HOMEWORK 4 SOLUTIONS Section 3.1 1. According to formula (6) in page 59, we have Z ∞ Z ∞ (x−y)2 (x+y)2 1 1 − 4kt −y e e− 4kt e−y dy = I1 − I2 . e dy − √ u(x, t) = √ 4πkt 0 4πkt 0 For the first part of the integral, I1 , we have Z ∞ (x−y)2 1 I1 = √ e− 4kt −y dy 4πkt Z0 ∞ −x2 +2xy−y 2 −4kty 1 4kt dy =√ e 4πkt Z0 ∞ −x2 +2(x−2kt)y−y 2 1 4kt =√ e dy 4πkt Z0 ∞ −x2 +(x−2kt)2 −(x−2kt)2 +2(x−2kt)y−y 2 1 4kt dy e =√ 4πkt Z0 ∞ −x2 +(x−2kt)2 −(x−2kt−y)2 1 4kt =√ e dy 4πkt Z0 ∞ −4xkt+4k2 t2 −(x−2kt−y)2 1 4kt dy e =√ 4πkt 0 Z e−x+kt ∞ −(x−2kt−y)2 4kt =√ e dy 4πkt 0 Now make a change of variable p= (x − 2kt − y) √ , 4kt then Z e−x+kt −∞ −p2 e dp I1 = − √ x−2kt π √ 4kt x−2kt −x+kt Z √4kt e 2 = √ e−p dp π −∞ Z Z x−2kt √ 4kt e−x+kt 0 −p2 e−x+kt 2 = √ e dp + √ e−p dp π −∞ π 0 e−x+kt e−x+kt x − 2kt = + Erf( √ ). 2 2 4kt 1 For the second part of the integral, I2 , we have Z ∞ (x+y)2 1 e− 4kt −y dy I2 = √ 4πkt Z0 ∞ −x2 −2xy−y 2 −4kty 1 4kt e dy =√ 4πkt Z0 ∞ −x2 −2(x+2kt)y−y 2 1 4kt e dy =√ 4πkt Z0 ∞ −x2 +(x+2kt)2 −(x+2kt)2 −2(x+2kt)y−y 2 1 4kt =√ e dy 4πkt Z0 ∞ −x2 +(x+2kt)2 −(x+2kt+y)2 1 4kt e =√ dy 4πkt Z0 ∞ +4xkt+4k2 t2 −(x+2kt+y)2 1 4kt =√ e dy 4πkt 0 Z ∞ −(x+2kt+y)2 ex+kt 4kt e dy =√ 4πkt 0 Now make a change of variable p= (x + 2kt + y) √ , 4kt then ex+kt I2 = √ π ∞ Z 2 e−p dp x+2kt √ 4kt Z Z x+2kt √ 4kt ex+kt ∞ −p2 ex+kt 2 = √ e dp − √ e−p dp π 0 π 0 x+kt x+kt e x + 2kt e ). − Erf( √ = 2 2 4kt The solution can then be written as u(x, t) = I1 − I2 e−x+kt e−x+kt x − 2kt ex+kt ex+kt x + 2kt + Erf( √ )− + Erf( √ ) 2 2 2 2 4kt 4kt ekt −x x − 2kt x + 2kt kt x = e sinh x + e Erf( √ ) + e Erf( √ ) 2 4kt 4kt = 2. Consider a function v(x, t), which is a solution to vt = kvxx ; v(x, 0) = −1; 2 v(0, t) = 0 on the half line 0 < x < ∞. According to formula (6) in page 59, we have Z ∞ Z ∞ (x−y)2 (x+y)2 1 1 − 4kt v(x, t) = − √ e e− 4kt dy. dy + √ 4πkt 0 4πkt 0 Now we let u(x, t) = v(x, t) + 1, then u(x, t) solves our original PDE problem, with u(x, 0) = v(x, 0) + 1 = 0 and u(0, t) = v(0, t)+1 = 1. We still need to evaluate the two integrals for v(x, t). Make the change of variable x−y , p= √ 4kt the first integral can be written as Z ∞ (x−y)2 1 √ e− 4kt dy 4πkt 0 Z x/√4kt 1 2 =√ e−p dp π −∞ 1 1 x = + Erf( √ ) 2 2 4kt Make the change of variable x+y q= √ , 4kt the first integral can be written as Z ∞ (x+y)2 1 √ e− 4kt dy 4πkt Z ∞0 1 2 e−p dp =√ √ π x/ 4kt 1 1 x = − Erf( √ ) 2 2 4kt Hence v(x, t) = − Thus, x x 1 1 1 1 x + Erf( √ ) + − Erf( √ ) = −Erf( √ ). 2 2 2 2 4kt 4kt 4kt x u(x, t) = v(x, t) + 1 = 1 − Erf( √ ). 