Section 1.4 HW Name__________________________________ Write the slope-intercept form of the line that passes through the given point with slope m. 1) Through (2, 4), m = - 4 9 1) 2) Through (2, 2), m = - 7 8 7 A) y = 7 x + 4 8 2) 15 B) y = 7 x 4 8 15 C) y = - 7 x + 4 8 3) Through (5, 0), m = -1 7 D) y = - 7 x + 4 8 3) Find the slope-intercept form of the line satisfying the given conditions. 4) Through (-5, 7) and (0, -4) 1 4) 5) Through (5, 0) and (-6, 4) 1 A) y = x + 1 2 C) y = 5) 4 + 20 B) y = x 11 11 4 + 20 x 11 11 D) y = - 6) Through (-4, -2) and (-6, 3) 1 x+ 1 2 6) Graph the line, finding intercepts to determine two points on the line. 7) 8y - 2x = -4 x - intercepts y - intercetps 2 7) 8) 2x - 4y = 4 8) B) x: (1, 0); y: (0, -2) A) x: (-2, 0); y: (0, 1) y -10 y 10 10 5 5 -5 5 10 x -10 -5 -5 -5 -10 -10 C) x: (2, 0); y: (0, -1) 10 x 5 10 x D) x: (-1, 0); y: (0, 2) y -10 5 y 10 10 5 5 -5 5 10 x -10 -5 -5 -5 -10 -10 Write the equation in the form y = mx + b. 9) 7x + 10y = 13 7 13 A) y = x10 10 9) 7 13 B) y = x+ 10 10 C) y = 7x - 13 D) y = 7 13 x+ 10 10 10) -6x + 2y = 11 A) y = 3x - 10) 11 2 B) y = - 3x + 11 2 C) y = 3 1 + 11 x 3 2 D) y = 3x + 11 2 Find the equation of the line satisfying the given conditions, giving it in slope-intercept form if possible. 11) Through (1, 1), parallel to 9x - 5y = 39 11) 12) Through (-3, -4), perpendicular to -6x + 7y = -10 7 15 6 A) y = - x B) y = - x - 45 6 2 7 12) 7 C) y = - x 6 4 7 15 D) y = x + 6 2 Solve the problem. 13) In a certain city, the cost of a taxi ride is computed as follows: There is a fixed charge of $2.30 as soon as you get in the taxi, to which a charge of $2.05 per mile is added. Find an equation that can be used to determine the cost, C(x), of an x-mile taxi ride. A) C(x) = 4.35 x B) C(x) = 2.05 + 2.30 x C) C(x) = 2.30 + 2.05 x D) C(x) = 2.85 x 14) The paired data below consist of the test scores of 6 randomly selected students and the number of hours they studied for the test. Find the equation of the least-squares regression line that models the data. 13) 14) Hours 5 10 4 6 10 9 Score 64 86 69 86 59 87 A) y ≈ 67.3 + 1.07x C) y ≈ 33.7 - 2.14x B) y ≈ 33.7 +2.14x D) y ≈ -67.3 + 1.07x 15) The paired data below consist of the temperatures on randomly chosen days and the amount a certain kind of plant grew (in millimeters). Find the equation of the least-squares regression line that models the data. Temp 62 76 50 51 71 46 51 44 79 Growth 36 39 50 13 33 33 17 6 16 A) y ≈ 7.30 + 0.122x C) y ≈ -14.6 - 0.211x B) y ≈ 14.6 + 0.211x D) y ≈ 7.30 - 0.112x 5 15) Answer Key Testname: ALG3SECTION1.4HWWITHANSWERS 44 1) y = - 4 x + 9 9 2) C 3) y = -x + 5 11 4) y = x- 4 5 5) B 6) y = - 5 x - 12 2 7) x: (2, 0); y: 0, - 1 2 y 10 5 -10 -5 5 10 x -5 -10 8) C 9) B 10) D 11) y = 12) 13) 14) 15) 9 - 4 x 5 5 A C A B 6
© Copyright 2025 Paperzz