Section 1.4 HW Name__________________________________

Section 1.4 HW
Name__________________________________
Write the slope-intercept form of the line that passes through the given point with slope m.
1) Through (2, 4), m = - 4
9
1)
2) Through (2, 2), m = - 7
8
7
A) y = 7 x +
4
8
2)
15
B) y = 7 x 4
8
15
C) y = - 7 x +
4
8
3) Through (5, 0), m = -1
7
D) y = - 7 x +
4
8
3)
Find the slope-intercept form of the line satisfying the given conditions.
4) Through (-5, 7) and (0, -4)
1
4)
5) Through (5, 0) and (-6, 4)
1
A) y = x + 1
2
C) y =
5)
4 + 20
B) y = x
11
11
4 + 20
x
11
11
D) y = -
6) Through (-4, -2) and (-6, 3)
1
x+ 1
2
6)
Graph the line, finding intercepts to determine two points on the line.
7) 8y - 2x = -4
x - intercepts
y - intercetps
2
7)
8) 2x - 4y = 4
8)
B) x: (1, 0); y: (0, -2)
A) x: (-2, 0); y: (0, 1)
y
-10
y
10
10
5
5
-5
5
10 x
-10
-5
-5
-5
-10
-10
C) x: (2, 0); y: (0, -1)
10 x
5
10 x
D) x: (-1, 0); y: (0, 2)
y
-10
5
y
10
10
5
5
-5
5
10 x
-10
-5
-5
-5
-10
-10
Write the equation in the form y = mx + b.
9) 7x + 10y = 13
7
13
A) y =
x10
10
9)
7
13
B) y = x+
10
10
C) y = 7x - 13
D) y =
7
13
x+
10
10
10) -6x + 2y = 11
A) y = 3x -
10)
11
2
B) y = - 3x +
11
2
C) y =
3
1 + 11
x
3
2
D) y = 3x +
11
2
Find the equation of the line satisfying the given conditions, giving it in slope-intercept form if possible.
11) Through (1, 1), parallel to 9x - 5y = 39
11)
12) Through (-3, -4), perpendicular to -6x + 7y = -10
7
15
6
A) y = - x B) y = - x - 45
6
2
7
12)
7
C) y = - x
6
4
7
15
D) y = x +
6
2
Solve the problem.
13) In a certain city, the cost of a taxi ride is computed as follows: There is a fixed charge of $2.30 as
soon as you get in the taxi, to which a charge of $2.05 per mile is added. Find an equation that
can be used to determine the cost, C(x), of an x-mile taxi ride.
A) C(x) = 4.35 x
B) C(x) = 2.05 + 2.30 x
C) C(x) = 2.30 + 2.05 x
D) C(x) = 2.85 x
14) The paired data below consist of the test scores of 6 randomly selected students and the number
of hours they studied for the test. Find the equation of the least-squares regression line that
models the data.
13)
14)
Hours 5 10 4 6 10 9
Score 64 86 69 86 59 87
A) y ≈ 67.3 + 1.07x
C) y ≈ 33.7 - 2.14x
B) y ≈ 33.7 +2.14x
D) y ≈ -67.3 + 1.07x
15) The paired data below consist of the temperatures on randomly chosen days and the amount a
certain kind of plant grew (in millimeters). Find the equation of the least-squares regression line
that models the data.
Temp 62 76 50 51 71 46 51 44 79
Growth 36 39 50 13 33 33 17 6 16
A) y ≈ 7.30 + 0.122x
C) y ≈ -14.6 - 0.211x
B) y ≈ 14.6 + 0.211x
D) y ≈ 7.30 - 0.112x
5
15)
Answer Key
Testname: ALG3SECTION1.4HWWITHANSWERS
44
1) y = - 4 x +
9
9
2) C
3) y = -x + 5
11
4) y = x- 4
5
5) B
6) y = -
5
x - 12
2
7) x: (2, 0); y: 0, -
1
2
y
10
5
-10
-5
5
10 x
-5
-10
8) C
9) B
10) D
11) y =
12)
13)
14)
15)
9 - 4
x
5
5
A
C
A
B
6