gully at the junction of gullies I and III gully eating up in the bottom of the watershed where saturation is high and ground water table was near the surface. ............................................................... 10 Figure 5: The dimensions of a rectangular weir constructed at the outlet of gully III (representing untreated part of the watershed) ............................................................. 10 Figure 6: local saturation in the farmlands causing to collapse the side wall of gully II in the middle of the watershed...................................................................................... 12 Figure 7: New head cuts occurring in the saturated bottom and treated middle part of the watershed eating up and side due to soil saturation................................................ 14 Figure 8: Average soil infiltration rate in the treated Vs untreated area of the watershed within the three topographic positions (top, middle and bottom) of the watershed ...................................................................................................................... 17 Figure 9: Average groundwater table height and location of 28 piezometers. Locations of gully slips are indicated by small triangles .............................................................. 19 ix Figure 10: Water table above the restrictive layer both in the treated and untreated top (A), middle (B) and bottom (C) part of the watershed. ................................................ 20 Figure 11: The relative depth of water table vs. gully depths in the selected gullies (gully I, gully II and gully III) at the points where short term Gully evolution measurement were taken place during the end of the rainy season. ............................. 21 Figure 12: Piping erosion occurring at the bottom part of the watershed during the month September first. ................................................................................................. 22 Figure 13: Piping erosion occurring at the bottom part of the watershed. ................... 23 Figure 14: Average monthly rainfall in 2010 in Warke watershed, where high rainfall was registered in the month June.................................................................................. 25 Figure 15: Time series Runoff discharge in the treated and untreated area; the figure shows only the runoff measured during the period mid July to September end where the measurement was undertaken. ................................................................................ 26 Figure 16: Short term percentage volume evolution of the three selected gullies. ...... 27 Figure 17: Farm land where the three to four times tillage operations have been undertaken and prone to runoff erosion at the beginning of the rainy season. Actually what you can see is the interflow in plowed land that surfaces at the border where it becomes over ................................................................................................................ 28 x LIST OF TABLES Table 1: Event calendar used in interview ..................................................................... 5 Table 2: Depth and location of piezometers below the surface ground ......................... 7 Table 3: Age of the studied gully segments in Warke watershed, as estimated by local informants ..................................................................................................................... 11 Table 4: The dimension of selected gullies measured beginning and end of one rainy season. .......................................................................................................................... 14 Table 5: Long and short term rates of gully erosion in GI, G II and G III Warke watershed ...................................................................................................................... 15 Table 6: Average soil infiltration rate at different topographic locations within the treated and untreated parts of the watershed. ............................................................... 16 Table 7: Summary of the measured parameter average values and change in percentage of gullies; Gully, Gully, Gully and saturation bottom gully ...................... 24 xi LIST OF ABREVIATIONS ATW: Average top width AWM: Average middle width ABW: Average bottom width AD: Average depth ANRS: Amhara National Regional State BoA: Bureau of Agriculture SLMP: Sustainable Land Management Programme SWCP: soil and water conservation practices PDRE: People’s Democratic Republic of Ethiopia PIZ: Piezometer WT: Water table Ha: hectare T: Tone Yr: year PVC: polyvinyl chloride M: meter xii GI: gully I GII: gully II GIII: gully III GaSB: gully at saturation bottom xiii CHAPTER ONE 1 GENERAL BACKGROUND 1.1 Introduction The Ethiopian highlands contribute most of the water that is used in Sudan and Egypt. The Blue Nile provides more than 60% of the Nile flow in Egypt (Ibrahim, 1984; Conway and Hulme, 1993) and carries about 140 million tones of soil per year (Garzanti et al., 2006). This is equivalent to 7 t/ha/yr soil or on the average 0.5 mm depth per year over the entire Blue Nile basin. This sediment before the construction of the dams was the source of the soil fertility in Egypt, but currently is a nuisance (Bekele, 2003). It fills up the man-made reservoirs and in most places it slowly bleeds the Ethiopian agricultural lands from its fertility. In other sensitive places it erodes away the agricultural land completely. Fertility loss with shifting cultivation was replaced during the fallow period but with the continuous cultivation under the increased population pressure (Hurni, 1988; Bewket and Sterk, 2003), it can be only maintained with artificial fertilizers that in many cases are too expensive. Splash, sheet and rill erosion and gully formation are the different forms of soil loss. Gullies are defined as “a channel resulting from erosion and caused by the concentrated but intermittent flow of water usually during and immediately following heavy rains; Deep enough to interfere with, and not to be obliterated by, normal tillage operations” (American Soil Science Society, 1984). Gullies are one of the most destructive forms of erosion, damaging farmland and difficult to reverse (Billi and Dramis, 2001; Moges and Holden, 2009). Gullies can be formed either by surface runoff (Casali et al., 1999: Valentin et al., 2005) or by saturation of the soil profile (Vandekerckove et al., 2000, Valentin et al., 2005 and Tebebu et al., 2010). Land use 1 change in the watershed commonly triggers gully formation (Natchtergale et al., 2002, Vanwalleghem et al., 2005a, Thomas et al., 2004 all cited in Valentin et al., 2005). Gullies and are affected by a wide array of factors and processes. Splash, sheet and rill erosion have been studied in the laboratory and at the plot scale and are therefore relatively well understood (Wells et al., 2009). Gully erosion processes are three dimensional in nature generally (Valentin et al., 2005) less well known because it occurs at the landscape scale (Poison et al., 2003). Moreover, there are few gully erosion studies in Ethiopia especially on the Nitosol dominated northwestern Ethiopian highlands and consequently processes in gully formation are not well understood. Therefore, the general objective of the research was to better understand gully formation and to identify factors that determine gully formation and expansion. The specific objectives of the study are: To determine the impact of hydrological process in gully formation and expansion in the area. To identify the effect on gully formation of previously installed soil and water Conservation practices to stop gully formation. To recommend measures to halt gully formation and expansion in the area. The research was carried out in the Warke watershed located 140 km south of Bahir dar, Ethiopia. Gully formations started thirty years ago after the area became intensively cultivated (Figure 1). At the end of the nineteen nineties, graded soil bunds and Fanyajuu (“Throw uphill” in Swahili) were installed throughout the watershed to try to stop gully formation. In addition, check dams were constructed and planted with tree Lucerne (Chamaecyticuspalmensis), vetiver grass, Acacia abyssinica, acacia 2 decurrens, or Acacia nilotica. In the upper watershed, both the graded bunds brought a reduction in soil loss and the check dams and gully site plantation resulted in reclamation of the gullies (Figure 1a, 1b). However, gullies expanded unexpectedly in the middle and lower areas. These gullies that started in the middle area continued to expand upslope and down slope and increased both in depth, width and branched sideways (Figure 1c, 1d). In one part of the watershed a guard was hired and the conservation practices remained in place up to this date (the “treated watershed”) while in another part the conservation practices were destroyed (the “untreated watershed”). These two sub watersheds provide a way to evaluate the effectiveness of the soil and water conservation practices on gully formation as well as give an insight in processes that are involved in gully formation. Figure 1: Photos describing Gully I at different locations in time and space. A) Gully in the upper part of the watershed in 2000. B) Same gully as in a depicted in 2010 when it fully reclaimed. C) Recent gully formed in the middle part of the watershed. D) Recent gully formed in the bottom part of the watershed. 