Compact Stars Lecture 11 Central engines of GRBs We talked about the gamma ray bursts as the extragalactic jet sources, their phenomenology and modeling issues. Today I will present the GRB central engine models, which aim to explain how the relativistic jets are launched. Progenitors Progenitors range from mergers of compact stars to collapse of massive stars Massive star must form a black hole: 10% of all collapsing stars; moreover the star must have enough rotation in its envelopee to form a disk: another 10%. GRBs (due to collapsars) may therefore occur in about 1% of all core-collapse supernovae (Type I b/c) Models must account for the energy of explosion, collimation, rapid variability, range of durations, statistics Observations Red bump in lightcurves and lines in spectra: in the long GRBs SN signatures Variable profiles Statistics; host galaxies etc. Stanek et al. (2003) Model requirementss Energetics of explosion: after beaming and jet efficiency correntions, we need to have about 1052 ergs to be released. This is a binding energy of a compact star, E = G M 2/r (M= 10 MSun, r=10 km). Most efficient energy extraction mechanism is accretion onto a compact star. Duration of event: rotation period (at the surface of star), P = 2 πr3/2/G1/2M1/2 = 0.3 ms, devided by viscosity. For small disks and alpha~0.1 this gives about 300 ms. Short events may be powered by accretion of remnant matter after a merger, onto a black hole/neutron star. Long events require large disks, fallback supply of matter from part of extended envelope, and long-term existence of rotationally supported disks Model requirements Variability of event: size vs. speed of light. Dt = 2pi r /c = 0.6 ms at the inner radius of a disk Some scenarios Jet power Three mechanisms proposed for jet acceleration: thermal expansion, radiation pressure, magnetic field and rotation In GRBs, also neutrinos may be important (anihillation) Collimation mechanisms: thick disk or corona, pressure gradient in surrounding wall, external (matter dominated) jet, toroidal magnetic field C. Fragile, 2008 (arXiv:0810.0526) Conditions in the central engine Pairs e+,e- Anihillation of neutrinos and antineutrinos Ab so rpt ion Disk heated by viscosity and cooled by neutrino emission erin t t a Sc g Densities 1010-1012 g cm-3 Temperatures kT above 1 MeV Annihillation efficiency Magnetic dynamo Hoover Dam – Arizona/Nevada (C. Fryer) Magnetic dynamo Gravitation potential energy: accelerates waterfall. Water moves the rotating magnets and electric current is produced. With this analogy, accretion process releases gravitational potential energy and magnetis field is coupled with rotation. The magnetic field lines are frozen into the disk plasma and rotate, acting as a dynamo. The black hole also rotates. Open field lines are formed along the rotation axis; along these lines jets are launched. Analogy to pulsar magnetosphere Magnetic field lines act as electric wires : charged particles move along the lines towards weaker B field and back. In this electric loop, the Poynting flux is driving the star's rotational energy towards weak B field. Pocess proposed by Goldreich & Julian (1969) for rotating neutron stars → pulsars BH rotational energy extraction Black hole also has magnetosphere The spark gaps are formed there, producing electron-positron pairs Charged particles move along field lines Blandford & Znajek 1977 See book of K. Thorne, “The membrane paradigm” ( 1986) Conditions in the disk Temperature > 1 MeV: electronpositron pairs must be produced Nuclear densities: electrons partially degenerate Neutronisation processes: equilibrium p/n established p + e- -> n + ν n + e+ -> p + ν- Conditions in the disk Some Helium nuclei must also be formed at such densities and temperatures (NSE) Helium may be photodissociated. Neutrinos: absorbed and scattered, if the opacities are high Photons: totally trapped Advective cooling also important Conditions in Hiperaccretion disk Hiperaccretion: rates of 0.01-10 MSun/s Chemical and pressure balance required by nuclear reaction rates These are given under degeneracy of species Charge neutrality condition; neutrino