100GbE alignment markers Pete Anslow, Ciena IEEE P802.3cd Task Force, San Diego, July 2016 1 Introduction nicholl_3cd_01_0716 proposes a similar alignment marker mapping to FEC lanes as is used in Clause 91. If the scheme is adopted as for Clause 91, this gives: FEC lane 0 AM0 BIP AM0 BIP AM4 BIP AM4 BIP AM8 BIP AM8 BIP AM12 BIP AM12 BIP AM16 BIP AM16 BIP Pad Data FEC lane 1 AM0 BIP AM0 BIP AM5 BIP AM5 BIP AM9 BIP AM9 BIP AM13 BIP AM13 BIP AM16 BIP AM16 BIP Data FEC lane 2 AM0 BIP AM0 BIP AM6 BIP AM6 BIP AM10 BIP AM10 BIP AM14 BIP AM14 BIP AM16 BIP AM16 BIP Data FEC lane 3 AM0 BIP AM0 BIP AM7 BIP AM7 BIP AM11 BIP AM11 BIP AM15 BIP AM15 BIP AM16 BIP AM16 BIP Data This contribution analyses the performance of this set of alignment markers for 100 Gb/s Ethernet. 2 Baseline wander Previous NRZ contributions have used a “baseline wander” parameter This was defined as: Baseline wander is the instantaneous offset (in %) in the signal generated by AC coupling at the Baud rate / 10,000. This analysis re-uses this definition unmodified, but it should be noted that for PAM4, the eye height is 1/3 that of NRZ so the effects of a given amount of baseline wander will be greater. 3 Clock content The “clock content” parameter is defined here as: Create a function which is a 1 for a transition and a 0 for no transition and then filter the resulting sequence with a corner frequency of Baud/5313 or Baud/13281. This analysis defines a transition as one of three possibilities (as per healey_3bs_01_1115): • Symmetrical transitions through the signal average • Transitions through the signal average • All transitions Filter with corner frequency Baud/5313 or Baud/13281 Symbol Stream 1 symbol delay Transition = 1 No transition = 0 Output 4 Clock content illustration Symmetrical transitions through the signal average All transitions Transitions through the signal average 5 Simulations Using these alignment codes, all possible combinations of FEC lanes for 4:1 bit interleaving for a 100 Gb/s lane were then analysed to find the worst cases for Baseline Wander (BW) and Clock Content (CC) after Gray coding to PAM4 symbols. These searches included lane delays of -40 to +40 UI. The worst case FEC lane combinations and delays were then used to generate the worst case PDFs for 100 GbE scrambled idle over a single 100 Gb/s lane. 6 Scrambled idle construction The scrambled idle symbol streams generated for this analysis were: • Idle control characters • Scrambled • 256B/257B transcoded • Used to fill FEC codewords which start with alignment markers followed by the 5 bit pad once in every 4096 codewords • BIP bits taken as random • 300 bits of RS(544,514) FEC parity added • Interleaved 10 bits at a time to form FEC lanes • Bit interleaved with worst case FEC lane combinations and delays The results for baseline wander and clock content are in the following slides. 