3 CHAPTER TWO 2 2.1 MATERIALS AND METHODS Description of the Warke watershed The Warke Watershed which is located in the Ethiopian highlands of Blue Nile Basin 140 km south from Amhara National Regional State (ANRS) capital Bahir dar (Figure 2). Its area is about 95ha. It is part of one of the 35 Sustainable Land Management Program (SLMP) watersheds called Yesir; in which the government of Ethiopia has demonstrated its commitment to restore, and enhance the agricultural productivity (FDRE, 2008). The climate is sub humid monsoon climate with a monomodal rainfall distribution and annual rainfall of 1300 mm/year. It ranges in elevation from over 2,500 m to 2,630 m. The soils in the basin are classified as Nitosols which are deep with a clay-rich sub soil, and good soil structure (FAO Soter database 1997). The area is characterized by intensive agriculture with an average land holding of 0.65 hectares per household. Land preparation is performed with the traditional Maresha plow pulled by a pair of oxen. Barley, wheat, beans and peas are the major crops usually sown at the same time to minimize bird damage. Sheep and cattle are allowed to graze the cropland after harvest. 2.2 Methodology Although several methods exist to determine gully expansion such as high resolution satellite images (Moges and Holden 2009, Daba et al., 2003) and the dendrochronological method (Ireneusz, 2006), the AGERTIM (Assessment of Gully Erosion Rates through Interviews and Measurements) developed by Nyssen, et al., (2006) was chosen allowing us to understand the historic context of the gully 4 development (Nyssen et al., 2006). As part of this method the watershed area was visited with interviewees as a group and on an individual basis. The field visit allowed the interviewees to recall the changes in the area when they were young. Discussions were held with a prepared frame work in a semi-structured way (“when is Gully incision started?”, “In which part of the watershed was incision started first?”, “How was it started?”, “how deep was the gully?”, “How do you evaluate its increment in depth, length and width?”). For supporting the farmers in recalling the relative and absolute time, an event national calendar was prepared (Table 1). The following steps were used in obtaining historical information about the area: (i) one walk with 19 selected informants in the major gully area, (ii) semi-structured individual interviews and (iii) semi-structured key informants group interviews. Group discussions included the two guards that have been guarding the conservation structures since the 1994 in the treated watershed. Table 1: Event calendar used in interview Year 1996 1989 1983 2.2.1 Event Land reform in the area Down fall of farmers cooperatives association due to the policy amendment by the Derg regime from socialism in to mixed economy Organization of farmers’ cooperatives Meteorological data The daily rainfall data for 2010 was measured at the Burie station 6 km from the watershed. In annual 2010 precipitation was 1424 mm which is greater than the annual average of 1300 mm. 5 5 Figure 2: Location of the research area; gully I located west watershed boarder (flame red) and parallel to the road, gully II (topaz sand), gully III (quetzal green) and gully IV (medium apple) east of the watershed consecutively to the right. 5 2.2.2 Soil infiltration test Infiltration rates were measured with a single ring infiltrometer driven15cm into the soil. Fifty cm of water was poured into the ring both in the treated and untreated watersheds. The drawdown of water in the ring was recorded using graduated ruler. Three infiltration measurements were made at the top, mid-slope and bottom part of the watershed. 2.2.3 Sub-surface water table measurement Twenty-eight piezometers (Table 2) were installed in the watersheds in transects along and perpendicular to the gullies and head cuts (Figure 1) to determine the effect of the subsurface water on gully expansion. Piezometers consisted of 5 cm diameter PVC pipes with 1 cm diameter holes drilled at the bottom 30 cm of the pipe and covered with cultural cloth called Abujedi made locally to prevent intrusion of silt and sand. The bottom end of the piezometer was capped with a fixed plastic cap, while the top end of the piezometer had a removable plastic cap. Holes were drilled for piezometer installation with a hand auger to either the depth of the impermeable layer or water table. The deepest piezometer was 3.8 m in the middle of the watershed. In the bottom part drilling was halted when the water table at around 2.5 m was reached. The impermeable layer was estimated at 4 m (Table 2). The water level in the piezometer was recorded daily by the two technicians in less than an hour. Ground water table heights other than measuring points were determined by interpolation. 6 2.2.4 Gully volume determination Although there are four gullies in the research area, the three largest gullies were selected. The large gully which is located partly at the western border of the watershed was named Gully I, the middle gully located inside the treated watershed was named Gully II and Gully III was located in the untreated watershed (Figure 2). Gully I at the lower boundary of the treated area collects both surface and as subsurface flow from the treated watershed. The gully expands only on the upslope side (Figure 3) where surface and subsurface runoff is coming into the gully. Table 2: Depth and location of piezometers below the surface ground Code Elevation (masl) P_1 P_2 P_19 P_20 P_16 P_18 P_15 P_17 P_21 P_22 P_23 P_24 P_25 P_26 P_27 P_28 P_3 P_4 P_5 P_6 P_7 P_8 P_9 P_10 P_11 P_12 P_13 P_14 2513 2516 2536 2540 2556 2544 2569 2553 2544 2549 2553 2557 2557 2564 2580 2573 2522 2537 2568 2576 2589 2602 2614 2621 2614 2591 2583 2579 Depth of Piezometer (m) 2.70 2.90 3.55 3.69 2.54 3.65 3.70 2.65 3.55 3.60 3.65 2.48 3.10 2.10 2.33 2.20 1.88 1.90 2.90 3.00 3.60 1.90 3.40 3.55 3.60 1.89 3.25 3.80 Average depth of water table from the surface (m) 0.87 2.41 2.60 2.40 1.78 2.67 3.12 2.08 2.28 2.88 2.00 1.69 2.31 1.38 1.59 1.38 1.50 1.79 2.72 2.91 3.57 1.89 3.40 3.55 3.60 1.88 3.19 3.77 7 Elevation of Average Water Table (masl) 2512.13 2513.59 2533.40 2537.60 2554.22 2541.33 2565.88 2550.92 2541.72 2546.12 2551.00 2555.31 2554.69 2562.62 2578.41 2571.62 2520.50 2535.21 2565.28 2573.09 2585.43 2600.11 2610.60 2617.45 2610.40 2589.12 2579.81 2575.23 Location in the Watershed Saturation bottom ″ Treated bottom ″ Treated middle ″ Treated top Treated middle ″ ″ Treated middle ″ ″ ″ Treated top ″ Untreated bottom ″ Untreated middle ″ ″ Untreated top ″ ″ ″ Untreated middle ″ ″ The volume of the three gullies were measured in July at the beginning of the rainy phase of the monsoon (called 2009 measurement) and end of the rainy phase in December, (called the 2010 measurement). The dimensions of the saturated area near the watershed outlet were taken more frequently (Figure 4). Both long term and shortterm soil loss from gullies were estimated from the volume measured. Gully volume was determined from the cross sectional area of the gully and the length between gully segments. The cross sectional area was determined by measuring the cross section of the gullies (Appendix 1). The coordinates of the gully were determined with a hand held Garmin Etrex global positions system (GPS) receiver (Garmin International, Inc., Olathe, Kansas) with 2m accuracy. The distance between cross-sections was measured using a 50m long surveyor’s tape. The total volume was calculated using the cross sectional areas and the total length. Figure 3: Gully I parallel to the road and getting (sub) surface flow from the treated part of the watershed. Slumping from its right side and increasing in width. 8 2.2.5 Runoff data Rectangular concrete weirs (Figure 5) were installed in the outlets of the treated watersheds (Weir 2, W2) below the junction of Gullies I and II) and untreated watershed in Gully III (Weir 1, W1) to measure surface runoff. The slope of the ground surface at W1 is 3% and W2 is 5%. Since runoff measurement was done manually, runoff during the night time was missed and therefore only day time storms are compared. The stage discharge curve was determined with the float method. The velocity of water near the weir was measured with small floating circular ball and the depth of flow with a ruler. 