SECTION 9.4 9.4 ■ 0 6 6 56 24. r 3 cos , 6. r cos 3, 12 12 7. r 3 sin , 4 34 9–16 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 27–32 ■ 14. r 1 sin 29. r 1 cos 15. r 3 cos 16. r sin 4 30. r e , ■ ■ ■ ■ ■ encloses. ■ ■ r 2 cos ■ ■ ■ ■ ■ ■ ■ bifolium. Graph it and find the area that it encloses. ■ Find the area of the region enclosed by one loop of the curve. 19–22 20. r 3 sin 2 0 34 0 3 31. r cos 24 32. r cos 22 ■ 2 ; 18. The curve with polar equation r 2 sin cos is called a 19. r cos 3 ■ 0 2 13. r 2 cos ■ ■ Find the length of the polar curve. 27. r 5 cos , 10. r 4 sin ■ (inner loop) r sin and find the exact area of the region that lies inside both curves. 28. r 2 , ■ ■ r 32 ■ 12. r 41 cos ■ ■ ; 26. Graph the hippopede r s1 0.8 sin 2 and the circle ; 17. Graph the curve r 2 cos 6 and find the area that it ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Use a calculator or computer to find the length of the loop correct to four decimal places. 33–34 33. One loop of the four-leaved rose r cos 2 34. The loop of the conchoid r 4 2 sec ■ Copyright © 2013, Cengage Learning. All rights reserved. ■ 11. r sin 3 ■ ■ of the limaçon r 3 4 sin . Sketch the curve and find the area that it encloses. 9. r 5 sin ■ 25. Find the area inside the larger loop and outside the smaller loop 2 32 ■ ■ 23. r 1 cos , 0 6 ■ 22. r 2 3 cos ■ ■ Find the area of the region that lies inside the first curve and outside the second curve. 5. r sin 2, 8. r 2, ■ 23–24 2 2 4. r 1, ■ 21. r sin 5 0 3. r 2 cos , 1 S Click here for solutions. 1– 8 ■ Find the area of the region that is bounded by the given curve and lies in the specified sector. 2. r e , ■ AREAS AND LENGTHS IN POLAR COORDINATES A Click here for answers. 1. r , AREAS AND LENGTHS IN POLAR COORDINATES ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 2 ■ SECTION 9.4 AREAS AND LENGTHS IN POLAR COORDINATES 9.4 ANSWERS E Click here for exercises. S Click here for solutions. π −π 2. 14 e − e 3 1. 16 π √ 3. π + 43 6 17. 12 4. 5π √ 3 5. 4π−3 96 1 6. 24 (π + 2) 7. 98 (π + 2) 8. 121 π5 160 9π 2 18. 9. 10. π 8 π 19. 12 25 π 4 33π 2 11. 20. 9π 8 π 21. 20 √ 22. 17 cos−1 32 − 3 5 2 23. 9 8 3 − 14 π 24. 3 √ 3 √ −1 3 4 25. 34 sin 12. √ +9 7 1.1 26. O 1.1 1.1 24π π 4 3 π 10 13. (2, 0) O 3π 2 Copyright © 2013, Cengage Learning. All rights reserved. 3, 2 16. (4, O 19π 2 − 1 5 √ 5 29. 8 1 + ln2 2 22π − 1 ln 2 √ −3π 30. 2 1 − e 31. 16 3 32. 4 33. 2.4221 34. 5.8128 27. 15 π 4 O 15. 0.6 √ arcsin 35 14. π − 1 10 2, 0 π 2 28. SECTION 9.4 9.4 AREAS AND LENGTHS IN POLAR COORDINATES SOLUTIONS E Click here for exercises. 3 π π 2 π 2 3 1. A = 0 21 r dθ = 0 21 θ dθ = 16 θ 0 = 16 π 11. 