Differential Calculus 201-103-RE Vincent Carrier Exercise Sheet 14 4.3 Derivative of the Sine and Cosine Functions Find the derivative of the following functions. sin x cos x √ √ 4. y = x cos x 1. y = 7. y = sin2 √ x q √ 10. y = cos x 13. y = 2. y = cos x5 3. y = x4 sin x 5. y = sin3 2x 6. y = cos4 x3 sin x 8. y = √ cos x 9. y = 11. y = sin2 x 1 + cos2 x sin x 1 + sin2 x cos x 14. y = √ 1 + sin2 x cos x sin x − cos x 12. y = p 3 3 cos(sin x) 15. y = sin3 (cos4 x5 ) Find the equation of the tangent line to the curve at the given value of x. 16. y = sin2 x x=− √ 18. y = sin x x= 20. y = sin x sin x + cos x 2π 3 17. y = 4π 2 9 2 cos3 x 19. y = sin x cos x x= π 4 21. y = sin(2x) cos(3x) Find the value(s) of x at which the tangent line is horizontal. √ 22. y = x + 2 sin x 23. y = x − cos 2x 25. y = cos2 x x= 26. y = sin2 x cos2 x 3π 4 x=− 5π 6 x= 2π 3 24. y = sin x cos x 27. y = sin(π cos x) Find dy/dx using implicit differentiation. 28. sin xy = x2 + y 2 29. sin3 x + cos3 y = x3 y 3 30. p sin x cos y = x + y Answers: dy 1 = dx cos2 x 1. dy cos 4. = dx √ √ √ x − x sin x √ 2 x 2. dy = −5x4 sin x5 dx 3. dy = x3 (4 sin x + x cos x) dx 5. dy = 6 sin2 (2x) cos(2x) dx 6. dy = −12x2 cos3 (x3 ) sin(x3 ) dx dy 1 + cos2 x = dx 2(cos x)3/2 9. dy 1 =− dx (sin x − cos x)2 12. dy sin(sin x) cos x = dx [cos(sin x)]4/3 7. √ √ dy sin( x) cos( x) √ = dx x 8. 10. √ dy sin x =− √ p √ dx 4 x cos x 11. dy cos3 x = dx (1 + sin2 x)2 13. dy 4 sin x cos x = dx (1 + cos2 x)2 14. dy 2 sin x =− dx (1 + sin2 x)3/2 15. dy = −60x4 sin2 (cos4 x5 ) cos(cos4 x5 ) cos3 (x5 ) sin(x5 ) dx √ √ 9 + 4π 3 3 dy = 2 cos x sin x; y = x+ 16. dx 2 12 17. √ √ dy 6 sin x = ; y = 12 2x − 2(4 + 9π) 4 dx cos x 18. √ √ cos x 3 3 3+π dy = √ ; y =− x+ dx 8π 6 2 x 19. √ dy 1 3 3 + 5π = cos2 x − sin2 x; y = x + dx 2 12 20. dy 1 1 4−π = ; y = x+ 2 dx (sin x + cos x) 2 8 21. √ 4π − 3 3 dy = 2 cos(2x) cos(3x) − 3 sin(2x) sin(3x); y = −x + dx 6 28. 22. √ dy 3π 5π = 1 + 2 cos x; x = + 2πk, + 2πk, k ∈ Z dx 4 4 23. 7π 11π dy = 1 + 2 sin 2x; x = + πk, + πk, k ∈ Z dx 12 12 24. dy π π = cos2 x − sin2 x; x = + k, k ∈ Z dx 4 2 25. dy π = −2 cos x sin x; x = k, k ∈ Z dx 2 26. dy π = 2 sin x cos x(cos2 x − sin2 x); x = k, k ∈ Z dx 4 27. dy π = −π cos(π cos x) sin x; x = k, k ∈ Z dx 3 dy y cos(xy) − 2x = dx 2y − x cos(xy) 29. √ cos x cos y − 2 sin x cos y dy √ 30. = dx sin x sin y + 2 sin x cos y dy sin2 x cos x − x2 y 3 = dx sin y cos2 y + x3 y 2
© Copyright 2026 Paperzz