2.2.6 Soil physical properties Fifteen soil samples were collected from piezometer sites and in the gully banks to define the physical characteristics of soils in the watershed. Soil bulk density was determined at Amhara National Regional soil laboratory with standard core sampler and oven drying at 105oC for 24 hours and soil texture determination by hydrometric and wet sieve grain size determination methods. 9 Figure 4: Short term evaluation of saturation bottom gully (gully at the junction of gullies I and III gully eating up in the bottom of the watershed where saturation is high and ground water table was near the surface. Figure 5: The dimensions of a rectangular weir constructed at the outlet of gully III (representing untreated part of the watershed) 10 CHAPTER THREE 3 3.1 RESULT AND DISCUSSION Long term evolution of gully in Warke watershed According to the interviews, before 1980 visible gullies did not exist. They indicated that gully formation started at the time when many more farmers came into Warke Watershed that were evicted from their land by the Derg regime for establishing farmers’ cooperatives for members only in 1983 (Table 1). As the result of the evictions, redistribution of farm land took place in the Warke watershed. The land that was owned by a small number of farmers was shared among a much larger group resulting in division of the farm lands in smaller pieces. Small ditches were constructed at farm boundaries to carry of excess water. Based on this information Gully I started in 1980 and Gullies II and III around 1987 (Table 3). A small gully formed just in the outlet of gully III called GaSB in 2007 (Table 3). Table 3: Age of the studied gully segments in Warke watershed, as estimated by local informants Description GI G II G III GaSB Incision started 1980 1987 1987 2007 To control the expansion of the gullies the district office of agriculture in cooperation with the community started to install soil and water conservation structures in the year 1999 consisting of graded soil bunds on the farm land, grass, forage trees and other nitrogen fixing plant along the gullies and on the graded soil bunds, stone and brush check dams inside the gullies. In part of the watershed guards were hired to protect the SWCP (gullies I and II) while the watershed with gully III was not guarded. As a 11 result the graded bunds and planting were destroyed during the years from 2000 to 2003. Gullies as a result of check dams filled up and were eventually converted to agricultural land. Gullies in the middle and bottom part increased in size and retreated back in the area that was reclaimed even in the treated part of the watershed continued to increase and another new head cuts emerged on the side of the formers. Traditional drainage ditches at a slightly greater slope were constructed upslope of the graded bunds. According to interview with farmers the bunds were effective in reducing runoff speed but increase the water logging. The traditional graded ditches drained the excess water from the field. According to the farmers some of the water flowed over the plow pan to the gully where it cause local saturation just below the surface and slumping of the soil below it making the v shaped banks (Figure 6). In order to understand better how the gullies were formed we will look next at the physical measurements taken in Warke watershed in 2010. Figure 6: local saturation in the farmlands causing to collapse the side wall of gully II in the middle of the watershed 12 In 2010 the length of the three (G I, G II and G III) was 890 m, 755 m and 1010 m and did not increase because the gullies had reached the upper end of the watershed. The gullies were still widening and deepening (Table 4). Most change occurred in the bottom gully after gullies G I, G II and G III are joined. The volume increase was over 500% in the two months of observation (Table 4, Figure 7 and Appendix 7). The area taken up in 2010 by the three gullies 0.79 ha (Gully I), 0.44 ha (Gully II), 0.52 ha (Gully III) and 0.25 ha (gully below the junction of Gullies I, II and III) accounts for about 2.5% of the total watershed area. The long term gully erosion rates varied between 22 and 58 t/ha/yr for Gullies I and II in which the SWCPs were maintained and 48 t/ha/yr for Gully III without SWCP (Table 5). The smaller erosion long term rate for Gully I is caused by the fact that it is in existence for 30 years compared to 23 years for the other two gullies and has the largest drainage area (Table 5). By itself Gully I is larger than any of the other two gullies (Table 4) but only expands on the uphill side. Similarly to other gullies that start slow then grow exponential and become stable once it reaches the upper part over a 40 year period (Tebetu et al, 2011), the gullies in the Warke watershed are in their exponential growth rate stage with erosion rates as high as 292 t/ha/year for gully II (Table 5). The lower short term erosion rate for Gully I per unit watershed area is caused again by the larger watershed, but also it is likely closer to becoming stable because it is 30 years old (Tables 4 and 5). The short term erosion rates of gullies II and III is similar to those observed in the DebreMawi watershed 30 km south of Bahir Dar (Tebetu et al. 2010) where gully formation started also around the same time. Erosion rates of Gully I is equal to the ones where gully formation started earlier such as Herwegand Ludi (1999) and Nyssen et al. (2006). 13 Beginning of rainy season (2010) Description Length (m) Av. Depth (m) Av. width (m) Volume (m3) plan area (m2) Length (m) Av. Depth (m) Av. Width (m) Volume (m3) plan area (m2) End of rainy season (2010) Evaluation Period Table 4: The dimension of selected gullies measured beginning and end of one rainy season. Volume change in% GI 890.0 3.1 4.9 13,683.8 7,253.5 890.0 3.3 5.4 15,685.5 7,867.6 G II 754.9 2.2 3.4 5,697.6 3,940.5 754.9 2.5 4.0 7,310.7 4,453.9 G III 1,010.0 2.0 3.4 6,904.6 4,969.2 1,010.0 2.2 3.6 8,189.2 5,211.6 GaSB 2.6 1.8 1.8 8.4 4.6 6.4 2.7 3.0 51.3 21.2 14.6 28.3 18.6 511.8 Total 26,294.3 31,236.6 Figure 7: New head cuts occurring in the saturated bottom and treated middle part of the watershed eating up and side due to soil saturation. 14 Table 5: Long and short term rates of gully erosion in GI, G II and G III Warke watershed Variable GI G II G III GaSB Total Area weighted average 3.2 Gully segment Bulk age Vo 3 ) density V (m estimated (m3) (g/cm3) by local informants (yr) 13684 15,685 1.23 30 5698 7,311 1.24 23 6905 8,189 1.25 23 8. 51 1.22 2 26,294 31,236 1.24 Catchment area (ha) 19.50 Rs RL (t/ha/yr) (t/ha/yr) 29.6 6.8 9.4 3.5 83 292 172 15 22 58 48 9 49.29 68.2 16.80 Soil infiltration rate, bulk density and texture The soil texture analysis indicated that the Warke watershed had a sandy loam (59% sand, 24% silt and 17% clay). The mean bulk density based on 15 samples taken from the treated and untreated part of the watershed was 1.24 g/cm3. Infiltration rates were measured both in the treated and untreated part of the watershed. The infiltration rates were greater in the treated watershed especially at the top than the untreated watershed (Table 6 and Figure 8) the smaller infiltration rate at the bottom of the hill (Table 6) could be due to the saturation of the soil profile. When the soil is saturated or near saturation there is very little space left for the water to infiltrate and will pond. The average soil infiltration rate for the treated watershed was about 6.1 m/day while for the untreated area was 4.0 m/day. The infiltration rates that are expected for sandy loam soils are generally greater than the observed rainfall intensities assuming that the rainfall intensities are comparable the Maybar and AnditTid watershed in eastern Amhara receiving approximately the same annual rainfall (Bayabil et al, 2010). Rainfall burst during a rainstorm will be larger than the infiltration capacity and 15 surface runoff can occur but will then infiltrate after the rainfall intensity decreases. Despite the high infiltration rates, farmers reported runoff at times especially after plowing. In addition, the drainage ditches installed by farmers at some locations indicates that infiltration is problematic at times. Farmers reported increased moisture content near graded bunds (and installed therefore drainage ditches) indicating lateral flow (either surface or subsurface). Farmers’ interviews also indicated that the gully erosion was caused by interflow over the denser than sub layer. It is likely that soil crusting or more likely a shallow clay enriched zone under the plow pan might hinder infiltration during the rain storm and cause shallow lateral flow. Table 6: Average soil infiltration rate at different topographic locations within the treated and untreated parts of the watershed. Location in the watershed Top Top Top Middle Middle Middle Bottom Bottom Infiltration rate ( mm/hr) Treated part Untreated part 144 136 549 216 430 160 198 153 281 185 293 472 23 23 115 115 16 Land use Slope cultivated cultivated cultivated cultivated cultivated cultivated