Elimination using matrices Recall : Multiplication on the left by a row vector results in a row vector. ⇥ a a ⇥ b 2 c 4 ⇤ 2 2 1 2 ⇤ ⇥ 4 5 +b 3 4 9 1 1 5 3 5= 7 9 3 ⇤ Result is a row vector +c ⇥ 2 1 7 ⇤ Multiplication on the left can be thought of as a linear combination of rows. Monday, October 7, 13 1 Elimination using matrices ⇥ a b (a, b, c) = ? c ⇤ 2 4 4 9 1 (0, 1, 0) What about ⇥ ⇤ 2 a b c 4 (a, b, c) = (1, 0, 1) Monday, October 7, 13 2 1 2 2 1 2 4 9 1 3 5 ⇥ 3 5= 1 9 7 3 ⇤ 3 5 ⇥ ⇤ 3 5 = 0 5 12 7 We managed to eliminate the first coefficient 2 Elimination matrices 2x + 4y 2z = 2 4x + 9y 3z = 8 2x 2 4 elimination 2x + 4y 2z = 2 y+z =4 3y + 7z = 10 2 4 2 4 9 3 A 3 2 3 5 7 4z = 8 matrix multiplication? E 2 2 4 0 0 4 1 0 U 3 2 1 5 4 Find a matrix E so that EA = U Monday, October 7, 13 3 Elimination matrices : First step 2x + 4y 4x + 9y 2x eliminate 2 1 4 ? ? 2z = 2 2x + 4y elimination 3z = 8 y+z =4 3y + 7z = 10 0 ? ? 32 0 ? 54 ? 2z = 2 y + 5z = 12 2 4 2 4 9 3 3 2 2 2 4 3 5=4 0 1 7 0 1 3 2 1 5 5 How do we express ”(equation 2) (2)(equation 1)” How do we express ”(equation 3) ( 1)(equation 1)” Monday, October 7, 13 4 Elimination matrices : First step How do we express ”(equation 2) (2)(equation 1)” 2 4 `21 1 2 ? 32 0 0 1 0 54 ? ? 2 4 2 4 9 3 How do we express ”(equation 2 32 1 0 0 2 4 4 2 1 0 54 4 9 1 0 1 2 3 `31 Monday, October 7, 13 E31 E21 3 2 2 2 4 3 5=4 0 1 7 0 1 3 2 1 5 5 3) ( 1)(equation 1)” 3 2 3 2 2 4 2 3 5=4 0 1 1 5 7 0 1 5 “Elimination matrices” 5 Elimination matrix : Second step 2x + 4y 2z = 2 y+z =4 elimination 2x + 4y y+z =4 y + 5z = 12 2 1 4 0 ? eliminate 32 0 0 2 1 0 54 0 ? ? 0 2z = 2 4z = 8 4 1 1 3 2 2 2 4 1 5=4 0 1 5 0 0 3 2 1 5 4 How do we express ”(equation 3) (1)(equation 2)” Monday, October 7, 13 6 Elimination matrix : Second step How do we express 2 32 1 0 0 4 0 1 0 54 0 1 1 `32 E32 ”(equation 3) (1)(equation 2)” 3 2 3 2 4 2 2 4 2 0 1 1 5=4 0 1 1 5 0 1 5 0 0 4 E31 E21 A U We found a sequence of matrices that will take A to U Monday, October 7, 13 7 Elimination matrices We have constructed elimination matrices 2 1 4 0 0 Check 32 0 0 1 0 54 1 1 E32 E31 E21 2 32 1 0 0 2 1 0 54 1 0 1 E31 E21 32 1 0 0 = 4 0 1 0 54 1 0 1 2 4 2 3 4 9 3 2 2 2 4 3 5=4 0 1 7 0 0 U A 3 2 1 0 0 2 1 0 5=4 0 0 1 3 2 1 5 4 3 1 0 0 2 1 0 5 1 0 1 E32 E31 E21 A = U Product of elimination matrices is lower triangular Monday, October 7, 13 U is an upper triangular matrix 8
© Copyright 2026 Paperzz