Section 4.4 Implicit Differentiation ππ¦ #1-24: Use implicit differentiation to determine ππ₯ . 1) 3x + y = 12 2) 4x2 + y = 3x β 2 3) 5x2 + 3y = 2x β 4 4) 4x3 + 7y = x2 + 5x β 3 5) 2x + 3y2 = 5x2 β 2x3 6) 5y3 + 6x2 = 4 β 3x 7) π₯ 1β2 + π¦ 1β3 = 3 8) π₯ 3β4 + π¦ 1β2 = 4 9) 2x2 + xy = 5 10) x3 + xy = 3 11) 2x2 + xy2 = 5 12) x3 + xy3 = 3 13) 2x2 + xy = 5y 14) x3 + xy = 3y 15) 2x2 + xy2 = 5y3 16) x3 + xy3 = 3y3 17) e4y + 3x = 12x2 18) 3e2y + x2 = 5x3 19) e4y + 3x = 12y2 20) 3e2y + x2 = 5y3 21) 3βπ¦ + 3π₯π¦ = 2π₯ 2 22) βπ¦ + 4π₯π¦ = 3π₯ 2 23) xey + 2y = 3x 24) x2e2y + 3y2 = 5x #25- 34: Find the equation of the line tangent to the graph at the indicated point. 25) x2 + y2 = 25; (4,3) 26) x3 + y3 = 9; (2,1) 27) 3x2 + 2y = 25; (3,-1) 28) 2x3 + 3y2 = 57; (3,1) 29) 2π¦ 2 β βπ₯ = 4; (16,2) 3 30) 3π¦ 3 + βπ₯ = 26; (8,2) 31) y2 + 2y =11 + 4x; (1, 3) 32) y3 - 7y = 40 β 2x; (2,4) 33) xey + 2y =3x - 4; (2,0) 34) x2e2y + 3y2 = 5x - 6 (3,0) ππ #35-42: Use implicit differentiation to determine ππ‘ . 35) π΄ = 2ππ 36) π΄ = ππ 2 37) π = 5 + 6π 38) π = 2π 2 + 8 39) π = 6π₯ β 4 40) r = 12x + 10 41) r = y2 + 3 42) r = 5y2 + 6
© Copyright 2026 Paperzz