cultivated cultivated 19 19 19 9 9 9 3 3 Average soil Infiltration rate(mm/hr) Infiltration rate at in the treated Vs untreated area at different location 600 Infiltration rate treated part ( mm/hr) 500 400 300 200 Infiltration rate untreated part ( mm/hr) 100 0 Topographical location Figure 8: Average soil infiltration rate in the treated Vs untreated area of the watershed within the three topographic positions (top, middle and bottom) of the watershed 3.3 Ground water table trigger gully expansion The depths of groundwater in the watershed varied with position in the landscape. Down slope in the lower part of the watershed the water table was within one meter from the surface. In the upper watershed ground water table was below 3 m (Figure 9). Thus going upslope the water table decreased. The deeper depths in areas in the upper and right hand site of Figure 9 did not have piezometers and therefore the water table depths are uncertain. Furthermore, since the area from south end of the watershed is not close to a piezometer, the interpolation was not valid. Hence, as we move from P_1 to the south border of the watershed, the deep blue color (Figure 9) does not represent the real water table depth. The pattern of the water table depth with time is dependent on rainfall amounts and landscape position (Figure 10). The response between piezometers is highly variable but some general trends can be observed. First, as indicated by the different scales on 17 Figure 10 a, b and c, the water table height above the restrictive layer for piezometers located in the top, middle and lower part, respectively, is increasing with down slope position. Second, the water level is greater in the beginning of August then in October, because the month of July had much more rainfall than August and September (Figure 14). Thus, the profile is drying out and all water tables are going down. The rates of drawdown are different and not smooth. Thirdly, the decline is not smooth and does not occur per every perimeter. When the water level is either at the restrictive layer or at the soil surface, the water level is steady. Super imposed on the general trend is water level increases due to rainfall events. Generally, the recession is much faster for the individual events than for the overall trend. Finally there is not a systematic difference between the treated and untreated. For gully formation it is of interest to find where the water table is above the gully bottom. Gully I (Figure 11a) is parallel to the road for a part which is down slope of the gully. The gully slumps only upslope of the road and not at the down slope side Upslope there is a high water table all along the gully (Figure 11a). In the other gullies water table is only a few places (Figure 11b, c). For Gully I the road stops the interflow from upslope because of compaction of the subsoil, and as a result the water table rises and once the gully is initiated it will proceed rapidly upstream and becomes wider, where the road is down slope of gully I (Figure 3). The same phenomena of a gully at a distance 10-20 m from the road and parallel can be seen in many places in Amhara. Thus it is not the surface runoff of the road directly that causes the gully but the additional water of the road causes saturation of the soil that in turn decreases the cohesiveness of the soil and once a gully initiates it will proceed rapidly up and down hill. 18 Figure 9: Average groundwater table height and location of 28 piezometers. Locations of gully slips are indicated by small triangles 19 water level above the restrictive layer(m) A water level above the restrictive layer(m) B water level above the restrictive laayer(m) C 1.20 1.00 0.80 0.60 0.40 0.20 0.00 P_10 untreated top P_11 untreated top P_15 treated top P_28 treated top 2.00 P_16 treated middle 1.50 1.00 P_6 untreated middle 0.50 0.00 P_5 untreated middle P_25 treated middle 3.00 2.50 2.00 1.50 1.00 0.50 0.00 P_1 saturation P_2 untreated bottom p_19 treated bottom P_23 treated bottom Figure 10: Water table above the restrictive layer both in the treated and untreated top (A), middle (B) and bottom (C) part of the watershed. 20 A 0.00 1.00 2.00 3.00 4.00 Gully I P_19 P_21 P_23 3.04 3.43 1.69 2.00 2.28 2.60 P_24 2.68 3.40 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 Av.gully depth(m) Depth of water table (m) Gully depth to the top of the watershed B Gully II P_11 P_12 P_13 P_17 P_18 0.00 1.00 2.00 3.00 4.00 0.00 1.00 2.00 3.00 4.00 Av.gully depth(m) gully depth to top of the watershed Gully III C P_1 P_2 P_4 P_6 P_7 P_8 0.00 1.00 2.00 3.00 4.00 0.00 1.00 2.00 3.00 4.00 Av.gully depth(m) Gully depth to the top of the watershed Figure 11: The relative depth of water table vs. gully depths in the selected gullies (gully I, gully II and gully III) at the points where short term Gully evolution measurement were taken place during the end of the rainy season. 21 Figure 12: Piping erosion occurring at the bottom part of the watershed during the month September first. There was a direct correlation of water table and slumping. In the lower saturated part of the watershed where the gullies came together the greatest slumping was observed (Table 7 and Figure 7). In addition, frequent slumping of Gully walls and heads in the middle treated part of the watershed prevail during August end and mid-September where the rainfall duration within these days was relatively higher. As a result the soils become saturated which could not resist the hydraulic pressure to stand and so that it collapse. For example the piezometers P_21, 23 and 4 were installed in the middle of the treated watershed where the area is relatively free from external obstruction both from cultivation and free grazing. The plot area around this point has been used for grass production which is usually harvested with hand to feed animals. In the area it was observed that gully slumping was widespread. During the monitoring period the saturated bottom area gully increased its dimension and retreats up its head cut where the water table in the area was near the surface which is 2.57-1.79m above the gully bottom in the period of August end to mid-September (Appendix 9). 22 Observations made during the study time and before as technical supervisor in the area it was the overland flow coming from the side and above the gully usually joins the gully through the cracks and voids. These tend to create a saturated condition below the surface at the gully wall resulting in collapsing of the soil creating the big hole (Figure 13). Figure 13: Piping erosion occurring at the bottom part of the watershed. Our results are in agreement with Poesen (1993), Fox et al (2007) and Stankovianski, (2003) that gully banks are less affected by overland flow than by other processes such as piping and mass movement as a result of a high water table. Our results are only partly in agreement with Claessens et al. (2007) who reported that important preparatory causal factor for landslides were: high rain fall, steep slopes, deforestation, high weathering rates and slope material with low shear strength of high clay. The slopes of the banks of the gully were steep, but the gullies formed in the flatter parts of the landscape. The soils were sandy instead of clayey but they had low shear strength due to saturation. 23 Table 7: Summary of the measured parameter average values and change in percentage of gullies; Gully, Gully, Gully and saturation bottom gully Variable Units ATW AMW ABW AD T. Vol. M M M M m3 Variable Units ATW AMW ABW AD T. Vol. M M M M m3 3.4 Beginning of rainy season 8.15 5.20 1.44 3.12 13683.77 Gully I End of rainy season 8.84 5.82 1.48 3.28 15685.45 Gully III Beginning End of of rainy rainy season season 4.92 5.16 3.88 4.25 1.35 1.45 2.02 2.24 6904.58 8189.21 Change in % 8.47 11.85 2.78 5.07 14.77 Change in % 4.88 9.31 7.16 10.97 18.61 Gully II Beginning End of of rainy rainy season season 5.22 5.90 3.43 4.46 1.58 1.71 2.21 2.45 5697.6 7310.72 Change in % 13.04 30.11 8.23 10.63 30.49 Saturation bottom Beginning End of Change of rainy rainy in % season season 1.74 3.00 72.41 1.94 3.10 59.79 1.67 2.80 67.66 1.80 2.67 48.33 8.38 51.26 511.69 Runoff Runoff was measured with a rectangular weir at the outlet of Gullies I and II where graded bunds were maintained and Gully III without any soil water conservation structures in place. The storm flow patterns are similar for the three gullies with rapid increase in stream flow after the rain starts and then a rapidly decline in discharge after the rain stops. There are slight differences the runoff starts immediately for gullies I and II while it usually delayed by five minutes for gully III. After the rainfall stops, the discharge last only for an hour usually. The discharge begins a few minutes earlier in Gully I and II than in Gully III. The short delay between runoff and rainfall is a good indication that runoff is generated on the saturated areas. If infiltration runoff would have occurred there would be a variable delay between the start of rainfall and 24 runoff depending on the rainfall intensity. The saturated areas are larger, compact shape and closer to the gully in the treated watershed (drained by Gullies I and II) than for Gully III. This might explain slightly larger delay in runoff for Gully III. The peak flow in Figure 15 shows that there is not a systematic difference in peak flow when expressed on a hectare basis between the treated and untreated watersheds. The peak flow values were smaller for Gullies I and II (draining an area of 5.0 ha) Rainfall (mm) than Gully III with a watershed area of 9.4 ha (Appendix 3 and 4). 