Thermo - Part II Page 22 Question: Calculate the heat required to decompose limestone: CaCO3(s) → CaO(s) + CO2(g) You are given: ΔH°f [CaCO3(s)] = –1206.9 kJ/mol ΔH°f [CaO(s)] = –635.1 kJ/mol ΔH°f [CO2(g)] = –393.5 kJ/mol 1) The Long Way (Hess's Law): (1) Ca(s) + C(s) + 3/2O2(g) → CaCO3(s); (2) Ca(s) + ½O2(g) → CaO(s); (3) C(s) + O2(g) → CO2(g); ΔH°f = –1206.9 kJ ΔH°f = –635.1 kJ ΔH°f = –393.5 kJ Want: CaCO3(s) → CaO(s) + CO2(g) Therefore, flip equation (1) and add (2) and (3): CaCO3(s) → Ca(s) + C(s) + 3/2O2(g) Ca(s) + ½O2(g) → CaO (s); C(s) + O2(g) → CO2(g); ; CaCO3(s) → CaO(s) + CO2(g) ; ΔH°f = +1206.9 kJ ΔH°f = –635.1 kJ ΔH°f = –393.5 kJ ΔH°Rxn = +178.3 kJ 2) The Short Way: ΔH°rxn = ΣnΔHf°(products) – ΣnΔHf°(reactants) ΔH°rxn = ΔH°f [CaO(s)] + ΔH°f [CO2(g)] – ΔH°f [CaCO3(s)] ΔH°rxn = (–635.1 kJ/mol) + (–393.5 kJ/mol) – (–1206.9 kJ/mol) ΔH°rxn = +178.3 kJ Page 23 Problem 1: Calculate ΔH°Rxn for the reaction: CH4(g) + 2O2(g) → CO2(g) + 2H2O(l) ΔH°rxn = ΣnΔHf°(products) – ΣnΔHf°(reactants) ΔH°rxn = ΔH°f [CO2(g)] + 2ΔH°f [H2O(l)] – ΔH°f [CH4(g)] – 2ΔH°f [O2(g)] ΔH°rxn = (–393.5 kJ/mol) + 2(–285.8 kJ/mol) – (–74.87 kJ/mol) – 2(0 kJ/mol) ΔH°Rxn = –890 kJ/mol Problem 2: Given (a) 4NH3(g) + 5O2(g) → 4NO(g) + 6H2O(l); ΔH = –1169 kJ (b) 4NH3(g) + 3O2(g) → 2N2(g) + 6H2O(l); ΔH = –1530 kJ What is ΔH°f for NO(g)? Want: ½N2(g) + ½O2(g) → NO(g); ΔH°f[NO(g)] Add (a) to the reverse of (b): 2 (a) 4NH3(g) + 5O2(g) → 4NO(g) + 6H2O(l); ΔH = –1169 kJ (-b) 2N2(g) + 6H2O(l) → 4NH3(g) + 3O2(g) ; ΔH = +1530 kJ 2N2(g) + 2O2(g) → 4NO(g) ΔHRxn = +361 kJ Divide by 4: ½N2(g) + ½O2(g) → NO(g) ΔH°f = +361/4 = 90.2 kJ
© Copyright 2026 Paperzz