Differential Calculus 201-103-RE Vincent Carrier Exercise Sheet 11 3.5 Product and Quotient Rules Find the derivative of the following functions. 1. f (x) = x 3x + 2 2. y = 3 − 2x2 4. y = 2 − 3x2 √ t 7. z = √ t+1 4 − 3x 5 − 2x 3. z = 3t6 7 √ 3x − 4 x √ 6. f (x) = 3 x 2t3 5. g(t) = 3 − t3 √ x+ x √ 8. y = x− x x 9. g(x) = x+ 1 x 3.6 Chain Rule Find the derivative of the following functions. 10. y = (2x2 + 3)9 13. y = 3 2 (x + 2x + 3)4 16. g(t) = t3 (t + 3)6 √ 19. y = x3 x4 + 8 22. z = t3 (2t + 1)4 11. f (x) = 1 (5 − 3x)8 √ 3 14. f (x) = 9 4 − x2 17. y = x6 (x5 − 4)3 20. f (x) = x+1 x−1 12. y = x3 − 2x2 8 x5 + 6x √ √ 18. f (x) = x( x + 2)8 15. y = √ 4 5 1−z 23. g(z) = √ 3 − 2z √ r 21. z = t2 + 4 t2 + 9 x2 24. y = √ x2 + 9 25. z = (t + 1)3 (t + 2)7 26. y = (x2 + 1)5 (x2 + 4)4 27. g(t) = (3t + 2)4 (4t − 3)6 28. f (x) = (4x + 1)5 (3 − x)4 29. y = (3 − 2x)3 (2 − 3x)3 30. z = (2t + 1)5 (3 − 4t)4 Answers: 1. f 0 (x) = 4. 2 (3x + 2)2 2. 10x dy = dx (2 − 3x2 )2 dy 7 =− dx (5 − 2x)2 5. g 0 (t) = √ dy x √ 2 8. =− dx (x − x) dz 1 7. = √ √ dt 2 t( t + 1)2 10. dy = 36x(2x2 + 3)8 dx 11. f 0 (x) = 13. dy 24(x + 1) =− 2 dx (x + 2x + 3)5 14. f 0 (x) = − 16. g 0 (t) = 9t2 (t + 1)(t + 3)5 17. 24 (5 − 3x)9 dy x2 (5x4 + 24) = √ dx x4 + 8 20. f 0 (x) = − 22. dz t2 (3 − 2t) = dt (2t + 1)5 23. g 0 (z) = 10(x + 1)4 (x − 1)6 z−2 (3 − 2z)3/2 dz = (10t + 13)(t + 1)2 (t + 2)6 dt 27. g 0 (t) = 12(10t + 1)(3t + 2)3 (4t − 3)5 29. 6x (4 − x2 )2/3 dy = 3x5 (7x5 − 8)(x5 − 4)2 dx 19. 25. 18t2 (3 − t3 )2 dy = 3(12x − 13)(3 − 2x)2 (2 − 3x)2 dx 26. 3. dz 18t5 = dt 7 6. f 0 (x) = 9. g 0 (x) = 2 x1/3 (x2 − 2 3x5/6 2x + 1)2 12. dy 3x2 − 4x = √ dx 2 x3 − 2x2 15. dy 2(5x4 + 6) =− 5 dx (x + 6x)5/4 18. f 0 (x) = √ √ (9 x + 2)( x + 2)7 √ 2 x 21. dz 5t √ = 2 3/2 dt (t + 9) t2 + 4 24. dy x(x2 + 18) = 2 dx (x + 9)3/2 dy = 6x(3x2 + 8)(x2 + 1)4 (x2 + 4)3 dx 28. f 0 (x) = −4(9x − 14)(4x + 1)4 (3 − x)3 30. dz = −2(36t − 7)(2t + 1)4 (3 − 4t)3 dt
© Copyright 2026 Paperzz