400 350 300 250 200 150 100 50 0 monthly rainfall Figure 14: Average monthly rainfall in 2010 in Warke watershed, where high rainfall was registered in the month June 3.4.1 Short term evolution of gully volume and soil erosion rate in the study watershed FARMERS KONWLEGE ABOUT GULLY EROSION Frequent field observations were made with farmers and guards where the soil was saturated at the surface and at various locations along the gullies. These discussions took the form of a question asked by the researcher that was answered by the farmers. On the question “why do we observe gully sliding in this well treated area?” the response was: “It is the water that infiltrate from there above that is coming out here where the gully slumps”. Their understanding was correct as proven by the piezometer 25 readings and is opposite the general option that gullies are formed by fast flowing water. Figure 15: Time series Runoff discharge in the treated and untreated area; the figure shows only the runoff measured during the period mid July to September end where the measurement was undertaken. The farmers responded on the question of timing of slumping of gully walls that slumping was most severe during the first rainy weeks as a result of subsurface flow moving through the cracks and causing local saturation near the banks. At the end of July, cracks are usually close resulting in less frequent slumps. On the question why aggregation of soils started in August, the response was quite brief in that it is a common phenomenon. The farmers also are aware of the phenomenon that during the 26 first rainy months of June and July the sediment concentration is high. They explained that during the dry months the soil becomes smooth and fine and then during the rainy season become easily saturated by the rain after which it is easily carried away by runoff. Percent Change volume of selected gullies 600.00 volume in m3 500.00 400.00 300.00 Change in % 200.00 100.00 0.00 Gully_1 Gully_2 Gully_3 Sat.Gully Figure 16: Short term percentage volume evolution of the three selected gullies. From the farmer’s answers to the questions asked, it becomes obvious that the farmers are very knowledgeable about the erosion processes in the landscape. This shows that, researchers and engineers can obtain valuable information of watershed erosion processes by consulting the farmers first and based on that determine what erosion practices are most effective. 27 Figure 17: Farm land where the three to four times tillage operations have been undertaken and prone to runoff erosion at the beginning of the rainy season. Actually what you can see is the interflow in plowed land that surfaces at the border where it becomes over 28 CHAPTER FOUR 4 4.1 Conclusions and Recommendations Conclusions In this thesis gully expansion in Warke watershed is studied. The Warke watershed is located in the upper Blue Nile Basin, Ethiopia at an altitude between 2632- 2500 m. The area has a humid monsoon climate with an average annual rainfall of 1300 mm. According to informants, gully formation started thirty years ago after the area became intensively cultivated and farm plots were demarcate/separate using traditional small waterways (locally called Fesses) along the slope. Gullies have expanded continuously since that time. Graded bunds and planting along the gullies were installed in the whole watershed in the 1990’s to stop the gully expansion and were only maintained in one part of the watershed where guards were hired. Erosion rates since the initiation of the gullies were 22 t/ha/yr and 58 t/ha/yr for the two gullies in the watershed with the conservation practices and 48 t/ha/yr for the gully in the area without conservation practices. Short term soil loss rates were many times greater indicating that these gullies were in their acceleration phase. Since rainfall exceeds the evaporative demand of the crop a perched water table formed over the restrictive layer during the rainy monsoon phase. The water table was generally deeper in the upper watershed than at lower elevations where the slope decreased. Active gully formation occurred in areas where the groundwater was above the gully bottom. Since infiltration was in general greater than the prevailing rainfall intensities and most of the rainfall infiltrated in the soil, gully function was caused by subsurface flow and not by surface flow. 29 From the study it can be concluded that natural processes associated with more intensive agriculture can accelerate the ongoing expansion of gullies. Similarly when the climate becomes wetter it can also trigger new gullies in both cases because the landscape is seeking for new equilibrium draining the excess water from the uplands to the river. It has been well established that dryer climates will fill up gullies (Nyssen et al, 2000). 4.2 Recommendations The combination of structural and biological conservation measures that have shown promising results in reducing infiltration excess should be improved further through close technical support. It could be good to understand mechanisms for gully expansion. Gully catchment should be improved with properly designed cutoff drains so that weak points in gully head cut areas could be protected from overland flow, while improving proper drainage structure in the treated mid-slope and bottom part of the watershed could also reduce expansion rate. This can prevent the entrance of overland runoff entering in the cracks. While, overland runoff diversion in divided land plot areas into smaller pieces like in Warke watershed may be difficult for the reason that the diverted overland flow could damage land in other area and promote another new incisions in other parts. Hence, careful attention in selection and designing should be given. Generally, before selection and design of any conservation practices for land reclamation programs, due consideration should be given to the ground water table elevation during the rainy phase of the monsoon. In addition attempts should be made to reclaim the current gullies by gully plugs consisting of sand bags and gabion check dams such as carried out in the Lenche Dima watershed near Woldya. The reclaimed land should be planted with income producing 30 trees and the land should be divided among the young unemployed farmers so that that the structures will be maintained. 31 5 REFERENCES Bayabil, H.K., Tilahun, S., Collick, A.S., Yitaferu, B. and Steenhuis, T.S. (2010) ‘Are run-off processes ecologically or topographically driven in the (sub) humid Ethiopian highlands? The case of the Maybar watershed’, Ecohydrology3 Issue: 4 Special Issue: SI Pages: 457-466 DOI: 10.1002/eco.170. Bekele, W., Drake, L. 2003. Soil and water conservation decision behavior of subsistence farmers in the eastern highlands of Ethiopia: a case study of the Hunde- Laftoarea. Ecological Economics 46, 437-451. Bewket, W. and Sterk, G.2003. Assessment of soil erosion in cultivated fields using a survey methodology for rills in the ChemogaWatershed, Ethiopia. Agriculture, Ecosystems and Environment 97: 81-93. Billi, P., and Dramis, F. 2001. Geomorphological investigation on Gully erosion in the Rift Valley and the northern highlands of Ethiopia. Catena, volume 50:353368. Casalí J., López J.J. and Giráldez J.V. 1999: Ephemeral gully erosion in southern Navarra (Spain). Catena 36: 65-84. Claessens L., Knapen A., Kitutu M.G., Poesen J., Deckers J.A. 2007: ModellingLandslids, soil redistribution and yield of Landslids on the Ugandan footslopes of Mount Elgon. Journal of Geomorphology 90(2007) 23-35. Conway, D., and Hulme, M.1993. Recent Fluctuations in Precipitation and Runoff over the Nile Sub-Basins and their impact on main Nile Discharge. Climatic 32 Research unit,School of Environmental Sciences, University East Angela, Norwich NR4 7TJ,U.K. Daba, S., Rieger, W. and Strauss, P.2003. Assessment of gully erosion in eastern Ethiopia using photogrammetric techniques. Catena volume 50: 273-291. FAO, 1995. Global and National soils and Terrain digital database (SOTER). FDRE (Federal Democratic Republic of Ethiopia),2008. Sustainable Land Management (SLM): Project Implementation Manual, Final. Addis Ababa. Ethiopia Fox, G.A., Wilson, G.V., Simon, A., Langenden, E.J., Akay, O. and Fuchs, J.W.2007. Measuring Stream Bank Erosion due to Ground Water Seepage: Correlation to bank pore water pressure, precipitation and stream stage. Earth Surface Processes and Landforms 32, 1558-1573 Garzanti, G., Ando, S., Vezzoli, G., Megid, A.A.A., and Elkammar, A.2006: Petrology of Nile River sands(Ethiopia and Sudan) Sediment Budgets and Erosion Patterns, Earth planet, Sci.Lett.,252,327-341. Herweg, K., Ludi, E., 1999. The performance of selected soil and water conservation measures – case studies from Ethiopia and Eritrea. Catena 36(1/2), 99-114. Hurni, H., 1988. Climate, soil and water: Degradation and Conservation for the Resourcesin the Ethiopian highlands, Part2. Mountain Research and Development 8, 2/3, 123-130. 