2θ π/2 π/2 2θ 2. A = −π/2 12 e dθ = 14 e = 14 eπ − e−π −π/2 π/6 π/6 (2 cos θ)2 dθ = 0 (1 + cos 2θ) dθ √ π/6 = θ + 12 sin 2θ 0 = π6 + 43 3. A = 0 1 2 5π/6 4. A = π/6 π/6 1 2 5π/6 (1/θ)2 dθ = [−1/ (2θ)]π/6 = π/6 sin2 2θ dθ = 14 0 (1 − cos 4θ) dθ √ π/6 1 3 sin 4θ 0 = 4π−3 = 14 θ − 16 96 5. A = 0 π/6 sin2 3θ dθ = 3 0 π/6 = 32 θ − 16 sin 6θ 0 = π4 A=6 12 5π π/6 0 1 2 (1 − cos 6θ) dθ 1 2 π/12 12. π/12 cos2 3θ dθ = 12 0 (1 + cos 6θ) dθ π/12 1 1 1 = 24 (π + 2) = 2 θ + 6 sin 6θ 0 6. A = 2 0 3π/4 1 2 O π/2 (3 sin θ)2 dθ = 2 π/4 94 (1 − cos 2θ) dθ π/2 = 92 θ − 12 sin 2θ π/4 = 98 (π + 2) 7. A = π/4 3π/2 8. A = π/2 1 2 1 2 1 2 1 5 3π/2 2 2 dθ = 10 θ π/2 = θ = = 121 5 π 160 9. = π 1 [4 (1 − cos θ)]2 dθ 0 2 π 16 0 1 − 2 cos θ + cos2 θ dθ π 8 0 (3 − 4 cos θ + cos 2θ) dθ 4 [6θ − 8 sin θ + sin 2θ]π0 = 24π A=2 13. (2, 0) A= = π 1 (5 sin θ)2 dθ = 0 2 π 25 θ − 12 sin 2θ 0 = 4 25 4 π 0 25 π 4 (1 − cos 2θ) dθ π/2 (2 cos θ)2 dθ = 2 π/2 = 2 θ + 12 sin 2θ 0 = π A=2 10. 0 1 2 π/2 0 (1 + cos 2θ) dθ Copyright © 2013, Cengage Learning. All rights reserved. 14. π/2 A = 2 −π/2 12 (4 − sin θ)2 dθ π/2 = −π/2 16 − 8 sin θ + sin2 θ dθ π/2 = −π/2 16 + sin2 θ dθ [by Theorem 5.5.7(b)] π/2 16 + sin2 θ dθ [by Theorem 5.5.7(a)] =2 0 π/2 16 + 12 (1 − cos 2θ) dθ =2 0 π/2 θ − 14 sin 2θ 0 = 33π = 2 33 2 2 π/2 A = 2 −π/2 12 (1 + sin θ)2 dθ π/2 = −π/2 1 + 2 sin θ + sin2 2θ dθ π/2 π/2 = [θ − 2 cos θ]−π/2 + −π/2 12 (1 − cos 2θ) dθ π/2 = π + 12 θ − 12 sin 2θ −π/2 = π + π2 = 3π 2 ■ 3 4 ■ SECTION 9.4 AREAS AND LENGTHS IN POLAR COORDINATES 15. π/6 π/6 cos2 3θ dθ = 12 0 (1 + cos 6θ) dθ π/6 π = 12 θ + 16 sin 6θ 0 = 12 19. A = 2 0 3, 2 (4, O 1 2 2, 0 π/4 (3 sin 2θ)2 dθ = π/4 = 92 θ − 14 sin 4θ 0 = 9π 8 20. A = 2 0 π A = 2 0 21 (3 − cos θ)2 dθ π = 0 9 − 6 cos θ + cos2 θ dθ π = 9θ − 6 sin θ + 12 θ + 14 sin 2θ 0 = 19π 2 π/5 1 2 9 2 π/4 0 (1 − cos 4θ) dθ π/5 sin2 5θ dθ = 14 0 (1 − cos 10θ) dθ π/5 1 π sin 10θ 0 = 20 = 14 θ − 10 21. A = 0 16. 1 2 22. π/4 π/4 A = 8 0 12 sin2 4θ dθ = 2 0 (1 − cos 8θ) dθ π/4 = 2θ − 14 sin 8θ 0 = π2 2 + 3 cos θ = 0 ⇒ cos θ = − 23 ⇒ θ = cos−1 − 23 or 2π − cos−1 − 23 . Let α = cos−1 − 23 . Then π A = 2 α 21 (2 + 3 cos θ)2 dθ π = α 4 + 12 cos θ + 9 cos2 θ dθ π = α 17 + 12 cos θ + 92 cos 2θ dθ 2 π = 17 θ + 12 sin θ + 94 sin 2θ α 2 17. (π − α) − 12 sin α − 92 sin α cos α √ √ = 17 π − cos−1 − 23 − 12 35 − 92 35 − 23 2 √ = 17 cos−1 32 − 3 5 2 = By symmetry, the total area is twice the area enclosed above the polar axis, so π π A = 2 0 21 r2 dθ = 0 [2 + cos 6θ]2 dθ π = 0 4 + 4 cos 6θ + cos2 6θ dθ 1 π = 4θ + 4 16 sin 6θ + 24 sin 12θ + 12 θ 0 = 4π + π 2 = 9π 2 17 2 23. Copyright © 2013, Cengage Learning. All rights reserved. 