Berkeley City College Due:________________ HW 1 - Chapter 7 - Techniques of Integration Name___________________________________ Perform the integration. 1) ∫ (x - 7)5 dx 2) ∫ 3) ∫ 4) ∫ 0 7x6dx (8 + x7)4 dx x( x - 7) !/8 sec2 2x dx 3 + tan 2x cos (ln x - 9) dx x 5) ∫ 6) ∫ csc2 5θ cot 5θ dθ 7) ∫ sin 2 x cos x dx Instructor K. Pernell 1 Use integration by parts to evaluate the integral. 8) ∫ cos-1 x dx 9) ∫ 4xex dx 10) ∫ 4 6x ln x dx 2 11) ∫ (2x - 1) ln(6x) dx 12) ∫ 13) ∫ 14) ∫ 15) ∫ sin (2t + 3) dt 1 - sin2 (2t + 3) dx 1 - 16x2 x dx 1 + 25x4 -6x cos 2x dx 2 Apply integration by parts more than once to evaluate the integral. 16) ∫ y2 sin 6y dy 17) ∫ e2x x2 dx Use integration by parts to establish a reduction formula for the integral. 18) ∫ cosn x dx 19) ∫ !/4 sin7y dy 0 20) ∫ 8 cos3 2x dx 21) ∫ 22) ∫ sin 7t sin 2t dt 23) ∫ cos 8x cos 5x dx sin 5x cos 2x dx 3 24) ∫ 3 cos3 x sin5 x dx 25) ∫ 2 sin3 x cos5 x dx 26) ∫ !/3 tan x sec4 x dx 0 27) ∫ 2 csc3 x cot x dx 28) ∫ 29) ∫ 30) ∫ 49 - x2 dx dx (x2 + 81)3/2 x2 dx ,x>5 x2 - 25 Use the method of completing the square, along with a trigonometric substitution if needed, to evaluate the integral. 5 dx 31) 2 0 x + 12x + 40 ∫ 4 Integrate the function. x3 32) dx x2 + 9 ∫ Use the method of partial decomposition to perform the required integration. 5x + 43 33) dx x2 + 10x + 21 ∫ 34) ∫ 5x - 7 dx 2 x - 4x - 5 35) ∫ 2x2 + 10x + 36 dx (x + 5)(x - 1)(x + 3) 36) ∫ 3 37) ∫ 38) ∫ 4 4 3x + 15 dx 2x2 + 7x + 5 8x2 + x + 112 dx x3 + 16x 8 3x dx (x - 5)3 5 39) ∫ 40) ∫ 5x3 + 37x2 + 90x + 70 dx (x + 3)(x + 2)3 cos t dt sin2 t - 6 sin t + 5 Evaluate the integral by first performing long division on the integrand and then writing the proper fraction as a sum of partial fractions. x4 dx 41) x2 - 25 ∫ 42) ∫ 3x3 +x9x3 -2 x-22x - 5 dx Evaluate the integral. dx 43) x (ln x)6 ∫ 44) ∫ !/2 cos2 3x sin3 3x dx 0 45) Use Table of Integrals ∫ 3x - 7 dx x2 6 46) Use Table of Integrals dx (16 - x2)2 ∫ Evaluate the integral by making a substitution and then using a table of integrals. 47) ∫ ex 48) ∫ 49) ∫ 36 - e2x dx e2x dx 5ex + 4 4 - x2 dx Use reduction formulas to evaluate the integral. 50) 6 cos3 5x dx ∫ Use the Trapezoidal Rule with n = 4 steps to estimate the integral. 2 51) 6x2 dx 0 ∫ 52) ∫ 0 1 7 dx 1 +x 7 53) ∫ 0 sin x dx -! Use Simpson's Rule with n = 4 steps to estimate the integral. 3 54) (4x + 4) dx 1 ∫ 55) ∫ 0 sin x dx -! Solve the problem. 56) Estimate the minimum number of subintervals needed to approximate the integral 3 (4x4 - 3x)dx 1 with an error of magnitude less than 10-4 using Simpson's Rule. ∫ 57) Estimate the minimum number of subintervals needed to approximate the integral 4 1 dx x- 1 2 with an error of magnitude less than 10-4 using Simpson's Rule. ∫ Evaluate the improper integral or state that it is divergent. ∞ dx 58) 6 x2 - 25 ∫ 8 59) ∫-∞0 (x 18- 1)2 dx 60) ∫0 61) ∫ ∞ 0 15e-15x dx 14xe3x dx -∞ 62) ∫ ∞ 6xe2x dx 0 Find the area or volume. 