(4.1): Contours 1. Find an admissible parametrization. (a). the line segment from z = 1 + i to z = 2 3i. z(t) = z1 (t) + t(z2 z1 ) z(t) = 1 + i + t( 2 3i (1 + i)) z(t) = 1 + i + t( 3 4i); 0 t 1 (b). the circle jz 2ij = 4 traversed once clockwise starting at z = 4 + 2i. z(t) = 2i + 4e it ;0 t 2 (c). the arc of the circle jzj = R lying in the second quadrant, from z = Ri to z = R. z(t) = Reit ; =2 t (d). the segment of the parabola y = x2 from the point (1; 1) to the point (3; 9). z(t) = t + it2 ; 1 2 3. Show that the ellipse xa2 + admissible parametrization. y2 b2 t 3 = 1 is a smooth curve by producing an Let x = a cos t; y = b sin t. Substitute these values in the ellipse to obtain cos2 t + sin2 t = 1, a true statement for all 0 t 2 . 5. Identify the interior of the curve. Is it positively oriented? Yes. 7. Parametrize the contour consisting of the perimeter of the square with vertices 1 i; 1 i; 1 + i; and 1 + i. What is the length of this contour? : z(t) = 1 i + 2t ; 0 t 1 i + 2i(t 1) ; 1 t 2 2 : z(t) = 1 : z(t) = 1 + i 2(t 2) ; 2 t 3 3 : z(t) = 1 + i 2i(t 3) ; 3 t 4 4 l( ) = 8. 1 8. Parametrize the contour . Also parametrize 1 . The contour consists of of two smooth curves - the straight line piece and the semi-circle 2 : 1 : 0 t 2 z1 (t) = ( 2 + 2i) + t( 1 1 : z2 (t) = e i t 2 : z2 (t) = ei 1 : z1 (t) = t ;1 t 2 ;0 t 1 1 + (t ( 2 + 2i)) = 1)( 1 + 2i) ;1 t 2 + 2i + t(1 2i) 1 ; 2 9. Parametrize the barbell-shaped contour with initial point point 1. 1 and terminal Circle 1 : z(t) = 2 + e 2 it ; 0 t 1 Straight line 2 : z(t) = 1 + 2(t 1) ; 1 t 2 Circle 3 : z(t) = 2 e 2 i(t 2) ; 2 t 3 Straight line 4 = 2: You can reduce the above parametrization to the one given in the back of the text. Namely, 8 2 + e 6 it if 0 t 1=3 < 1 + 6(t 1=3) if 1=3 t 2=3 z(t) = : 2 e6 i(t 2=3) if 2=3 t 1: Follow Wen’s solution discussed in class. parametrized by z(t) = 5e3it ; 0 11. Find the length of the contour z 0 (t) = R15e3it =) jz 0 (t)j = 15: l( ) = 0 jz 0 (t)j dt = 15 : (4.2): Contour Integrals 3. Evaluate the following integrals. (a). Z 1 (2t + it2 )dt 0 = i t2 + t3 3 2 1 =1+ 0 i 3 t . (b). Z 0 (1 + i) cos(it)dt 2 sin(it) i = (1 + i) = (1 + i) sinh 2 0 = (1 + i) 2 sin(2i) i (c). Z 1 (1 + 2it)5 dt 0 = = 1 (1 + 2i)6 (1 + 2it)6 1 = + 12i 12i 12i 0 11 29i i 1 (1 + 2i)6 = 12 3 3 (d). Z 2 0 = = 1 2 Z (t2 t dt + i)2 4+i u 2 dt ; u = t2 + i =) du = 2tdt limits: u = i to u = 4 + i i 1 2u 5. Evaluate 4+i 1 1 2 + = 2(4 + i) 2i 17 = i Z C where C : jz 7. Compute 1 + 2i. 6 (z i)2 + 2 z i +1 8i 17 3(z i)2 dz ij = 4 traversed once counterclockwise. Z 6 2 + + 1 3(z i)2 dz 2 (z i) z i C = 6(0) + 2(2 i) + 0 + 0 = 4 i: R Re zdz along the directed line segment from z = 0 to z = The line can be parametrized as z(t) = (1 + 2i)t = t + 2it for 0 z 0 (t) = (1 + 2i)dt R R1 Re zdz = 0 t (1 + 2i)dt = (1+2i) [t2 ]10 = (1+2i) : 2 2 t 1 =) 8. Let C be the perimeter of the square with vertices at the points R z = 0; z = 1; z = 1+i; and z = i traversed once in that order. Show that C ez dz = 0. 