Formale Systeme Week 6 Equivalences with quantifiers http://cs.uni-salzburg.at/~anas/teaching/FormaleSysteme/ Equivalences with quantifiers Bound variables x x P :Q val P :Q val y P y for x : Q y for x y P y for x : Q y for x if y is not free in P and Q Domain splitting Examples: Domain splitting Examples: x val x x x 1 x 1:x 2 5 : x2 6x 5 6x 0 5 0 x x 5:x 2 6x 5 0 Domain splitting Examples: x val x k val val k k x x 0 0 0 1 x 1:x 2 k k k 5 : x2 6x 5 6x 5 0 n : k 2 10 2 n 1 k n:k n 1 : k 2 10 0 x x 10 k k 5:x 2 6x n : k2 5 10 0 Domain splitting Examples: x val x k val val k k x x 0 0 0 1 x 1:x 2 k k k 5 : x2 6x 5 6x 5 0 0 x n : k 2 10 2 n 1 k n:k n 1 : k 2 10 x 10 k k Domain splitting x x P P Q:R val Q:R val x P :R x Q:R x P :R x Q:R 5:x 2 6x n : k2 5 10 0 Equivalences with quantifiers One-element rule x x x x n:Q val Q n for x n:Q val Q n for x Equivalences with quantifiers One-element rule x x x x n:Q val Q n for x n:Q val Q n for x Example: 3:2 x x x 1 val 2 3 1 Equivalences with quantifiers One-element rule x x x x n:Q val Q n for x n:Q val Q n for x Example: 3:2 x x x 1 val 2 3 1 Empty domain x x F :Q val T F :Q val F Equivalences with quantifiers One-element rule x x x x n:Q val Q n for x n:Q val Q n for x Example: 3:2 x x x 1 val 2 3 1 Empty domain x “All Marsians are green” x F :Q val T F :Q val F Domain weakening Intuition: The following are equivalent x x x x D:A x D:A x and and x x x D x D Ax Ax The same can be done to parts of the domain Domain weakening Intuition: The following are equivalent x x x x D:A x D:A x and and x x x D x D Ax Ax The same can be done to parts of the domain Domain weakening x P x P Q:R Q:R val val x x P :Q P :Q R R Domain weakening Intuition: The following are equivalent x x x x D:A x D:A x and and x x x D x D Ax Ax The same can be done to parts of the domain Domain weakening x P x P Q:R Q:R val val val x x P :Q P :Q R R P Q| P Equivalences with quantifiers De Morgan x x P :Q P :Q val val x x P: Q P: Q Equivalences with quantifiers De Morgan x x P :Q P :Q val val x x P: Q P: Q not for all = at least for one not not exists = for all not Equivalences with quantifiers De Morgan x x Hence: P :Q P :Q val val x x P: Q P: Q and not for all = at least for one not not exists = for all not Equivalences with quantifiers De Morgan x x P :Q P :Q val val x x not for all = at least for one not P: Q P: Q Hence: not exists = for all not and It holds further that: x x x x x x
© Copyright 2026 Paperzz