Parametric and general equation of a geometrical object O t INPUT (x, y, z) INPUT EQUATION EQUATION ( x (t ) , y (t ) , z (t )) ∈ O OUTPUT OUTPUT ( x, y, z ) ∈ O ( x, y, z ) ∉ O System of co-ordinates in E2 points y B = [b1 , b2 ] b2 vectors u a1 a2 b1 A = [ a1 , a2 ] u = AB = ( b1 − a1 , b2 − a2 ) B = A+ u x System of co-ordinates in E3 z B = [b1 , b2 , b3 ] points vectors u A = [ a1 , a2 , a3 ] y x u = AB = ( b1 − a1 , b2 − a2 , b3 − a3 ) B = A+ u Parametric equations of a straight line X A u X = A+t ⋅u in E3 in E2 A = [ a1 , a2 , a3 ] A = [ a1 , a2 ] u = ( u1 , u2 , u3 ) u = ( u1 , u2 ) x = a1 + tu1 y = a2 + tu2 x = a1 + tu1 y = a2 + tu2 z = a3 + tu3 Parametric equations of a plane X u A v A = [ a1 , a2 , a3 ] u = ( u1 , u2 , u3 ) v = ( v1 , v2 , v3 ) X = A + su + t v x = a1 + su1 + tv1 y = a2 + su2 + tv2 z = a3 + su3 + tv3 General equation of a straight line in E2 ax + by + c = 0 If a straight line is given by two points A = [ a1 , a2 ] , B = [b1 , b2 ] then its general equation can be expressed as x − a1 y − a2 =0 b1 − a1 b2 − a2 General equation of a plane in E3 ax + by + cz + d = 0 If a plane is given by three points A = [ a1 , a2 , a3 ] , B = [b1 , b2 , b3 ] , C = [ c1 , c2 , c3 ] then its general equation can be expressed as x − a1 y − a2 b1 − a1 b2 − a2 c1 − a1 c2 − a2 z − a3 b3 − a3 = 0 c3 − a3 General equations of a straight line in E3 A straight line n E3 is defined by the general equations of two planes that intersect in that straight line. a1 x + b1 y + c1 z + d1 = 0 a2 x + b2 y + c2 z + d 2 = 0 Given a general equation of a straight line ax + by + c = 0 u v u = k ( −b, a ) how can we determine a vector u parallel to and a vector v perpendicular to that straight line ? v = k ( a, b ) Given a general equation of a plane ax + by + cz + d = 0 u u = k ( a , b, c ) how can we determine a vector u perpendicular to that plane ? a1 x + b1 y + c1 z + d1 = 0 u = ( u1 , u2 , u3 ) a2 x + b2 y + c2 z + d 2 = 0 i j a1 a2 b1 b2 k c1 = u1i + u2 j + u3 k c2 Finding the coordinates of a vector u parallel to the straight line given by two general equations of planes Angle between two straight lines v u u⋅v cos ϕ = u v α Angle between a plane and a straight line u = ( u1 , u2 , u3 ) ϕ ax + by + cz + d = 0 sin ϕ = u1a + u2b + u3c u12 + u22 + u32 a 2 + b 2 + c 2 Angle between two planes ϕ a1 x + b1 y + c1 z + d1 = 0 a2 x + b2 y + c2 z + d 2 = 0 cos ϕ = a1a2 + b1b2 + c1c2 a12 + b12 + c12 a22 + b22 + c22 The distance of a point from a straight line or a plane P = [ p1 , p2 , p3 ] ax + by + c = 0 P = [ p1 , p2 ] ax + by + cz + d = 0 d d d= ap1 + bp2 + c a +b 2 2 d= ap1 + bp2 + cp3 + d a 2 + b2 + c2 Special type equation of a straight line (1) y positive ϕ q x y = k⋅x+q k = tan ϕ ,ϕ ≠ negative π 2 Special type equation of a straight line (2) y x y + =1 a b b a x Special type equation of a plane z C π ≈ ∆ABC c π b a A x O B π≡ x y z + + =1 a b c y Canonical equations of a straight line in E3 u = ( u1 , u2 , u3 ) P = [ p1 , p2 , p3 ] x − p1 y − p2 z − p3 = = u1 u2 u3 Bundle of straight lines l1 l l1 ≡ a1 x + b1 y + c1 = 0 l2 ≡ a2 x + b2 y + c2 = 0 l2 l ≡ λ1 ( a1 x + b1 y + c1 + d1 ) + λ2 ( a2 x + b2 y + c2 + d 2 ) = 0 Bundle of planes π π2 π1 π 1 ≡ a1 x + b1 y + c1 z + d1 = 0 π 2 ≡ a2 x + b2 y + c2 z + d 2 = 0 π ≡ λ1 ( a1 x + b1 y + c1 z + d1 ) + λ2 ( a2 x + b2 y + c2 z + d 2 ) = 0 Bunch of planes C π 1 ≈ ∆PAB, π 2 ≈ ∆PBC ,π 3 ≈ ∆PCA A B P π 1 ≡ a1 x + b1 y + c1 z + d1 = 0 π 2 ≡ a2 x + b2 y + c2 z + d 2 = 0 π 3 ≡ a3 x + b3 y + c3 z + d3 = 0 π ≡ λ1 (π 1 ) + λ2 (π 2 ) + λ3 (π 3 ) = 0
© Copyright 2026 Paperzz