opacities Popham et al. 1999; Di Matteo et al. 2002; Kohri et al. 2002, 2005; Chen & Beloborodov 2007; Reynoso et al. 2006; Janiuk et al. 2004; 2007; 2010; 2013 p, n, e+, eHe, , e, Hiperaccretion disk Model must account for coupling between degeneracy of matter and neutrino cooling. Cooling → lower temperature →degeneracy → low density of positrons → lower cooling → higher temperature Chen & Beloborodov (2007) Equation of state The total pressure must include the contributions from gas, radiation, and degenerate electrons: 4/3 4 /3 k 1 3 11 4 c 3 P =P gas P rad P deg = T X nuc a T 2 h m p e mp 4 4 12 3 8 where mass fraction of free nucleons depends nonlinearly on density and temperature (Popham et al. 1999; Di matteo et al. 2002; Janiuk et al. 2004) In more advanced modeling, the equation of state must be computed numerically by solving the balance of nuclear reactions (Yuan 2005; Janiuk et al. 2007; also Lattimer & Swesty 1991; Setiawan et al. 2004) Numerical scheme for CE structure Janiuk, Yuan, Perna & Di Matteo (2007) Neutrino cooling The photons are totally trapped in the very opaque disk. The main cooling mechanism is the emission of neutrinos, via the following reactions: Electron and positron capture on nucleons (URCA reactions) → electron neutrinos Electron-positron pair anihillation (electron, muon and tau neutrinos) Bremsstrahlung (all neutrino flavours) Emissivities in first two cases must be computed numerically (Itoh et al. 1996; Yakovlev 2005) Neutrino luminosity Inner disk: possibly unsttable? Janiuk, et al., 2007, ApJ BH rotation For rotating black hole, the inner edge of the disk moves closer to it, depending on a=cJ/GM2 We need to modify also the viscous heating, Keplerian rotation and disk height, accordingly to a, in a standard alphadisk model (e.g. Romero et al. 2009) Riffert & Herold (1995) BH rotation: instability region more plausible Collapsars? Models with spinning BH have the unstable region even for moderate Mdot Red: alfa = 0.1 Blue: alfa = 0.3 Mergers? Janiuk & Yuan, 2010, A&A Density and temperature profiles Transfer of BH rotational energy to the disk – – Open field lines: ● Extraction of BH rotation energy through the BlandfordZnajek process Closed field lines: ● On the disk surface and BH horizon the electromotive force is induced ● Additional torque → leads to disk extra heating ● Energy of BH rotation may be transferred to the disk McDonald &Thorne (1982); van Putten (1999); Li & Paczyński (2000); Li (2000; 2002) Wang et al (2002) Transfer of BH rotation to the disk Topology of B field: assumed Bz ~ξ-n Janiuk & Yuan, 2010 Torque is posiitive, if BH rotates faster than the differentially rotating disk, ΩH > ΩD Torque normalization: equipartition BH2/8πPmax = βmag ~α Central engine We can model the central engine as a differentially rotating accretion disk, with extremely large Mdot and hence at nuclear densities and temperatures The disk can be magnetically coupled to the spinning black hole Thermal instabilities due to high neutrino pressure and/or Helium photodissociacion may arise in the innermost radii of this disk The instability region may overlap with the magnetically coupled region where extra torque exists Outskirts: gravitational instability Chen & Beloborodov (2007) Central engine The extra torque at inner radii due to MC coupling with BH seems not to stabilize the disk (Lei et al. 2009). The gravitational instability present at large radii. Such instabilities are plausible to explain the variable energy output from the engine (hence, variable Lorentz factors with the remote jets, internal shocks, GRB variability etc.) More detailed, time-dependent simulations are needed to verify these models. Fully GR and MHD models, instead of alpha-disks, are necessary to verify the role of accretion and BH spin in GRB production. Janiuk, Mioduszewski, Mościbrodzka 2013 Next week Lectures summary... cosmology, BH mergers, gravitational waves... Next week Mini Journal Club: please volunteer Please pick up your chosen article from ArXiv or Nature or Science. Astrophysics. January 31 & Feb 7 and 14: your presentations!
© Copyright 2026 Paperzz