33 Ibrahim, A.M.1984. Description, Hydrology, Control, and Utilization. Implementation Division, Arab Authority for Agricultural Investment and Development, Sudan. Ireneusz M., 2006. Gully erosion dating by means of anatomical changes in exposed roots (proboszezowicke plateau; southern Poland). Journal on methods and applications of absolute chronology vol.25, pp 57-66. Moges, A. and Holden, N.M. 2009. Land cover Change and gully development in the Umbulo watershed, southern Ethiopia. Mountain Research and Development 29(3):265-276.BioOne. Nyssen, J., Poesen, J., Veyret-picot, M., Moeyersons, J., Mitiku, H., Deckers, J., Dewit, J., Naudts, J., Teka, K., Govers,G. 2006. Assessment of gully erosion rates through interviews and measurements: a case study from northern Ethiopia. Earth Surface Processes and Landforms 31.167-185. Nyssen, J., Moeyersons J., Tervuren, Deckers, J., Mitiku, H., Poesen, J., 2000. Vertic movements and developments and developments of stone covers and gullies, Tigray Highlands, Ethiopia. Z.Geomorph. N.E.44 (2):145-164. Poesen, J., Nachtergaele J., Verstraeten G.and Valentin C. 2003. Gully erosion and environmental change: importance and research needs. Catena 50:91-133. Poeson, J. 1993. Gully typology and gully control measures in the European belt. Farm Land Erosion: in temperate plains environment and Hills. Journal of Elsevier Science.16: 221-239. 34 Soil Science Society of America, 1984. Glossary of soil science terms. Soil Science Society of America, Madison. Wl.http:www.soils.org/sssaglass/. Stankovianski M., 2003: Historical evolution of permanent gullies in the Myjava Hill Land, Slovakia. Catena 51: 223-240. Tebebu, T.Y., Abiy, A.Z., Zegeye, A.D., Dahlke, H.E., Easton, Z.M., Tilahun, S.A., Collick, A.S., Kidnau, S., Moges, S., Dadgari, F. and Steenhuis, T.S. (2010) Surface and subsurface flow effect on permanent gully formation and upland erosion near Lake Tana in the Northern Highlands of Ethiopia,Hydrol. Earth Syst. Sci. Discuss., 7, pp 5235–5265, 2010 www.hydrol-earth-syst-scidiscuss.net/7/5235/2010/ doi:10.5194/hessd-7-5235-2010. Valentin, C., Poesen, J., Li, Y., 2005. Gully erosion: Impacts, factors and control. Catena 63, 232-153. Vandekerckhove, L., Poesen, J., Oostwaoudwijdenes D.J. and de.Figuveireda T., 2000: Topographical thresholds for ephemeral gully initiation in intensively cultivated areas of the Mediterranean. Geomorphology, 33:271-293. Wells, R.R., Alonso, C.V., Bennett, S.J., 2009. Morphodynamics of head cut development and soil erosion Sci.Soc.Am.J.73, 521-530. 35 in upland concentrated flows. Soil APPENDICES Appendix 1: Example of a measured gully cross-section Average width = Where, WT= Top width, WM=Middle width, WB = Bottom width, d= depth d1 2 3 4 5 ⋯ n d 0 Cross-sectional area(A)= Average depth*Average width, Gully Volume=A*L The gully volume was estimated using the formula (example of measured gully crosssection is described in Appendix 2. ΣLiAi…………………………equation 1 Where Li is the length of considered gully segment (m) and Ai is the representative cross sectional area of the gully segment (m2). Long-term gully erosion rates (RL) in tone ha-1yr-1 were calculated using the equation: …………………………equation 2 Where, V= estimated current volume of the gully (m3), Bd= average bulk density of soils in the watershed, T= Time span of gully development in years, C= the watershed area in hectares. 36 Cylindrical core sampler was used to take undisturbed soil samples from different parts of the watershed to determine soil bulk density. Fifteen samples were collected at the twenty-eight piezometer locations both in the treated and untreated parts of the watershed. Samples were weighed before getting into a 1050C oven dry for 24 hours and weighed after dried. The mean of the total samples was taken as the bulk density for the soil in the study area. Short-term erosion rates Rs in t ha-1 yr-1 were determined to estimate the erosion rate in the study period. ……………………….equation 3 Where V= Gully volume at the end of study period, VO=Initial gully volume at the beginning of the study period. Erosion per unit gully surface (RP), in tone m-2 was determined by the formula: …………………………equation 4 Where V= the current volume of the gully, AP= Plane area of the gully (m2). 37 Appendix 2: Short term evolution of the three considered gullies measured at the beginning and end of rainy season Width D S R TW (m) Beginning of rainy season Depth MW ( m) BW (m) AW (m) LS (m) M (m) RS (m) AD (m) TW (m) MW (m) BW (m) AW (m) LS (m) M (m) RS (m) AD (m) 5.00 1.70 4.57 2.60 5.70 2.00 3.43 11.50 6.70 1.70 6.63 2.70 6.30 2.20 3.73 B 8.80 5.80 1.20 5.27 2.20 4.80 2.13 3.04 7.45 5.60 1.40 4.82 2.20 3.80 2.20 2.73 C 10.80 6.70 1.80 6.43 2.60 4.60 3.00 3.40 9.10 6.28 1.80 5.73 2.90 5.30 3.00 3.73 4.58 2.50 3.70 2.90 3.03 7.95 5.50 1.30 4.92 2.60 5.00 3.00 3.53 4.50 1.30 6.20 4.00 1.20 3.80 2.15 3.80 2.10 2.68 I Mean 8.15 5.20 1.44 4.93 2.41 4.52 2.43 3.12 A 6.30 3.00 1.40 3.57 2.00 4.50 1.30 B 7.50 5.40 2.60 5.17 2.45 3.60 C 3.50 2.54 1.60 2.55 1.90 G D 6.00 4.00 1.30 3.77 E 2.78 2.20 1.00 Mean 5.22 3.43 38 7.95 I I I volume (m3) 7.00 D G L (m) A G E I I End of rainy season Depth Width 8.20 5.00 1.20 4.80 2.15 3.70 2.10 2.65 8.84 5.82 1.48 5.38 2.51 4.82 2.50 3.28 2.60 6.20 4.70 2.00 4.30 2.14 2.90 1.40 2.15 2.77 2.94 7.50 5.40 1.50 4.80 2.68 5.00 2.90 3.53 2.10 1.75 1.92 7.00 6.00 1.60 4.87 1.90 3.45 1.90 2.42 1.90 2.50 1.84 2.08 6.00 4.00 1.30 3.77 2.15 3.55 1.95 2.55 1.99 1.00 2.31 1.30 1.54 2.78 2.20 1.00 1.99 1.20 2.40 1.30 1.63 1.58 3.41 1.85 3.00 1.79 2.21 5.90 4.46 1.48 3.95 2.01 3.46 1.89 2.45 890 754.9 13683.8 5697.6 A 1.70 1.50 1.30 1.50 1.10 1.00 1.00 1.03 2.30 3.00 1.50 2.27 1.10 1.50 1.00 1.20 B 4.00 2.60 1.80 2.80 1.70 2.20 1.20 1.70 4.30 2.74 1.80 2.95 1.70 3.20 1.20 2.03 C 7.00 5.00 1.40 4.47 1.73 4.20 1.80 2.58 7.10 5.20 1.58 4.63 1.73 3.14 1.80 2.22 D 6.60 5.80 1.60 4.67 1.70 3.50 1.70 2.30 6.80 6.10 1.80 4.90 1.70 3.20 1.70 2.20 E 6.20 5.40 1.00 4.20 2.64 2.42 2.80 2.62 6.20 5.43 1.00 4.21 2.64 5.20 2.80 3.55 F 4.00 3.00 1.00 2.67 1.90 2.13 1.65 1.89 4.24 3.00 1.00 2.75 1.90 3.20 1.65 2.25 Mean 4.92 3.88 1.35 3.38 1.80 2.58 1.69 2.02 5.16 4.25 1.45 3.62 1.80 3.24 1.69 2.24 1010 6904.6 38 L (m) volume (m3) 890 15685. 5 754.9 7310.7 1010 8189.2 Appendix 3: Surface Runoff Discharge in the Untreated Area (measured under weir_1) Date Time taken by the floater (seconds ) Depth of flow (m) 31-Jul-10 14 2-Aug-10 18 7-Aug-10 22 8-Aug-10 14 11-Aug-10 11 13-Aug-10 21 15-Aug-10 12 22-Aug-10 46 23-Aug-10 55 25-Aug-10 40 27-Aug-10 13 29-Aug-10 45 31-Aug-10 43 1-Sep-10 40 7-Sep-10 13 8-Sep-10 15 9-Sep-10 17 15-Sep-10 19 16-Sep-10 19 22-Sep-10 16 mean contributing area= 9.36 ha weir dimensions height width crosssectional area 0.43 0.21 0.05 0.08 0.35 0.06 0.43 0.41 0.15 0.05 0.43 0.03 0.04 0.05 0.36 0.35 0.05 0.16 0.41 0.31 Velocit y (d/t) m/s Flo w area 0.7 0.6 0.4 0.7 0.9 0.5 0.8 0.2 0.2 0.3 0.8 0.2 0.2 0.3 0.8 0.7 0.6 0.5 0.5 0.6 0.5 0.2 0.1 0.1 0.4 0.1 0.5 0.5 0.2 0.1 0.5 0.0 0.0 0.1 0.4 0.4 0.1 0.2 0.5 0.4 0.45 1.17 0.53 39 Discharg e Discharg (Q=A.V) e Qm3/hr m3/s 0.35 0.14 0.03 0.06 0.36 0.03 0.41 0.10 0.03 0.01 0.40 0.01 0.01 0.02 0.33 0.28 0.03 0.10 0.25 0.22 1264 493 94 231 1313 122 1469 373 117 53 1430 31 39 56 1197 996 116 362 909 799 Q m3/hr/h a 135.0 52.6 10.1 24.6 140.3 13.1 156.9 39.8 12.5 5.6 152.8 3.3 4.2 6.0 127.9 106.4 12.4 38.7 97.1 85.4 57.4 Appendix 4: Surface Runoff Discharge in the Treated Area (measured under weir_2) Date 2-Aug-10 7-Aug-10 8-Aug-10 11-Aug-10 13-Aug-10 15-Aug-10 22-Aug-10 23-Aug-10 25-Aug-10 27-Aug-10 29-Aug-10 31-Aug-10 1-Sep-10 7-Sep-10 8-Sep.10 9-Sep-10 15-Sep-10 16-Sep-10 22-Sep-10 mean Time taken by the floater seconds (s) 33.33 43.48 19.00 13.33 55.56 14.08 76.92 76.92 43.00 15.00 44.00 42.00 37.00 13.00 14.00 21.74 43.48 15.00 14.00 depth of flow m velocit y (d/t) m/s 0.36 0.25 0.23 0.38 0.20 0.45 0.26 0.29 0.05 0.37 0.05 0.06 0.04 0.35 0.43 0.35 0.32 0.36 0.40 0.3 0.2 0.5 0.9 0.2 0.9 0.1 0.1 0.2 0.7 0.2 0.2 0.3 0.8 0.8 0.5 0.2 0.9 0.9 flow are Discharge a (Q = AV) (A) m3/s 2 m 0.2 0.1 0.1 0.2 0.1 0.2 0.1 0.1 0.0 0.2 0.0 0.0 0.0 0.1 0.2 0.1 0.1 0.2 0.2 contributing area= 5.03 ha weir dimensions height 0.4 width 1.06 cross0.42 sectional area 40 0.05 0.02 0.05 0.15 0.02 0.17 0.01 0.02 0.00 0.10 0.00 0.01 0.00 0.11 0.15 0.07 0.03 0.17 0.15 Q m3/h r Q m3/hr/ha 165 88 185 522 55 618 52 58 18 377 17 22 17 411 525 267 112 626 531 246 32.8 17.4 36.7 103.8 10.9 122.9 10.3 11.4 3.5 74.9 3.4 4.3 3.3 81.7 104.4 53.1 22.3 124.5 105.6 48.8 Appendix 5: Measurements and observations undertaken at different parts of the watershed for the identification and determination: gully incision and expansion factors. 