7 Baseline wander 10,000 year limit 10,000 year limit 1 Scrambled idle worst case for max BW 0.01 0.0001 Scrambled idle worst case for min BW PRBS31Q 1E-08 Random 1E-10 1E-12 PRBS13Q Probability of ocurrence 1E-06 1E-14 1E-16 1E-18 1E-20 1E-22 1E-24 Fit to random 1E-26 -10% -5% 0% Baseline Wander 5% 10% 8 Clock, sym trans through ave, Bd/5313 10,000 year limit 10,000 year limit 1 0.01 0.0001 Scrambled idle worst case for min CC Scrambled idle worst case for max CC 1E-06 Random 1E-10 1E-12 PRBS13Q Probability of ocurrence PRBS31Q 1E-08 1E-14 1E-16 1E-18 1E-20 1E-22 1E-24 Fit to random 1E-26 0.10 0.15 0.20 0.25 Clock Content 0.30 0.35 0.40 9 Clock, sym trans through ave, Bd/13281 10,000 year limit 10,000 year limit 1 0.01 0.0001 PRBS31Q Scrambled idle worst case for max CC Random 1E-08 1E-10 1E-12 1E-14 1E-16 Scrambled idle worst case for min CC PRBS13Q Probability of ocurrence 1E-06 1E-18 1E-20 1E-22 Fit to random 1E-24 1E-26 0.15 0.20 0.25 Clock Content 0.30 0.35 10 Clock, trans through ave, Bd/5313 10,000 year limit 10,000 year limit 1 0.01 Scrambled idle worst case for min CC 0.0001 PRBS31Q Random 1E-08 1E-10 1E-12 PRBS13Q Probability of ocurrence 1E-06 Scrambled idle worst case for max CC 1E-14 1E-16 1E-18 1E-20 Fit to random 1E-22 1E-24 1E-26 0.25 0.35 0.45 0.55 Clock Content 0.65 0.75 11 Clock, trans through ave, Bd/13281 10,000 year limit 10,000 year limit 1 0.01 0.0001 Random PRBS31Q 1E-08 1E-10 1E-12 Scrambled idle worst case for min CC 1E-14 Scrambled idle worst case for max CC PRBS13Q Probability of ocurrence 1E-06 1E-16 1E-18 1E-20 Fit to random 1E-22 1E-24 1E-26 0.35 0.40 0.45 0.50 Clock Content 0.55 0.60 0.65 12 Clock, all transitions, Bd/5313 10,000 year limit 10,000 year limit 1 0.01 0.0001 Scrambled idle worst case for max CC PRBS31Q 1E-08 Random 1E-10 1E-12 PRBS13Q Probability of ocurrence 1E-06 Scrambled idle worst case for min CC 1E-14 1E-16 1E-18 1E-20 1E-22 Fit to random 1E-24 1E-26 0.50 0.60 0.70 Clock Content 0.80 0.90 13 Clock, all transitions, Bd/13281 10,000 year limit 10,000 year limit 1 0.01 0.0001 PRBS31Q Scrambled idle worst case for max CC 1E-08 1E-10 Random 1E-12 Scrambled idle worst case for min CC 1E-14 PRBS13Q Probability of ocurrence 1E-06 1E-16 1E-18 1E-20 1E-22 Fit to random 1E-24 1E-26 0.60 0.65 0.70 0.75 Clock Content 0.80 0.85 0.90 14 Clause 91 results As expected from the previous analysis done for 400 Gb/s Ethernet (see anslow_01_1215_logic), the common AM0 and AM16 markers cause a significant “shoulder” on the clock content plots for 4:1 bit interleaving for a 100 Gb/s lane which cause the plots to go outside those for PRBS31Q. Removing the second common AM would result in: FEC lane 0 AM0 BIP AM0 BIP AM4 BIP AM4 BIP AM8 BIP AM8 BIP AM12 BIP AM12 BIP AM16 BIP AM16 BIP Pad Data FEC lane 1 AM0 BIP AM0 BIP AM5 BIP AM5 BIP AM9 BIP AM9 BIP AM13 BIP AM13 BIP AM17 BIP AM17 BIP Data FEC lane 2 AM0 BIP AM0 BIP AM6 BIP AM6 BIP AM10 BIP AM10 BIP AM14 BIP AM14 BIP AM18 BIP AM18 BIP Data FEC lane 3 AM0 BIP AM0 BIP AM7 BIP AM7 BIP AM11 BIP AM11 BIP AM15 BIP AM15 BIP AM19 BIP AM19 BIP Data The performance of this revised scheme is shown on the following slides. 