Grissom Mathematics Tournament Comprehensive Test March 15, 2003 1. What is the geometric mean of 4! and 3! divided by the arithmetic mean of 4! and 3!? A. 2 3 B. 3 4 4 5 C. D. 1 E. 2 D. 213034 E. 231034 2. What is 20036 in base 4? A. 123034 B. 132034 C.133024 A. 1 2 1 i 2 B. 7 8 2 i . 3 i 1 : 3. Write in a + bi form where i = 1 i 8 7 8 C. 5 i 8 D. 7 8 5 i 8 E. 7 1 i 10 10 B 4. Find the area of triangle ABC: 8 30 A 0 C 9 A. 9 3 5. Evaluate: A. 13.5 B. 18 lim x 3 C. 18 2 D. 18 3 E. 36 C. 27.5 D. 28.5 E. Undefined x 3 27 5x 2x 6 B. 18.5 6. What is the 2003rd digit to the right of the decimal point in the decimal equivalent 5 of ? 7 A. 1 B. 2 C. 4 D. 5 E. 8 7. A ball is dropped from a height of 4096 ft. Each time it bounces, it rebounds to 1/16 of its previous height. Find the distance the ball has traveled in feet if it is caught at the highest point after the third bounce. A. 4640 B. 4641 C. 4642 D. 4643 E. 4644 8. If (1,2) is one of the points of intersection of the graphs of ax2 + by2 = 5 and bx2 + ay2 = 5, then find a + b. A. 1 B. 2 C. 3 D. 4 E. 5 9. Given parallelogram ABCD, with AB = 10, AD = 12, and BD = 2 13 , find AC. B. 2 13 A. 10 C. 12 3 4 7 , 13 13 10. Find the sum of x on the interval A. 0 B. 11. Evaluate: 2 A. b a B. xy y2 for which 2 cos2 x 1 D. 3 E. 2 sin x . 2 3 1 2 12. If x 2 E. cannot be determined 1 2 A. 1 C. 6 D. 2 109 1 2 ... 5 4 C. a and x 3 B. b2 1 a2 y3 3 2 b then xy C. b2 3a 2 b 3 D. 7 4 E. 2 D. b2 a 3 3a 2 E. ? a2 2b 3 3a 13. Eva writes the letters of the word “Alabama” on cards, one letter per card. She puts all the cards in a hat. What is the probability that she draws three straight cards with a’s without replacement if a is not distinguished from A? A. 1 12 B. 1 7 4 35 D. C. 1 D. C. 4 7 E. 24 35 E. 1 9 14. If F(a ) 1 log3 a 2 , find F 1 ( 1) . A. 3 B. 3 1 3 15. What is the area enclosed by the graph of the conic with the equation 25x 2 36 y 2 100 x 216 y 476 0 ? A. 0 B. 10 C. 15 D. 30 E. 45 16. Find the sum of the solutions on the interval (0,2 ] to the equation: 2 sin 2 x 2 cos2 x 0 A. 2 B. 3 C. 4 2 3 17. Simplify: tan Arc tan A. - 3 x 8 A. –1.25 x D. 5 E. 6 C. 0 D. 1 E. C. –1.75 D. 2 E. C. 2,007,006 D. 4,010,006 E. 4,012,009 Arc tan 5 . B. - 1 18. Evaluate: sin 3 x sin x . cos x 3 2 . 12x 35 2 B. -1.5 2003 x3 x 0 2003 19. Simplify completely: . x x 0 A. 2003 B. 2,005,003 20. Simplify: i 2 A. 1024i 729 2 B. 10 1 2 3 512 243 1 i 2 12 C. , where i= 1. 1024 729 D. 512i 243 E. 1024 729 21. Which of the following is an equation of the plane containing the point (20, 0, 3) that is parallel to the plane containing the points (2, 1, 1), (4, 4, -1), and (2, -1, 2)? A. x 2y 4z 32 D. x 4y 2z 14 B. 2x y 4z 28 E. x y 2z 26 C. 4x 2y 1z 77 22. If log2 10 A, ln10 ln 7 B , and 11c 10 , which of the following expressions is equivalent to log154 ? A. A B C 23. Find xy if A. –4 2 B. ABC x 2y 1 and 0.2 8 B. –1 C. 1 ABC x y D. A B C ABC E. AB AC BC ABC 125 . C. 0 D. 1 E. 4 24. How many ordered sextuplets (a, b, c, d, e, f) exist such that a, c, and e are contained in the set of solutions to the inequality 2 < |x| < 9; b, d, and f are positive integers; and 48 a b c d e f ? A. 24 B. 36 C. 48 D. 72 E. 144 25. If A is the region enclosed by the graph of the parametric equations: x = 5 sec and 5 where 0< < 2 and B is the area of the region described by |y| < [x] where [x] is csc the greatest integer function, then which of the following expressions is equivalent to the area of A B? y= A. 25 B. 25 /4 C. 25 /4 – 4 D. 25 sin 1 3 5 TB1. What is the coefficient of the x 2 y 3 z 2 term in the expansion of ( x E. 25 sin 1 3 -12 5 y 2z ) 7 ? TB2. Let d be the distance between the points with polar coordinates 17, 2 9 and 8, 8 . 9 Find the value of d2. 1 1 1 1 TB3. In the first hundred terms of the harmonic series 1, , ,...., , , how many of the 2 3 99 100 terms have a repeating decimal when written in decimal form?
© Copyright 2026 Paperzz