3 Refer to the class notes for a solution that uses parametrization. For an alternate solution consider the following: Z ez dz C Z 1 = ez dz + 0 [ez ]10 = = = + (e 0: Z 1+i ez dz + 1 z 1+i [e ]1 + 1+i 1) + (e Z i ez dz + 1+i z i [e ]1+i + [ez ]0i i 1+i e) + (e e Z 0 ez dz i ) + (1 ei ) R 9. Evaluate (x 2xyi)dz over the contour : z = t + it2 ; 0 z 0 = (1 + 2it)dt. R R1 R1 (x 2xyi)dz = 0 (t 2t3 i)(1 + 2it)dt = 0 [(t + 4t4 ) + i(2t2 h 2 i1 5 3 t4 13 = t2 + 4t5 + i 2t3 + i 16 : = 10 2 t 1 =) 2t3 )]dt 0 I 12. True or False: I zdz = jzj=1 1 z dz. jzj=1 The statement is true since we can use the fact that all z satisfy jzj = 1. Indeed, I I I I jzj2 1 zdz = z zz dz = dz = z z dz. jzj=1 jzj=1 13. Compute t . R jzj=1 (jz Z = Z 2 1 + ij (jz z)dz along the semicircle z = 1 2 1 + ij i + eit (1 0 = Z (1 1+i 0 = jzj=1 z)dz 2 (1 i + eit )) ieit dt Z it it e ) ie dt = ( eit ie2it )dt 1+i 0 eit i 0 i 2it e 2i 0 (4.3): Independence of Path 1. Calculate the following. 4 = i[ 1 1] = 2i. i + eit ; 0 (a). R (3z 2 5z + i)dz : line z = i to z = 1: Z Z = (3z 2 5z + i)dz 1 (3z 2 5z + i)dz i = (b). R ez dz = R 1 [ez ]z=1 = e 2 sin2 z cos zdz (e1 ez cos zdz = = R 5 2 1) (Log(z))2 dz 1 1 1: e1 (only the end points matter) ) = 2 sinh 1: 1 1 i sin3 z z= = [sin i]3 3 3 i sinh3 1 : 3 0 : contour in the …gure. Z ez cos zdz (use integration by parts) = (h). ( i+ : contour in the …gure. Z sin2 z cos zdz = R e 2 = (f). 3 +i 2 : upper half of circle jzj = 1 from z = 1 to z = Z ez dz = (e). 5 2 z + iz]1i = 2 3 + 2i: [z 3 = 1 z [e (sin z + cos z)]iz= 2 1 i [e (sin i + cos i) e (0 1)] 2 e ei + (cosh 1 + i sinh 1): 2 2 : line z = 1 to z = i: 5 R We …rst need to …nd the integral of (log(x))2 dx: Z I = (log(x))2 dx ; 1 dx x = log xdx =) v = x[log x 1] Z = x log(x)[log x 1] [log x u = dv I log x =) du = 1]dx = x log(x)[log x 1] x[log x 1] + x = 2x 2x log(x) + x(log(x))2 : Z (Log(z))2 dz = 2z 2zLog(z) + z(Log(z))2 = 2i 2iLog(i) + i(Log(i))2 i z=1 [2] 2i[log jij + i ] + i[log jij + i ]2 2 2 = 2i = 2i + 2 (i). R 1 1+z 2 dz i 4 2= 2 + i(2 2 2 =4): : line z = 1 to z = 1 + i: We will use the de…nition of the complex inverse tangent function: h i tan 1 (z) = 2i log ii+zz : Z = 1 dz 1 + z2 tan 1 z 1+i z=1 tan 1 (1 + i) tan 1 (1) i+1+i i+1 i i log log = 2 i 1 i 2 i 1 i i log( 1 2i) log( i) = 2 2 p i 3 = log 5 + i( + tan 1 (2)) i 2 2 i tan 1 (2) = log(5) + : 4 2 4 = 2. If P (z) is a polynomial and 0: is any closed contour, explain why P (z) Ris entire and therefore has an antiderivative. Thus, if contour, P (z)dz = 0: 6 R P (z)dz = is any closed 4. RTrue or False: If f is analytic at each point of a closed contour f (z)dz = 0: , then This is false, Cauchy’s Theorem requires that f be analytic on and inside 1 . For R 1 example, the function f (z) = z is analytic on