41 Apendix 6: Figures at the top part of the watershed; left side before 9years, right side after reclamation. Birara was working there in the district. The result seems good at the top part of the watershed while, gullies are expanding at middle of the watershed due to subsurface flow and ground water push effect in the bottom saturation area. 42 Appendix 7: Figures at the bottom outlet of the watershed showing gully slides due to subsurface water rise up to the surface and soils saturation. 43 Appendix 8: Observed Gully incision due to subsurface water flow in the middle treated area of gully_1 and outlet bottom saturated area of the watershed. 44 Appendix 9: Daily recorded water table depth (m) in Warke watershed from July to October 2010. 45 date P1 P2 P19 P20 P16 P18 P15 P17 P21 P22 P23 P24 P25 P26 P27 P28 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 28-Jul 1 2.3 1.3 2.26 1.37 1.53 2.85 1.77 1.86 1.29 1.21 1.17 2.14 1.37 1.59 1.47 1.38 0.51 1.35 2.2 3.15 1.83 3.31 3.51 3.55 1.86 2.95 3.7 29-Jul 0.94 2.4 1.39 2.24 1.35 1.49 2.8 1.76 1.89 1.49 1.12 1.23 2.13 1.36 1.59 1.46 1.39 0.85 1.6 2.3 3.4 1.84 3.34 3.54 3.59 1.86 2.94 3.69 30-Jul 0.7 2.4 1.55 2.23 1.48 1.67 2.91 1.87 1.86 1.69 1.81 1.28 2.15 1.37 1.6 1.45 1.47 0.75 2.15 2.55 3.6 1.84 3.4 3.55 3.6 1.85 3.11 3.64 31-Jul 0.48 2.4 2.73 2.32 1.89 2.48 2.87 2.12 2.12 2.49 2.05 1.47 2.45 1.37 1.59 1.45 1.32 1.48 2.45 2.8 3.6 1.85 3.4 3.55 3.6 1.86 3.11 3.64 1-Aug 0.35 2.11 1.7 1.87 1.64 2.13 2.57 1.69 2.08 2.22 1.99 1.36 1.92 1.22 1.59 1.08 0.96 1.44 2.3 2.3 3.6 1.89 3.4 3.55 3.6 1.84 3.14 3.63 2-Aug 0.55 2.26 1.96 2 1.59 1.92 2.71 1.84 2.08 2.71 1.97 1.44 1.91 1.29 1.59 1.2 0.96 1.38 2.4 2.4 3.6 1.87 3.4 3.55 3.6 1.86 3.13 3.76 3-Aug 0.43 2.34 2.3 2.06 1.61 2.35 2.83 1.98 2.09 2.7 1.76 1.56 2.13 1.33 1.57 1.23 0.99 1.58 2.3 2.5 3.59 1.87 3.4 3.55 3.6 1.86 3.12 3.67 4-Aug 0.45 2.29 2.53 2.16 1.81 2.39 2.83 2.06 2.08 2.85 1.98 1.55 2.19 1.37 1.6 1.31 1.16 1.62 2.2 2.5 3.59 1.89 3.4 3.55 3.6 1.87 3.17 3.74 5-Aug 0.49 2.4 2.69 2.22 1.88 2.49 2.85 2.09 2.12 2.79 2.04 1.56 2.33 1.36 1.58 1.36 1.18 1.62 2.1 2.7 3.59 1.89 3.4 3.55 3.6 1.84 3.14 3.76 6-Aug 0.51 2.42 2.81 2.4 1.9 2.59 2.91 2.12 2.1 2.84 2.04 1.71 2.4 1.37 1.6 1.39 1.17 1.77 2.15 2.75 3.58 1.88 3.4 3.55 3.6 1.87 3.18 3.74 7-Aug 0.59 2.41 2.84 2.58 1.9 2.69 2.96 2.13 2.19 2.96 2.04 1.76 2.45 1.37 1.6 1.4 1.25 1.74 2.15 2.7 3.59 1.89 3.4 3.55 3.6 1.87 3.2 3.77 8-Aug 0.52 2.44 2.84 2.69 1.9 2.74 2.98 2.13 2.01 2.96 2.05 1.74 2.45 1.37 1.6 1.4 1.2 1.78 2.1 2.55 3.59 1.89 3.4 3.55 3.6 1.87 3.19 3.76 9-Aug 0.48 2.37 2.26 2.45 1.89 2.77 2.96 2.09 2.17 2.95 2.04 1.73 2.39 1.38 1.6 1.4 1.3 1.81 2.83 2.96 3.59 1.89 3.4 3.55 3.6 1.87 3.18 3.77 10-Aug 0.56 2.42 2.64 2.41 1.89 2.84 3.01 2.09 2.49 2.97 2.05 1.72 2.48 1.36 1.59 1.41 1.34 1.84 2.82 2.97 3.59 1.89 3.4 3.55 3.6 1.87 3.19 3.78 11-Aug 0.6 2.42 2.85 2.46 1.89 2.68 3.04 2.1 2.45 2.97 2.05 1.73 2.37 1.37 1.6 1.4 1.25 1.82 2.82 2.97 3.59 1.89 3.4 3.55 3.6 1.86 3.19 3.78 12-Aug 0.62 2.4 2.74 2.43 1.88 2.68 3.05 2.11 2.45 2.98 2.05 1.74 2.38 1.37 1.6 1.4 1.28 1.82 2.83 2.97 3.59 1.89 3.4 3.55 3.6 1.86 3.19 3.78 13-Aug 0.72 2.43 2.72 2.42 1.88 2.68 3.07 2.13 2.48 3.02 1.97 1.74 2.38 1.37 1.6 1.4 1.41 1.88 2.82 2.97 3.59 1.89 3.4 3.55 3.6 1.86 3.19 3.78 14-Aug 0.66 2.39 2.58 2.39 1.77 2.71 3.08 2.13 2.45 2.97 2.01 1.75 2.36 1.38 1.59 1.4 1.53 1.88 2.82 2.97 3.59 1.89 3.4 3.55 3.6 1.87 3.2 3.77 15-Aug 0.68 2.41 2.65 2.36 1.62 2.68 3.1 2.13 2.45 2.99 2.01 1.75 2.32 1.37 1.6 1.39 1.59 1.88 2.83 2.97 3.59 1.89 3.4 3.55 3.6 1.87 3.19 3.78 16-Aug 0.64 2.28 2.04 2.06 1.53 2.56 2.99 2.03 2.5 2.73 2.04 1.75 2.29 1.37 1.6 1.39 1.66 1.84 2.83 2.96 3.59 1.89 3.4 3.55 3.6 1.87 3.18 3.78 17-Aug 0.78 2.38 2.4 2.04 1.45 2.23 2.94 1.88 2.46 2.82 2.04 1.75 1.94 1.38 1.6 1.39 1.66 1.87 2.82 2.97 3.59 1.89 3.4 3.55 3.6 1.87 3.17 3.78 18-Aug 0.69 2.4 2.54 2.06 1.56 2.41 3.03 2.02 2.37 2.95 1.98 1.74 2.12 1.37 1.6 1.4 1.67 1.87 2.82 2.97 3.59 1.89 3.4 3.55 3.6 1.87 3.17 3.78 19-Aug 0.67 2.41 2.7 2.14 1.65 2.6 3.11 2.14 2.32 2.94 1.99 1.72 2.33 1.38 1.6 1.41 1.67 1.88 2.82 2.98 3.59 1.89 3.4 3.55 3.6 1.87 3.19 3.78 20-Aug 0.77 2.45 2.72 2.35 1.86 2.67 3.18 2.15 2.4 2.98 2.04 1.73 2.36 1.37 1.6 1.41 1.68 1.85 2.83 2.98 3.59 1.89 3.4 3.55 3.6 1.87 3.2 3.78 21-Aug 0.86 2.48 2.75 2.47 1.87 2.71 3.19 2.16 2.41 2.99 2.04 1.73 2.36 1.38 1.6 1.42 1.69 1.87 2.82 2.98 3.59 1.89 3.4 3.55 3.6 1.87 3.2 3.78 22-Aug 0.7 2.43 2.88 2.54 1.86 2.78 3.19 2.15 2.41 3.01 2.05 1.75 2.35 1.37 1.6 1.46 1.67 1.88 2.82 2.97 3.59 1.89 3.4 3.55 3.6 1.87 3.2 3.78 23-Aug 0.68 2.42 2.79 2.55 1.82 2.89 3.21 2.14 2.47 3 2.04 1.73 2.41 1.36 1.6 1.38 1.67 1.88 2.83 2.98 3.59 1.9 3.4 3.55 3.6 1.87 3.2 3.78 24-Aug 0.79 2.4 2.7 2.55 1.85 2.87 3.21 2.15 2.51 2.99 2.04 1.75 2.35 1.38 1.61 1.41 1.69 1.88 2.83 2.98 3.59 1.9 3.4 3.55 3.6 1.87 3.22 3.77 25-Aug 1.14 2.41 2.83 2.51 1.81 2.88 3.22 2.14 2.5 2.95 2.04 1.75 2.5 1.38 1.61 1.44 1.69 1.89 2.83 2.98 3.59 1.9 3.4 3.55 3.6 1.87 3.2 3.76 26-Aug 0.78 2.37 2.71 2.43 1.66 2.9 3.22 2.13 2.45 2.95 2.03 1.73 2.42 1.36 1.6 1.34 1.68 1.89 2.74 2.98 3.59 1.9 3.4 3.55 3.6 1.87 3.18 3.78 27-Aug 0.78 2.34 2.12 2.15 1.62 2.91 3.22 2.02 2.4 2.86 2.04 1.74 2.36 1.35 1.58 1.34 1.7 1.89 2.72 2.98 3.59 1.9 3.4 3.55 3.6 1.88 3.18 3.77 28-Aug 0.85 2.33 2.44 2.06 1.68 2.34 3.22 2.02 2.15 2.92 2.05 1.73 2.27 1.36 1.6 1.34 1.66 1.89 2.76 2.99 3.59 1.9 3.4 3.55 3.6 1.88 3.18 3.77 29-Aug 0.8 2.33 2.5 2.01 1.82 2.42 3.22 2.12 1.94 2.96 2.03 1.69 2.24 1.37 1.59 1.37 1.66 1.89 2.78 3 3.59 1.9 3.4 3.55 3.6 1.88 3.18 3.77 45 P14 46 date P1 P2 P19 P20 P16 P18 P15 P17 P21 P22 P23 P24 P25 P26 P27 P28 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 30-Aug 0.87 2.42 2.68 2.23 1.89 2.57 3.22 2.13 2.08 3 2.03 1.72 2.35 1.36 1.59 1.38 1.72 1.89 2.79 3 3.58 1.9 3.4 3.55 3.6 1.89 3.18 3.76 31-Aug 0.93 2.38 2.69 2.11 1.95 2.57 3.22 1.95 2.11 3 2.03 1.71 2.27 1.37 1.59 1.36 1.75 1.87 2.79 3 3.58 1.89 3.4 3.55 3.6 1.89 3.19 3.77 1-Sep 0.86 2.25 2.04 1.84 1.51 2.33 3.22 1.67 2 2.66 2.03 1.62 1.8 1.36 1.59 1.33 1.65 1.83 2.8 2.99 3.57 1.9 3.4 3.55 3.6 1.89 3.19 3.77 2-Sep 0.9 2.33 2.36 1.91 1.87 2.34 3.22 1.91 1.97 2.86 2.03 1.62 1.83 1.36 1.58 1.35 1.64 1.84 2.82 2.99 3.57 1.9 3.4 3.55 3.6 1.89 3.2 3.77 3-Sep 1.1 2.38 2.55 2.14 1.89 2.52 3.22 2.13 2.15 2.93 2.04 1.64 2.12 1.38 1.6 1.35 1.68 1.88 2.85 2.99 3.55 1.9 3.4 3.55 3.6 1.89 3.22 3.77 4-Sep 1.31 2.44 2.66 2.3 1.91 2.68 3.22 2.11 2.22 2.98 2.04 1.69 2.27 1.38 1.6 1.39 1.66 1.89 2.85 2.99 3.56 1.9 3.4 3.55 3.6 1.89 3.21 3.77 5-Sep 1.22 2.44 2.8 2.48 1.93 2.76 3.22 2.09 2.23 3 2.04 1.73 2.42 1.38 1.6 1.39 1.65 1.89 2.85 2.99 3.57 1.9 3.4 3.55 3.6 1.89 3.21 3.77 6-Sep 0.88 2.41 2.84 2.59 1.88 2.88 3.22 2.11 2.17 2.97 2.04 1.74 2.36 1.36 1.59 1.37 1.61 1.89 2.87 2.99 3.56 1.9 3.4 3.55 3.6 1.89 3.22 3.77 7-Sep 0.97 2.39 2.81 2.6 1.89 2.9 3.22 2.08 2.09 2.98 2.04 1.74 2.3 1.36 1.59 1.37 1.65 1.89 2.88 2.99 3.57 1.9 3.4 3.55 3.6 1.89 3.23 3.77 8-Sep 0.96 2.32 2.22 2.21 1.78 2.84 3.22 2.08 2.03 2.99 2.03 1.72 2.16 1.37 1.59 1.36 1.67 1.89 2.88 3 3.57 1.9 3.4 3.55 3.6 1.89 3.22 3.77 9-Sep 0.94 2.32 2.47 2.17 1.85 2.61 3.22 2.12 2.03 3.01 2.03 1.74 2.15 1.38 1.59 1.4 1.48 1.89 2.88 3 3.57 1.9 3.4 3.55 3.6 1.89 3.22 3.77 10-Sep 0.98 2.38 2.6 2.27 1.91 2.67 3.22 2.11 2.03 3.01 2.04 1.75 2.14 1.4 1.6 1.4 1.48 1.89 2.88 3 3.57 1.9 3.4 3.55 3.6 1.89 3.22 3.77 11-Sep 1.11 2.43 2.82 2.5 1.88 2.75 3.22 2.11 2.19 3.01 2.04 1.74 2.25 1.41 1.59 1.37 1.48 1.9 2.88 3 3.56 1.9 3.4 3.55 3.6 1.89 3.22 3.77 12-Sep 1.31 2.48 2.89 2.59 1.85 2.82 3.22 2.13 2.28 3.02 2.04 1.74 2.3 1.42 1.6 1.36 1.51 1.9 2.88 3 3.56 1.9 3.4 3.55 3.6 1.89 3.22 3.78 13-Sep 1.23 2.48 2.65 2.47 1.87 2.93 3.22 2.15 2.34 3 2.03 1.61 2.4 1.42 1.59 1.36 1.58 1.9 2.79 3 3.57 1.9 3.4 3.55 3.6 1.89 3.22 3.79 14-Sep 1.04 2.4 2.6 2.46 1.71 2.93 3.22 2.15 2.08 2.99 2.03 1.74 2.12 1.42 1.59 1.35 1.44 1.9 2.87 3 3.57 1.9 3.4 3.55 3.6 1.89 3.22 3.79 15-Sep 1.23 2.43 2.66 2.46 1.72 2.94 3.22 2.15 2.24 3.01 2.04 1.74 2.42 1.42 1.59 1.4 1.49 1.9 2.88 3 3.57 1.9 3.4 3.55 3.6 1.89 3.22 3.79 16-Sep 1.03 2.31 2.64 2.32 1.75 2.88 3.22 2.15 2.23 3.01 2.02 1.74 2.4 1.42 1.58 1.41 1.47 1.9 2.87 3 3.57 1.9 3.4 3.55 3.6 1.89 3.22 3.79 17-Sep 1.02 2.34 2.51 2.23 1.8 2.72 3.22 2.16 2.21 3.02 2.03 1.73 2.38 1.42 1.59 1.41 1.49 1.9 2.88 3 3.57 1.9 3.4 3.55 3.6 1.89 3.22 3.8 18-Sep 0.95 2.37 2.64 2.35 1.79 2.57 3.22 2.16 2.2 3.02 2.03 1.75 2.31 1.42 1.59 1.4 1.49 1.9 2.88 3 3.57 1.9 3.4 3.55 3.6 1.89 3.22 3.8 19-Sep 1.03 2.43 2.71 2.52 1.86 2.8 3.22 2.15 2.35 3.02 2.04 1.74 2.4 1.42 1.59 1.41 1.54 1.9 2.88 3 3.57 1.9 3.4 3.55 3.6 1.89 3.22 3.8 20-Sep 1.19 2.43 2.97 2.64 1.88 2.87 3.22 2.16 2.48 3.02 2.04 1.74 2.44 1.42 1.58 1.41 1.53 1.9 2.88 3 3.57 1.9 3.4 