15 Baseline wander 10,000 year limit 10,000 year limit 1 Scrambled idle worst case for max BW 0.01 0.0001 Scrambled idle worst case for min BW PRBS31Q 1E-08 Random 1E-10 1E-12 PRBS13Q Probability of ocurrence 1E-06 1E-14 1E-16 1E-18 1E-20 1E-22 1E-24 Fit to random 1E-26 -10% -5% 0% Baseline Wander 5% 10% 16 Clock, sym trans through ave, Bd/5313 10,000 year limit 10,000 year limit 1 0.01 Scrambled idle worst case for max CC 0.0001 1E-06 Random 1E-10 1E-12 1E-14 Scrambled idle worst case for min CC 1E-16 1E-18 PRBS13Q Probability of ocurrence PRBS31Q 1E-08 1E-20 1E-22 1E-24 Fit to random 1E-26 0.10 0.15 0.20 0.25 Clock Content 0.30 0.35 0.40 17 Clock, sym trans through ave, Bd/13281 10,000 year limit 10,000 year limit 1 0.01 0.0001 PRBS31Q Scrambled idle worst case for max CC Random 1E-08 1E-10 1E-12 1E-14 1E-16 Scrambled idle worst case for min CC PRBS13Q Probability of ocurrence 1E-06 1E-18 1E-20 1E-22 Fit to random 1E-24 1E-26 0.15 0.20 0.25 Clock Content 0.30 0.35 18 Clock, trans through ave, Bd/5313 10,000 year limit 10,000 year limit 1 0.01 Scrambled idle worst case for min CC 0.0001 PRBS31Q Random 1E-08 1E-10 1E-12 PRBS13Q Probability of ocurrence 1E-06 Scrambled idle worst case for max CC 1E-14 1E-16 1E-18 1E-20 Fit to random 1E-22 1E-24 1E-26 0.25 0.35 0.45 0.55 Clock Content 0.65 0.75 19 Clock, trans through ave, Bd/13281 10,000 year limit 10,000 year limit 1 0.01 0.0001 Random PRBS31Q 1E-08 1E-10 1E-12 Scrambled idle worst case for min CC 1E-14 Scrambled idle worst case for max CC PRBS13Q Probability of ocurrence 1E-06 1E-16 1E-18 1E-20 Fit to random 1E-22 1E-24 1E-26 0.35 0.40 0.45 0.50 Clock Content 0.55 0.60 0.65 20 Clock, all transitions, Bd/5313 10,000 year limit 10,000 year limit 1 0.01 0.0001 Scrambled idle worst case for max CC PRBS31Q 1E-08 Random 1E-10 1E-12 PRBS13Q Probability of ocurrence 1E-06 Scrambled idle worst case for min CC 1E-14 1E-16 1E-18 1E-20 1E-22 Fit to random 1E-24 1E-26 0.50 0.60 0.70 Clock Content 0.80 0.90 21 Clock, all transitions, Bd/13281 10,000 year limit 10,000 year limit 1 0.01 0.0001 PRBS31Q Scrambled idle worst case for max CC 1E-08 1E-10 Random 1E-12 Scrambled idle worst case for min CC 1E-14 PRBS13Q Probability of ocurrence 1E-06 1E-16 1E-18 1E-20 1E-22 Fit to random 1E-24 1E-26 0.60 0.65 0.70 0.75 Clock Content 0.80 0.85 0.90 22 Conclusion Removing the second common AM as in: FEC lane 0 AM0 BIP AM0 BIP AM4 BIP AM4 BIP AM8 BIP AM8 BIP AM12 BIP AM12 BIP AM16 BIP AM16 BIP Pad Data FEC lane 1 AM0 BIP AM0 BIP AM5 BIP AM5 BIP AM9 BIP AM9 BIP AM13 BIP AM13 BIP AM17 BIP AM17 BIP Data FEC lane 2 AM0 BIP AM0 BIP AM6 BIP AM6 BIP AM10 BIP AM10 BIP AM14 BIP AM14 BIP AM18 BIP AM18 BIP Data FEC lane 3 AM0 BIP AM0 BIP AM7 BIP AM7 BIP AM11 BIP AM11 BIP AM15 BIP AM15 BIP AM19 BIP AM19 BIP Data significantly reduces the magnitude of the “shoulder” on the clock content plots for 4:1 bit interleaving, so would be a better candidate AM mapping. Choosing AM1, AM2, or AM3 as the first common AM might improve this further. 23 Thanks! 24
© Copyright 2026 Paperzz