jzj = 1; but not inside and z dz = 2 i 6= 0: 1 z has no antiderivative in the punctured plane Crf0g: R 1 Suppose f (z) = z1 has an antiderivative in C r f0g. Then z dz = 0 for every closed curve 2 C r f0g. But this is notR true for any loop which encloses the pole z = 0: For instance if : jzj = 1, jzj=1 z1 dz = 2 i. 5. Explain why f (z) = (4.4): Cauchy’s Integral Theorem 1. Let D be the domain given on page 199 and the contour shown. Decide if the following given contours can be deformed to . (a). Yes (b). No (c). Yes (d). No 3. Let D : 1 < jzj < 5 and : jz 3j = 1 traversed once positively starting at z = 4. Decide which of the following contours are continuously deformable to in D. (a). Yes (b). Yes (c). No (d). Yes (e). Yes 10. Determine the domain of analyticity and explain why (a). f (z) = z z 2 +25 RD = fz j z 6= 5ig. f (z)dz = 0 since f is analytic on and inside jzj=2 (b). f (z) = e z (2z + 1) This is an entire function, so R jzj=2 f (z)dz = 0. 7 R jzj=2 : jzj = 2. f (z)dz = 0: (c). f (z) = cos z z 2 6z+10 RD = fz j z 6= 3 ig. f (z)dz = 0 since f is analytic on and inside jzj=2 : jzj = 2. D R = fz j z 6= (2n 1) ; n = 0; 1; 2; g. f (z)dz = 0 since f is analytic on and inside jzj=2 : jzj = 2. z 2 (d). f (z) = sec 0; 1; 2; = 1 cos(z=2) =) z 2 6= (2n 1) 2 =) z 6= (2n 1) ; n = (e). f (z) = Log(z + 3) z + 3 = x + iy + 3 = x + 3 + iy. We need to avoid y = 0 and x+3 0. D 3g. R = C r fx + iy j y = 0; x f (z)dz = 0 since f is analytic on and inside : jzj = 2. jzj=2 R 1 13. Evaluate z2 +1 dz along each of the three contours. i R R h i=2 R i=2 1 i dz = (a). 1 z21+1 dz = 1 (z+i)(z i) (z+i) (z i) dz = 0 22 i = : 1 (b). Deform into a barbell. R R R 1 1 dz = 1 (z+i)(z 2 i) dz = 1 z +1 (c). R 1 1 z 2 +1 dz = R 1 1 (z+i)(z i) dz = 1 R h i=2 (z+i) 1 h i=2 (z+i) i=2 (z i) i dz = 2i 2 i 2i 2 i = 0: i i=2 i 0= : (z i) dz = 2 2 i R z 15. Evaluate : jzj = 4 traversed twice in the clockwise (z+2)(z 1) dz; where direction. i h R R 2=3 1=3 z 2 23 2 i + 13 2 i = 4 i: (z+2)(z 1) dz = jzj=4 (z+2) + (z 1) dz = 17. Evaluate R 2z 2 z+1 (z+1)(z 1)2 dz; where is the contour shown in the …gure. First get the partial fractions. 2z 2 z + 1 (z + 1)(z 1)2 (2) (1) (2) A0 A0 A1 + + (z + 1) (z 1)2 (z 1) = (1) (2) Cover-Up rule gives, A0 = 1; A0 = 1. To …nd (2) A1 1 d 2z 2 z + 1 z!1 1! dz (z + 1) d (z + 1)(4z 1) (2z 2 = lim z!1 dz (z + 1)2 6 2 = = 1: 4 = lim 8 z + 1) R 2z 2 z+1 (z+1)(z 1)2 dz = R h 1 (z+1) + 1 (z 1)2 + 1 (z 1) i dz = [2 i + 0 2 i] = 0: (4.5): Cauchy’s Integral Formula and Its Consequences 1. Let f be analytic inside and on the simple closed contour . What is the value of Z f (z) 1 dz 2 i z z0 when z0 lies outside ? Since f is analytic inside and on , the interior of the closed loop is a simply-connected domain (call it D) in which f is analytic. Given that z0 lies outside , the function zf (z) z0 is analytic in D as well. By Cauchy’s Integral R f (z) Theorem, z z0 dz = 0. R f (z) Therefore, 21 i z z0 dz = 0. 