4kt 3. For the half line Neumann problem wt − kwxx = 0; wx (0, t) = 0; 3 w(x, 0) = φ(x) on the half line 0 < x < ∞, we first extend the initial condition φ(x) to an even function ψ defined on the whole real line, such that ψ(x) = φ(x) when x ≥ 0 and ψ(x) = φ(−x) when x < 0. Now we consider a new PDE ut − kuxx = 0; u(x, 0) = ψ(x), with −∞ < x < ∞. According to formula (8) in page 49, the solution to this PDE is Z ∞ −(x−y)2 1 u(x, t) = √ e 4kt ψ(y)dy. 4πkt −∞ Since the initial condition ψ(x) is an even function, the solution u(x, t) is always an even function in x at any time t, hence ux (0, t) = 0 for any t. That means, w(x, t) = u(x, t) for x > 0 is the solution to our original Neumann problem. Now we are to calculate w(x, t). Z ∞ −(x−y)2 1 e 4kt ψ(y)dy w(x, t) = √ 4πkt −∞ Z ∞ Z 0 −(x−y)2 −(x−y)2 1 1 e 4kt φ(y)dy + √ e 4kt φ(−y)dy =√ 4πkt 0 4πkt −∞ Let z = −y, then 1 √ 4πkt Z 0 e −∞ −(x−y)2 4kt 1 φ(−y)dy = √ 4πkt Z ∞ e −(x+z)2 4kt φ(z)dz 0 Hence Z ∞ Z ∞ −(x−y)2 −(x+z)2 1 1 e 4kt φ(y)dy + √ e 4kt φ(z)dz w(x, t) = √ 4πkt Z0 4πkt Z0 ∞ ∞ −(x−y)2 −(x+y)2 1 1 =√ e 4kt φ(y)dy + √ e 4kt φ(y)dy 4πkt 0 4πkt 0 Z ∞ −(x−y)2 −(x+y)2 1 =√ e 4kt + e 4kt φ(y)dy 4πkt 0 4 Section 3.2 1. For the Neumann problem utt − c2 uxx = 0, u(x, 0) = φ(x), ut (x, 0) = ψ(x), ux (0, t) = 0 with 0 < x < ∞, we extend φ and ψ to even functions h(x) = φ(x) for x ≥ 0, h(x) = φ(−x) for x < 0, and g(x) = ψ(x) for x ≥ 0, g(x) = ψ(−x) for x < 0. Consider the wave equation vtt − c2 vxx = 0, v(x, 0) = h(x), vt (x, 0) = g(x) with −∞ < x < ∞. According to formula (8) in page 36, the solution to this wave equation is given by Z 1 x+ct 1 g(s)ds. v(x, t) = (h(x + ct) + h(x − ct)) + 2 2c x−ct Now let u(x, t) = v(x, t) for x > 0, then u(x, t) solves the original Neumann problem. The question is now how to compute u(x, t). When x > c|t|, Z 1 x+ct 1 ψ(s)ds. u(x, t) = (φ(x + ct) + φ(x − ct)) + 2 2c x−ct When 0 < x < c|t|, u(x, t) = = = = Z 1 x+ct 1 (h(x + ct) + h(x − ct)) + g(s)ds 2 2c x−ct Z Z 1 1 x+ct 1 0 ψ(−s)ds + ψ(s)ds (φ(x + ct) + φ(ct − x)) + 2 2c x−ct 2c 0 Z Z 1 1 ct−x 1 x+ct (φ(x + ct) + φ(ct − x)) + ψ(s)ds + ψ(s)ds 2 2c 0 2c 0 Z Z 1 x+ct 1 1 ct−x (φ(x + ct) + φ(ct − x)) + ψ(s)ds + ψ(s)ds 2 c 0 2c ct−x 5. According to formulae (2) and (3) in page 62, the solution to this Dirichlet problem is Z 1 1 x+2t u(x, t) = (φ(x + 2t) + φ(x − 2t)) + ψ(y)dy = 1 2 4 x−2t for x > 2|t|, and 1 1 u(x, t) = (φ(x + 2t) − φ(2t − x)) + 2 4 Z x+2t ψ(y)dy = 0 2t−x for x < 2|t|. Hence the solution is not continuous and has a singularity at x = 2|t|. 5 10. We are to solve utt = 9uxx in 0 < x < π/2, u(x, 0) = cos x, ut (x, 0) = 0, ux (0, t) = 0, u(π/2, t) = 0. Notice that at x = 0 we have Neumann boundary condition, so we need an even extension at x = 0; Notice that at x = π/2, we have Dirichlet boundary condition, so we need an odd extension at x = π/2. It turns out that φ(x) = cos x itself is an even extension at x = 0 because cos x = cos(−x); and φ(x) = cos x itself is an odd extension at x = π/2 because cos x = − cos(π − x). So we just need to solve the problem vtt − 9vxx = 0, v(x, 0) = cos x, vt (x, 0) = 0 over the whole real line −∞ < x < ∞. According to formula (8) in page 36, the solution to that is v(x, t) = 1 (cos (x + ct) + cos (x − ct)) = cos x cos (ct) 2 6
© Copyright 2026 Paperzz