3.55 3.6 1.89 3.23 3.8 21-Sep 0.99 2.44 2.83 2.68 1.87 2.87 3.22 2.16 2.25 2.99 2.03 1.74 2.44 1.42 1.58 1.39 1.52 1.9 2.87 3 3.56 1.9 3.4 3.55 3.6 1.89 3.23 3.8 22-Sep 1.05 2.46 2.79 2.74 1.81 2.91 3.22 2.16 2.38 3 2.03 1.74 2.45 1.42 1.58 1.39 1.51 1.9 2.88 3 3.57 1.9 3.4 3.55 3.6 1.89 3.23 3.8 23-Sep 1.14 2.48 2.94 2.8 1.73 2.96 3.22 2.15 2.49 3 2.03 1.73 2.42 1.41 1.59 1.38 1.51 1.9 2.88 3 3.57 1.9 3.4 3.55 3.6 1.89 3.23 3.8 24-Sep 1.04 2.51 3.01 2.87 1.82 2.98 3.22 2.15 2.56 3.02 2.04 1.75 2.44 1.39 1.59 1.4 1.55 1.9 2.88 3 3.57 1.9 3.4 3.55 3.6 1.89 3.23 3.8 25-Sep 1.04 2.43 2.33 2.77 1.82 3.03 3.22 2.15 2.55 2.99 2.04 1.76 2.38 1.38 1.58 1.39 1.6 1.9 2.88 3 3.57 1.9 3.4 3.55 3.6 1.89 3.23 3.8 26-Sep 1.12 2.3 2.47 2.44 1.82 3.03 3.22 2.15 2.39 3 2.04 1.74 2.44 1.38 1.58 1.41 1.59 1.9 2.88 3 3.57 1.9 3.4 3.55 3.6 1.89 3.23 3.8 27-Sep 1.13 2.41 2.77 2.49 1.83 3.02 3.22 2.16 2.44 3 2.04 1.74 2.45 1.4 1.59 1.41 1.59 1.9 2.89 3 3.57 1.9 3.4 3.55 3.6 1.89 3.22 3.8 28-Sep 1.13 2.86 2.89 2.58 1.83 2.99 3.22 2.16 2.47 3.02 2.04 1.75 2.46 1.4 1.59 1.4 1.6 1.9 2.89 3 3.57 1.9 3.4 3.55 3.6 1.89 3.09 3.8 29-Sep 1.09 2.53 2.95 2.63 1.82 2.95 3.22 2.16 2.53 3.02 2.04 1.75 2.45 1.4 1.59 1.4 1.6 1.9 2.89 3 3.57 1.9 3.4 3.55 3.6 1.89 3.23 3.8 30-Sep 1.01 2.54 3.07 2.73 1.8 2.92 3.22 2.16 2.57 3.02 2.04 1.75 2.44 1.4 1.59 1.4 1.55 1.9 2.89 3 3.57 1.9 3.4 3.55 3.6 1.89 3.22 3.8 1-Oct 1.05 2.57 3.14 2.85 1.83 3.02 3.22 2.16 2.57 3.02 2.04 1.75 2.46 1.41 1.59 1.4 1.6 1.9 2.89 3 3.57 1.9 3.4 3.55 3.6 1.89 3.23 3.8 2-Oct 1.11 2.55 3.16 2.9 1.85 3.05 3.22 2.16 2.47 3.02 2.05 1.75 2.46 1.41 1.59 1.4 1.33 1.9 2.89 3 3.57 1.9 3.4 3.55 3.6 1.89 3.23 3.8 3-Oct 1.07 2.52 3.18 2.91 1.88 3.06 3.22 2.16 2.42 3.03 2.05 1.76 2.47 1.41 1.59 1.4 1.51 1.9 2.89 3 3.56 1.9 3.4 3.55 3.6 1.89 3.23 3.8 4-Oct 1.06 2.54 3.23 2.92 1.91 3.07 3.22 2.16 2.91 3.29 2.31 2.02 2.73 1.67 1.84 1.65 1.53 1.9 2.89 3 3.57 1.9 3.4 3.55 3.6 1.89 3.24 3.8 46 3.77 Elev of bottom piezom Elev. of avg water table 2575 3.19 2575 1.88 2580 3.6 2580 3.55 2589 3.4 2589 1.89 2610 3.57 2610 2.91 2617 2.72 2617 1.79 2611 1.5 2611 1.38 2600 1.59 2600 1.38 2585 2.31 2585 1.69 2573 2 2573 2.88 2565 2.28 2565 2.08 2535 3.12 2535 2.67 2520 1.78 2520 2.4 2571 2.6 2572 2.41 2578 0.87 2578 P14 2562 P13 2563 P12 2554 P11 2555 P10 2555 P9 2555 P8 2549 P7 2551 P6 2545 P5 2546 P4 2540 P3 2542 P28 2550 P27 2551 P26 2565 P25 2566 P24 2540 P23 2541 P22 2553 P21 2554 P17 2536 P15 2538 P18 2532 P16 2533 P20 2513 P19 2514 P2 2510 P1 Avg depth of water table from surface 2512 date 47 47 Appendix10: Questionnaire for the study Gully formation and expansion Characteristics in the high lands of Blue Nile basin, Ethiopia. Part I Date: _________ Persons present at survey meeting: Gender: M____ F____ Education Level: Uneducated: ___ Educated: Elementary school: ______ High school: _____ College: _____ Other: ______ 1. 2. 3. 4. 5. 6. 7. What are the major crops you have been using to your farmland? ---------------------------------------------------------------------------------------------------------------------Is there a major change in cropping pattern during the last 15 years? If yes what are the reasons? ------------------------------------------------------------------------------------------------------------------------------------------------------How does change in cropping pattern affect soil erosion? ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Do you have a problem of erosion in your farm? ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------How do you know soil erosion occurs on your farm land? (Indicators)---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------What are the noticeable changes in your farm land over time in: Soil fertility / crop productivity / fertilizer response ----------------------------------------------------------------------------------------------------------------------------- Intensity of rill erosion -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Soil depth/surface stoniness ------------------------------------------------------------------------------------------------------------------------------------------------------------ Runoff generation /infiltration/ water holding capacity ------------------------------------------------------------------------------------------------------------------------From where dose the major runoff that cause soil erosion in your farm come from? ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 48 8. How do you protect your farmland from erosion? (yes/no) (List all methods you are applying) ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------9. Are methods you applying effective? ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------10. How do you measure the effectiveness of SWC measure? --------------------------------------------------------------------------------------------------11. Do you know about SWC technologies? --------------------------------------------------------------------------------------------------12. Have you ever participated in SWC technology demonstration, field days or workshops before? ---------13. Do you have information on use of different SWC practices / technologies? If yes, state the advantages and disadvantages. Advantages -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Disadvantages ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------14. Do you apply SWC on your whole farm? If no, how do you select a farm plot for SWC treatment? ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------15. In your opinion, what should be done to improve the effectiveness of SWC measure? --------------------------------------------------------------------------------------------------16. Do you apply fertilizer to your farmland--------------If yes, since when? --------------------------------------------------------------------------------------------------17. What level of yield advantage you would expect from fertilizer addition? Without fertilizer------------------------------------------------------------------------- With fertilizer-----------------------------------------------------------------------------. Yield addition in% -----------------------------------18. Do you expect the yield advantage would remain the same amount with the same quantity of fertilizer of the next 5 years? ..................10 years? ……………… What was the trend over the past? Part II Erosion and its Relation with Runoff 19. Is erosion a problem in your area? (Yes/No) If yes, how serious it is? (Very severe/ medium level problem/ little problem) 20. Compared to other years is there more or less erosion this year? 21. How do you know as erosion exists (indicators of erosion problem)? 22. When, week of month, erosion mostly starts? What are the reasons? 23. When, week of month is erosion severe? Why? 49 24. Where (at which part of the watershed) erosion starts (Upper watershed / middle watershed/ bottom (level slope) of the watershed). Why? 25. Where do you think is erosion severe? Slope: (Upper watershed/ middle watershed/bottom watershed (level slope) parts) Why? Direction? Why? Land Use? Why? Soil Depth? Why? Soil Type? Why? Extent of saturation? Why? Conservation Structures? What other factors affect runoff generation? 26. What are the major causes of soil loss in the watershed? Rank the causes based on their severity? lack of conservation structures steep land without conservation structures damaged conservation structures lack of diversion ditch the land is under steep ridges others 27. Specific characteristics of the locations that produce most erosion? 28. Which type of erosion is dominant in the area? (Splash/Sheet/Rill/Gully) 29. Do you see any relationship between runoff and soil loss? (Yes/no) 30. If yes, when runoff usually carries much sediment? (Month and week) why? 31. From which Part of the watershed the runoff carry much sediment? (month and week) (Upslope/ middle slope / bottom (level slope) of the watershed). 32. When this high runoff carries less sediment? (month and week) Why? 33. When streams usually carry much sediment? (month and week) Why? 34. Why do you think there is more sediment in the runoff water in the beginning of the rainfall season than at the end? 35. What are the major crops you cultivate on your plot? List 36. How do you think crop types affect runoff generation and soil loss from cultivated plots? (Is there a difference from crop to crop?) 37. Where in the watershed gully development starts? 38. Where in the watershed is gully density the highest? 39. Where is the oldest gully located in the watershed? 40. Where is the youngest gully located in the watershed? 41. Do you see any relationships between temporarily saturated areas and where gully development starts? (Yes/No). If yes, explain their relation. 42. Is there anything else you would like to tell me about rainfall, runoff and erosion in the watershed? Any questions I might have asked you that I didn’t? 50
© Copyright 2026 Paperzz