2. Let f and g be analytic inside and on the simple loop . Prove that if f (z) = g(z) for all z on , then f (z) = g(z) for all z inside . Let z0 be any point inside . We need to show that f (z0 ) = g(z0 ). Applying Cauchy’s Integral Formula we obtain Z Z f (z) 1 g(z) 1 dz dz f (z0 ) g(z0 ) = 2 i z z0 2 i z z0 Z 1 f (z) g(z) = dz 2 i z z0 = 0; since f (z) = g(z) for all z on . 3. Let C : jzj = 2 traversed once positively. Compute the following. (a). = Z sin 3z dz z =2 C 2 i[sin 3z]z= =2 = 2 i: (b). Z = = zez dz 3 C 2z Z 1 zez dz 2 C z 3=2 3 3 i 3=2 1 2 i[zez ]z=3=2 = i e3=2 = e : 2 2 2 9 (c). Z cos z dz 3 + 9z z ZC Z cos z cos z dz = dz = 2 + 9) z(z z(z + 3i)(z 3i) C C cos z cos 0 2 i = 2 i =2 i = : (z + 3i)(z 3i) z=0 9 9 (d). Let f (z) = 5z 2 + 2z + 1. Z 5z 2 + 2z + 1 dz (z i)3 C 2 i (2) [f (i)] = 10 i: 2! = (e). Let f (z) = e z . Z e z dz 2 C (z + 1) 2 i (1) [f ( 1)] = 1! = (f). Let f (z) = sin z z 4. Z sin z dz z 2 (z 4) 2 i (1) (z [f (0)] = 2 i 1! i : 2 2 ie: C = = 4. Compute Z C 4) cos z sin z (z 4)2 z=0 z+i dz; z 3 + 2z 2 where C is (a). circle jzj = 1 traversed once counterclockwise. Z z+i dz + 2z 2 ZC z+i = dz 2 (z + 2) z C = = z3 2 i z+i 1! z + 2 i(2 i) : 2 0 =2 i z=0 10 (z + 2) (z + i) (z + 2)2 z=0 (b). circle jz + 2 ij = 2 traversed once counterclockwise. Z z+i dz 3 + 2z 2 z ZC z+i = dz 2 (z + 2) z C 2+i z+i =2 i = 2 i z 2 z= 2 4 = (c). circle jz i( 2 + i) : 2 2ij = 1 traversed once counterclockwise. Z z+i dz 3 + 2z 2 z C Z z+i = dz 2 C z (z + 2) = 0: 6. Evaluate Z (z 2 eiz dz; + 1)2 where is the circle jzj = 3 traversed once counterclockwise. Sketch the contour jzj = 3 and reduce the contour to a vertical barbell consising of: ij = 1 2 a circle traversed counter clockwise C2 : jz + ij = 1 2 a circle traversed counter clockwise C1 : jz straight line C3 connecting straight line Let f (z) = i 2 C3 connecting eiz (z+i)2 and g(z) = to i 2 i 2 to eiz (z i)2 . Z and i 2 Then eiz dz (z 2 + 1)2 Z Z Z Z eiz eiz g(z) f (z) = dz + dz + dz + dz 2 2 2 2 2 2 i) C1 (z C3 (z + 1) C3 (z + 1) C2 (z + i) Z Z f 0 (i) 2 i eiz g 0 (i) 2 i eiz = + dz dz + 2 2 2 2 1! 1! C3 (z + 1) C3 (z + 1) i cosh 1 i sinh 1 = 2 i +2 i = (cosh 1 sinh 1) 2 2 11 7. Compute Z cos z dz; z 2 (z 3) where is the indicated contour. The poles of the integrand are z = 0 (mul = 2); and z = 3. Since the small loop does not enclose the poles we can deform to a circle, say jzj = 1. Therefore, Z cos z dz z 2 (z 3) 2 i d cos z (z 3) sin z cos z = lim = 2 i lim z!0 1! z!0 dz (z 3) (z 3)2 2 i = : 9 11. Let f = u + iv be analytic in a domain D. Explain why in D. @2u @x2 is harmonic By Theorem 16, all derivatives of f exist and are analytic. In particular, f (1) (z) = ux + ivx ; and f (2) (z) = uxx + ivxx . 2 Since f (2) (z) = uxx + ivxx is analytic, its real part, @@xu2 ; is harmonic in D. 12
© Copyright 2026 Paperzz