63) Find the area of the region in the first quadrant between the curve y = e-5x and the x-axis. 64) Find the area under y = 7 1 + x2 in the first quadrant. 9 Answer Key Testname: MATH3B_HWCH7_INTEGRATION 1) 1 (x - 7)6 + C 6 Objective: (7.1) Evaluate Integral By Substitution I 2) - 1 3(8 + x7) 3 +C Objective: (7.1) Evaluate Integral By Substitution I 3) 2 ln x-7 +C Objective: (7.1) Evaluate Integral By Substitution I 4) 1 ln 4 3 2 Objective: (7.1) Evaluate Integral By Substitution II 5) sin (ln x - 9) + C Objective: (7.1) Evaluate Integral By Substitution II 6) - 1 cot2 5θ + C 10 Objective: (7.1) Evaluate Integral By Substitution II 7) sin3x + C 3 Objective: (7.1) Evaluate Integral By Substitution II 8) x cos-1x - 1 - x2 + C Objective: (7.2) Evaluate Integral Using Integration by Parts I 9) 4xex - 4ex + C Objective: (7.2) Evaluate Integral Using Integration by Parts II 10) 40.2 Objective: (7.2) Evaluate Integral Using Integration by Parts II 2 11) (x2 - x) ln 6x - x + x + C 2 Objective: (7.2) Evaluate Integral Using Integration by Parts II 12) 1 +C 2 cos (2t + 3) Objective: (7.1) Evaluate Integral By Substitution II 13) 1 sin-1 4x + C 4 Objective: (7.1) Evaluate Integral By Trigonometric Substitution 14) 1 tan-1 5x2 + C 10 Objective: (7.1) Evaluate Integral By Trigonometric Substitution 15) - 6 cos 2x - 6 x sin 2x + C 4 2 Objective: (7.2) Evaluate Integral Using Integration by Parts I 10 Answer Key Testname: MATH3B_HWCH7_INTEGRATION 1 1 16) - 1 y 2 cos 6y + y sin 6y + cos 6y + C 18 108 6 Objective: (7.2) Evaluate Integral Using Integration by Parts Multiple Times 17) 1 x2e2x - 1 xe2x + 1 e2x + C 2 2 4 Objective: (7.2) Evaluate Integral Using Integration by Parts Multiple Times 18) ∫ cosn x dx = 1n cosn - 1 x sin x + n n- 1 ∫ cosn - 2 x dx Objective: (7.2) Derive Reduction Formula 19) 256 - 177 560 2 Objective: (7.3) Evaluate Integral (Sine and Cosine) 20) 4 sin 2x - 4 sin3 2x + C 3 Objective: (7.3) Evaluate Integral (Sine and Cosine) 21) - 1 cos 7x - 1 cos 3x + C 14 6 Objective: (7.3) Evaluate Integral (Sine and Cosine) 22) 1 sin 5t - 1 sin 9t + C 10 18 Objective: (7.3) Evaluate Integral (Sine and Cosine) 23) 1 sin 3x + 1 sin 13x + C 6 26 Objective: (7.3) Evaluate Integral (Sine and Cosine) 24) 1 3 sin6 x - sin8 x + C 2 8 Objective: (7.3) Evaluate Integral (Sine and Cosine) 25) - 1 1 cos6 x + cos8 x + C 3 4 Objective: (7.3) Evaluate Integral (Sine and Cosine) 26) 15 4 Objective: (7.3) Evaluate Integral (Tangent/Secant/Cotangent) 27) - 2 csc3 x + C 3 Objective: (7.3) Evaluate Integral (Tangent/Secant/Cotangent) 28) 49 x sin-1 + x 2 7 49 - x2 + C 2 Objective: (7.4) Integrate Using Trigonometric Substitution x 29) 81 81 + x2 +C Objective: (7.4) Integrate Using Trigonometric Substitution 11 Answer Key Testname: MATH3B_HWCH7_INTEGRATION 30) x2 - 25 + C x 1 25 Objective: (7.4) Integrate Using Trigonometric Substitution 31) 1 tan-1 11 - 