ELEMENTAL AND ISOTOPIC ANALYSIS BY D-SECONDARY ION MASS SPECTROMETRY (D-SIMS) Nathalie VALLE ([email protected]) Brahime EL ADIB – Esther LENTZEN Outline 1. D-SIMS: an overview Principle of the technique Types of measurements Facilities available at LIST 2. Main characteristics of the technique through a selection of examples Principle of the technique Mass spectrometer Separation by mass to charge ratio (m/z) Chemical analysis (elemental and isotopic) Primary ions >> 1015 at/cm2 (dynamic regime) < 1013 at/cm2 (static regime) Ejected particles Secondary ions positive ions negative ions Sample Different types of measurements Mass spectrum : Secondary ion intensities = f (a.m.u) 133Cs 1E+10 1E+09 1E+08 intensities c/s 1E+07 27Al 23Na 1E+06 1H 1E+05 39K Monatomic ions Polyatomic ions Isotopes 64Zn 63Cu 27Al 65Cu 2 40Ca 24Mg 66Zn 1E+04 1E+03 1E+02 1E+01 0 10 20 30 40 50 60 70 80 amu 90 100 110 120 130 140 150 Different types of measurements Imaging High : Secondary ion intensities = f (x and y) C Fe Low intensities Lateral resolution down to 50 nm Ce From ̴ (5×5)μm2 up to (800×800)μm2 Coll. J. Lacaze, CIRIMAT, Toulouse Different types of measurements Depth profiling : Secondary ion intensities = f (sputtering time) 1E+18 Secondary ion Intensities [counts/s] Si Raw data 1E+06 B 1E+04 1E+02 1E+00 Concentration B [atom/cm3] 1E+08 1E+17 1E+16 B 1E+15 1E+14 1E+13 0 500 0.0 Sputtering time [s] Depth resolution down to 1 nm 1.0 Depth [µm] 2.0 3.0 Characteristics of the D-SIMS technique SIMS is a destructive technique. Analysis of any vacuum compatible material including non-conductive samples. Ease of sample preparation (exception in life sciences). Elemental analysis: Analysis of the full periodic table including hydrogen. High sensitivity: typical detection limits from ppm down to ppb. Isotopic measurements: Precision/reproducibility (better than 5 per mil). Depth profiling: Depth distribution can be recorded over nanometer depth, up to tens of microns depth. Optimized depth resolution 1nm. 2D-3D imaging: Optimized lateral resolution 50 nm. Quantitative analysis possible with standard samples. Direct semi-quantification is possible in many cases using MCs+ clusters (M = element of interest). Different D-SIMS instruments @ LIST CAMECA SC-Ultra CAMECA IMS-6f CAMECA NanoSIMS 50 Depth profiling 37 instruments worldwide Advanced semiconductors, materials science Imaging 40 instruments worldwide Materials, geology, planetary and life sciences Depth profiling: detection limit Detection of trace elements and quantification of dopants with high depth resolution in semi-conductors Element Bombardment B O2+ As Cs+ Detection limit (ppm) Impact energy (keV) 0.1 0.001 0.1 0.04 0.5 10 0.5 13 Examples of detection limits in silicon. III-V compounds analysis Imaging: detection limit Bainite Austenite Ferrite The carbon concentration of bainitic ferrite is below the detection limit of the Electron Energy Loss Spectroscopy (EELS): %C Martensite bainitic ferrite < 0.04%wt C 1µm Bainitic ferrite SEM micrograph, SE mode: typical microstructure of a multiphase steel (J. Drillet, ArcelorMittal) Martensite Techniques NanoSIMS 1 EELS 2 Spatial resolution 50 nm 40nm Detection limit < 0.006 wt% 2.3µm 0.04 wt % NanoSIMS image - (30×30)mm2 1 Valle et al., Appl. Surf. Science 252 (2006) 7051-7053; 2 C.P. Scott and J. Drillet, Scripta Materialia, 56 (2007) 489-492 SIMS quantification 8 7 6 5 4 3 2 1 0 Study of nitrogen (n-type dopant) incorporation during SiC growth by physical vapour transport Electron affinity: N (0 eV) / CN- (3.86 eV) analysis of nitrogen as CN Quantification possible by using implanted standard sample (RSF) – Normalisation to Si 9 Normalized CN- intensities Intensités CN normalisées (c/s) 4,00E-03 #SiC-4 3,50E-03 3,00E-03 2,50E-03 2,00E-03 RSF (CN/Si) Undoped Bande nonstripe dopée 1,50E-03 germe 1,00E-03 0 5,00E-04 1 2 3 4 5 6 7 8 9 Stripe Numéro de la bande de dopage 0,00E+00 Relative Sensitivity Factor N. Tsavdaris et al. Materials Science Forum, 2015. Coll. D. Chaussende, LMGP, Grenoble Implanted standard sample: N, 180keV, 9.5×1012 cm-2 Depth profiling: quantification at high depth resolution Characterisation of graphene Cr/ epitaxial graphene / SiC C Cr 1e23 Conc, atom/cm3 H Si W. Strupinski et al. Nano Lett. 2011, 11, 1786–1791. 