I. Intro to Trig (a.) Determine the quadrant in which the terminal side

I. Intro to Trig
(a.) Determine the quadrant in which the terminal side of the angle lies. (b.) Determine
two coterminal angles (one positive and one negative) for the given angle.
1.) 160°
2.) 5.5
3.) βˆ’
11πœ‹
4.)
4
2πœ‹
5
State the quadrant in which πœƒ lies.
5.) π‘ π‘–π‘›πœƒ < 0, π‘π‘œπ‘ πœƒ < 0
6.) π‘ π‘–π‘›πœƒ > 0, π‘π‘œπ‘ πœƒ > 0
7.) π‘ π‘–π‘›πœƒ > 0, π‘‘π‘Žπ‘›πœƒ < 0
8.) π‘ π‘’π‘πœƒ > 0, π‘π‘œπ‘‘πœƒ < 0
9.) π‘π‘œπ‘‘πœƒ > 0, π‘π‘œπ‘ πœƒ > 0
10.) π‘‘π‘Žπ‘›πœƒ > 0, π‘π‘ π‘πœƒ < 0
Find the exact value of each.
3
11.) If π‘π‘œπ‘ πœƒ = 5 and π‘ π‘–π‘›πœƒ < 0, find π‘π‘ π‘πœƒ.
12.) If π‘‘π‘Žπ‘›πœƒ = βˆ’
12
5
and π‘ π‘–π‘›πœƒ > 0, find π‘ π‘–π‘›πœƒ.
Find the reference angle, πœƒβ€², for the given angle.
13.) βˆ’95°
14.) 5.5
15.)
7πœ‹
8
II. Trig Graphs and Inverses
(a.) Name a, b, c, d, and the associated transformations for each. (b.) Find the amplitude
and period. (c.) Find the domain and range.
π‘₯
1.) 𝑦 = βˆ’2 sin (2 βˆ’ πœ‹) + 1
2.) 𝑦 = βˆ’3 cos(2π‘₯ + πœ‹) βˆ’ 5
Find the exact value.
3.) arccos⁑(π‘π‘œπ‘ 
5πœ‹
4
6.) sin⁑(π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘›1)
)
4.) arctan⁑(π‘‘π‘Žπ‘›0)
7.) sin⁑(π‘Žπ‘Ÿπ‘π‘π‘œπ‘ 
√3
)
2
5.) arccos⁑(π‘π‘œπ‘ 
3πœ‹
2
)