18. Note that the entire curve r = 2 sin θ cos2 θ is generated by θ ∈ [0, π]. The radius is positive on this interval, so the area enclosed is π π 2 A = 0 21 r2 dθ = 0 21 2 sin θ cos2 θ dθ π π = 2 0 sin2 θ cos4 θ dθ = 2 0 (sin θ cos θ)2 cos2 θ dθ 2 π = 2 0 12 sin 2θ cos2 θ dθ π = 14 0 sin2 2θ (cos 2θ + 1) dθ π π = 14 0 sin2 2θ cos 2θ dθ + 0 sin2 2θ dθ π = 14 12 θ − 14 sin 4θ 0 (the first integral vanishes) = π8 1 − cos θ = 32 ⇒ cos θ = − 12 ⇒ θ = 2π or 4π 3 3 π 1 3 2 2 A = 2 2π/3 2 (1 − cos θ) − 2 dθ π = 2π/3 − 54 − 2 cos θ + cos2 θ dθ π π = − 54 θ − 2 sin θ 2π/3 + 12 2π/3 (1 + cos 2θ) dθ √ π 5 π + 3 + 12 θ + 12 sin 2θ 2π/3 = − 12 √ √ √ 5 = − 12 π + 3 + 16 π + 83 = 9 8 3 − 14 π ⇒ SECTION 9.4 AREAS AND LENGTHS IN POLAR COORDINATES ■ 5 b r2 + (dr/dθ)2 dθ 3π/4 (5 cos θ)2 + (−5 sin θ)2 dθ = 0 3π/4 cos2 θ + sin2 θ dθ =5 0 3π/4 =5 0 dθ = 15 π 4 27. L = a 24. 3 cos θ = 2 − cos θ ⇒ cos θ = 12 ⇒ θ = ± π3 π/3 A = 2 0 12 (3 cos θ)2 − (2 − cos θ)2 dθ π/3 8 cos2 θ + 4 cos θ − 4 dθ = 0 π/3 = 0 (4 cos 2θ + 4 cos θ) dθ √ =3 3 = [2 sin 2θ + 4 sin θ]π/3 0 ⇒ b r2 + (dr/dθ)2 dθ 2π 2π (2θ )2 + [(ln 2) 2θ ]2 dθ = 0 2θ 1 + ln2 2 dθ = 0 θ 2π 1 + ln2 2 22π − 1 2 2 = 1 + ln 2 = ln 2 0 ln 2 28. L = a π (1 + cos θ)2 + (− sin θ)2 dθ √ π √ π√ 2 cos2 (θ/2) dθ = 2 2 0 1 + cos θ dθ = 2 2 0 29. L = 2 0 25. 7, 2 = [8 sin (θ/2)]π0 = 8 r 3 4 sin 3π (e−θ )2 + (−e−θ )2 dθ √ √ 3π −θ = 2 0 e dθ = 2 1 − e−3π 30. L = 0 3, 0 2π sin134 The curve crosses itself when 3 + 4 sin θ = 0 ⇔ sin θ = − 34 . Letting α = sin−1 34 , the desired area is π/2 A = 2 −α 12 (3 + 4 sin θ)2 dθ −α − −π/2 12 (3 + 4 sin θ)2 dθ 1 θ + cos6 14 θ sin2 14 θ dθ 4 2π = 2 0 cos3 14 θ cos2 14 θ + sin2 14 θ dθ 2π = 2 0 cos3 14 θ dθ π/2 = 8 0 cos3 u du (where u = 14 θ) π/2 = 8 sin u − 13 sin3 u 0 = 16 3 31. L = 2 0 Now (3 + 4 sin θ)2 dθ = 9θ − 24 cos θ + 8θ − 4 sin 2θ + C, so √ A = 34α + 48 cos α − 16 sin α cos α = 34 sin−1 34 + 9 7 . Note that the curve is retraced after every interval of length 4π. 1.1 26. cos8 π 2 2 + − cos 12 θ sin 12 θ dθ cos2 12 θ 1 1 π π = 2 0 cos 2 θ dθ = 4 sin 2 θ 0 = 4 32. L = 2 0 1.1 1.1 33. From Figure 4 in Example 1, 0.6 5 9 (= α, so cos α = 23 ). So the area is 2 α π/2 A = 2 0 21 sin2 θdθ + 2 α 12 1 − 0.8 sin2 θ dθ α π/2 = 12 θ − 14 sin 2θ 0 + θ − 0.8 12 θ − 14 sin 2θ α Copyright © 2013, Cengage Learning. All rights reserved. θ = arcsin = 1 α 2 = 1 2 − 1 4 (2 sin α cos α) + 0.6 · arcsin √ 5 3 π/4 r2 + (r )2 dθ π/4 cos2 2θ + 4 sin2 2θ dθ =2 0 L= The points of intersection occur where 2 2 1 − 0.8 sin θ = sin θ ⇔ 1.8 sin θ = 1 ⇔ −π/4 ≈ 2 (1.211056) ≈ 2.4221 34. π 2 − [0.6α + 0.2 (2 sin α cos α)] − √ 1 52 2 3 3 + 0.3π √ −0.6 arcsin 35 − 0.4 · √ √ 3 1 = 10 π − 10 arcsin 35 − 15 5 ≈ 0.411 √ 52 3 3 4 + 2 sec θ = 0 ⇒ sec θ = −2 ⇒ cos θ = − 12 ⇒ θ = 2π , 4π . 3 3 4π/3 L = 2π/3 (4 + 2 sec θ)2 + (2 sec θ tan θ)2 dθ ≈ 5.8128
© Copyright 2026 Paperzz