1 tan-1 3 2 2 2 Objective: (7.4) Integrate by Completing the Square 32) 1 (x2 + 9)3/2 - 9 3 x2 + 9 + C Objective: (8.3) Evaluate Integral by Trig Substitution II 33) ln (x + 3)7 +C (x + 7)2 Objective: (7.5) Evaluate Integral Using Partial Fractions I 34) 3 ln x - 5 + 2 ln x + 1 + C Objective: (7.5) Evaluate Integral Using Partial Fractions I 35) ln (x + 5)3(x - 1)2 (x + 3)3 +C Objective: (7.5) Evaluate Integral Using Partial Fractions I 36) 0.475 Objective: (7.5) Evaluate Integral Using Partial Fractions I 37) 7 ln x + 1 ln x2 + 16 + 1 tan-1 x + C 2 4 4 Objective: (7.5) Evaluate Integral Using Partial Fractions III 38) 8 3 Objective: (7.5) Evaluate Integral Using Partial Fractions II 39) ln (x + 3)2 (x + 2)3 - 4 1 + +C (x + 2) (x + 2)2 Objective: (7.5) Evaluate Integral Using Partial Fractions II 40) 1 ln sin t - 5 - 1 ln sin t - 1 + C 4 4 Objective: (7.5) Evaluate Integral Using Partial Fractions II 41) x3 + 25x + 125 ln x - 5 2 3 - 125 ln x + 5 2 +C Objective: (8.4) Evaluate Integral by Partial Fractions (Improper Fraction) 42) 3x + 7ln x - 5 + 5ln x - 1 + C x Objective: (8.4) Evaluate Integral by Partial Fractions (Improper Fraction) 43) - 1 5(ln x)5 +C Objective: (7.6) Evaluate Integral 12 Answer Key Testname: MATH3B_HWCH7_INTEGRATION 44) 2 15 Objective: (7.6) Evaluate Integral 45) - 3x - 7 + 3 7 tan-1 x 7 3x - 7 +C 7 Objective: (7.5) Use Table To Evaluate Integral (Radical) 46) x +4 + 1 ln +C x-4 16 - x2 8 1 32 x Objective: (7.5) Use Table To Evaluate Integral (Trig Function/Power) 47) ex 2 x 36 - e2x + 18 sin-1 e 6 +C Objective: (7.5) Use Substitution and Integral Table 48) ex - 4 ln 5ex + 4 25 5 +C Objective: (7.5) Use Substitution and Integral Table 49) x 2 4 - x2 + 2 sin-1 x + C 2 Objective: (8.5) Use Table To Evaluate Integral (Radical) 50) 6 2 sin 5x - sin3 5x + C 5 5 Objective: (8.5) Use Reduction Formula to Evaluate Integral 51) 33 2 Objective: (8.6) Use the Trapezoidal Rule 52) 1171 240 Objective: (8.6) Use the Trapezoidal Rule 53) - 1 + 4 2 " Objective: (8.6) Use the Trapezoidal Rule 54) 24 Objective: (8.6) Use Simpson's Rule 55) - 1 + 2 6 2 " Objective: (8.6) Use Simpson's Rule 56) 22 Objective: (8.6) Find Minimum Number of Subintervals 57) 16 Objective: (8.6) Find Minimum Number of Subintervals 58) 1 ln 11 10 Objective: (8.7) Evaluate Improper Integral (Infinite Limits of Integration) I 13 Answer Key Testname: MATH3B_HWCH7_INTEGRATION 59) 18 Objective: (8.7) Evaluate Improper Integral (Infinite Limits of Integration) I 60) 1 Objective: (8.7) Evaluate Improper Integral (Infinite Limits of Integration) II 61) -1.5556 Objective: (7.7) Evaluate Improper Integral (Infinite Limits of Integration) II 62) Divergent Objective: (7.7) Evaluate Improper Integral (Infinite Limits of Integration) II 63) 1 5 Objective: (7.7) Find Area Using Improper Integrals 64) 7 " 2 Objective: (7.7) Find Area Using Improper Integrals 14
© Copyright 2026 Paperzz