1e22 Impact energy: 150 eV N 1e21 Graphene layer: ~ 1 nm N doping < 1 at. % H ~ 15-17 at. % 1e20 0 2 4 Depth, nm 6 A. Merkulov et al., Poster @ SIMS Europe 2014, Münster Michalowski et al. Appl. Phys. Lett. 109, 011904 (2016) Elemental mapping at high lateral resolution Detection of nanoparticles in skin cells • TiO2 NPs in skin cells Presence of nanoparticles in TiO2 sun cream… CN TiO Nucleus 10 µm Cytoplasm Presence of Ti in cytoplasm only Overlay CN & TiO . V. Lopes et al., J. Nanobiotechnol (2016) 14:22 10 µm Quantification of light elements Development of high strength B-added steels for automotive industry The addition of B (~ 20 ppm) increases the hardenability of steels. B segregation at dislocation γ γ B precipitates B solid solution High 0s 30s Concentration B (ppm) 20 18 16 Solid solution 14 12 10 8 6 4 2 0 1 0 600s 23 3 4 10 30 Time (s) 5 120 6 600 Heat treatment T1 T2: fast cooling 0 Low intensities 3 10 30 600 1µm Ongoing G. Da Rosa ‘s thesis (J. Drillet, K. Hoummada, N. Valle, P. Maugis, V. Hebert) Isotopic measurements SIMS capability to measure the different isotopes of one element 1. Relevant in nuclear science For what purpose: e.g for the identification of fission products, international control of fissile isotope uranium-235 enrichment by IAEA… 2. Relevant in geochemistry and cosmochemistry For what purpose : e.g: to determine the origin of water in the Solar System δ18O , δ17O … https://en.wikipedia.org/wiki/Esquel_(meteorite) 3. Relevant in material sciences 18O For what purpose: e.g: to study transport phenomena, corrosion, diffusion… Oxygen Oxygen 0.204% 17O 17O 0.037% 0.037% 16O 99.759% Natural abundance 18O 49.963% 16O 50% Artificial enrichment Isotopic measurements An innovative methodology to study glass alteration mechanisms and kinetics (coll. A. Verney-Carron, M. Saheb) Pallot-Frossard (2006) Troyes Cathedral (XIIIth c.) Drizzle 0.005 18O/16O × 2.5 Altered layer Medieval stained glass 0.002 e2 D t DH2O e: alteration thickness (m) D : diffusion coefficient (m²/s) t: time of exposure (s) Isotopic measurements: O and H Study of the propagation of cracks in Ni-based alloys during stress corrosion cracking High intensities U-bend test 18O, 2D Analysed area CrO Origin of cracks ? Fissure 3 Fissure 2 Fissure 1 18O/16O Low intensities D/H Field of view: (50 x 50) mm2 P. Laghoutaris’s thesis (CEA) 3D imaging Characterisation of thin films of immiscible polymer systems PS + PMMA O 16O Presence of submicron domain structures Analyzed area : (20 x 20) mm2, sputtering rate: 1nm/s Red Oxygen Green Carbon PS Si substrate Si Audinot et al.: Applied Surface Science, 2004, Surf. Interface Anal., 2005 Depth profiling in small area 1/2 GaN microrods Dopant High Ga Low intensities 50 µm 3D GaN pillars http://www.compoundsemiconductor.net/article/95856-whats-the-best-business-model-for-nanowire-leds.html http://www.gecco.tu-bs.de/pubs.html Depth profile in small area High Ga Normalized intensities Depth profiling in small area 2/2 Ga Dopant Low intensities 12 µm Determination of different dopant concentrations (calibration with a standard sample) Concnentration of dopant (u.a) Depth (arbitrary unit) Dopant Depth (arbitrary unit)
© Copyright 2026 Paperzz