Review Sheet Solutions 1. Integrate the following: (a) Z Z 1 u2 du sin(4x) cos (4x)dx = 4 1 = u3 + C 12 1 = cos3 (4x) + C 12 2 for u = cos(4x) (b) Z Z 2 1 sin (x)dx = (1 − cos(2x)) dx 2 Z 1 1 − 2 cos(2x) + cos2 (2x)dx = 4 Z 1 1 = x − sin(2x) + 1 + cos(4x)dx 4 2 1 1 1 1 = x − sin(2x) + x + sin(4x) + C 4 4 8 4 1 1 3 sin(4x) + C = x − sin(2x) + 8 4 32 4 (c) Z Z 1 sin(x) sin(2x)dx = cos(3x) − cos(−x)dx 2 11 = sin(3x) + sin(x) + C 2 3 Z 1 x sin(4x)dx = − x cos(4x) + 4 1 = − x cos(4x) + 4 (d) 1 Z 1 cos(4x)dx 4 1 sin(4x) + C 16 (e) Z Z 5 x Z x e sin(2x)dx = e sin(2x) − 2 ex cos(2x)dx Z x x x = e sin(2x) − 2 e cos(2x) + 2 e sin(2x)dx Z x x = e sin(2x) − 2e cos(2x) − 4 ex sin(2x)dx ex sin(2x)dx = ex sin(2x) − 2ex cos(2x) + C Z 2 1 ex sin(2x)dx = ex sin(2x) − ex cos(2x) + C 5 5 Z 1 1 2 2 ex sin(2x)dx = e sin(2) − e cos(2) + 5 5 5 0 (f) Z √ Z √ x2 + 1dx = V 2 + 1V 0 dt Z = U V 0 dt Z 1 11 1 = t+ 1 + 2 dt 2 t 2 t Z 1 = t + t−3 + 1 + t−1 dt 4 1 1 2 1 −2 = t − t + t + ln |t| + C 4 2 2 1 1 1 = (U + V )2 − (U − V )2 + (U + V ) 8 8 4 1 + ln |U + V | + C 4 1 1 1 = (4U V ) + (U + V ) + ln |U + V | + C 8 4 4 √ √ 1 √ 2 1 1 = x x + 1 + (x + x2 + 1) + ln |x + x2 + 1| + C 2 8 4 2 1 1 for x = V = t− 2 t (g) Z Z x dx (x + 1)(x − 1)(x2 + 1) x A B Cx + D = + + 2 2 (x + 1)(x − 1)(x + 1) x+1 x−1 x +1 2 x = A(x − 1)(x + 1) + B(x + 1)(x2 + 1) + (Cx + D)(x + 1)(x − 1) x = (A + B + C)x3 + (−A + B + D)x2 + (A + B − C)x + (−A + B − D) (A + B + C) = 0, (−A + B + D) = 0 (A + B − C) = 1, (−A + B − D) = 0 1 −1 get D = 0, A = B = , C = 4 2 Z Z 1 1 x x = + − dx x4 − 1) 4(x + 1) 4(x − 1) 2(x2 + 1) Z 1 1 1 1 = ln |x + 1| + ln |x − 1| − du 4 4 2 2u for u = x2 + 1 1 1 1 = ln |x + 1| + ln |x − 1| − ln |u| + C 4 4 4 1 1 1 = ln |x + 1| + ln |x − 1| − ln |x2 + 1| + C 4 4 4 2 1 x − 1 = ln 2 +C 4 x +1 x dx = 4 x −1 3 (h) Z du u(u + 1)2 B C 1 A + = + 2 u(u + 1) u u + 1 (u + 1)2 1 = A(u + 1)2 + Bu(u + 1) + Cu = (A + B)u2 + (2A + B + C) + A thus A = 1, A + B = 0, 2A + B + C = 0 A = 1, B = −1, C = −1 Z Z du 1 1 1 = − − du u(u + 1)2 u u + 1 (u + 1)2 1 = ln |u| − ln |u + 1| + +C u+1 (i) Z √ x x − 1dx = Z Z = √ (u + 1) udu for u = x − 1 u3/2 + u1/2 du 2 2 = u5/2 + u3/2 + C 5 3 2 2 = (x − 1)5/2 + (x − 1)3/2 + C 5 3 (j) Z Z xdx 1 dx √ √ = 2 1 − x4 1 − u2 1 = arcsin(u) + C 2 1 = arcsin(x2 ) + C 2 4 for u = x2 (k) Z (V + 1)V 0 dt 1 1 √ for x = V = t− 2 t V2+1 Z 0 (V + 1)V dt = U Z 1 t − 1 + 1 1 1 + 12 dt 2 t 2 t = 1 t + 1t 2 Z t2 −1+t t2 +1 dt 2 t t 1 = t2 +1 2 t Z 2 1 t − 1 + t t2 + 1 t dt = 2 t t2 t2 + 1 Z 2 1 t +t−1 = dt 2 t2 Z 1 = 1 + t−1 − t−2 dt 2 1 = (t + ln |t| + t−1 ) + C 2 1 = (U + V + ln |U + V | + U − V ) + C by t = U + V, t−1 = U − V 2 1 = (2U + ln |U + V |) + C 2 √ √ 1 = x2 + 1 + ln |x + x2 + 1| + C 2 (x + 1)dx √ = x2 + 1 Z 5 (l) Z dx = 2 x + 2x + 3 = = = = Z dx completing the square (x + 1)2 + 2 Z 1 dx 1 2 (x + 1)2 + 1 Z 2 1 dx x+1 2 ( √2 ) 2 + 1 √ Z √ x+1 2 du 2 arctan(u) + C for u = √ = 2 2 u +1 2 2 √ x+1 2 arctan( √ ) + C 2 2 6 2. Solve the following separable differential equations: (a) dy − y 2 sec(x) tan(x) = 0 with initial condition y(0) = 1 dx dy dx dy y2 Z dy y2 1 − y = y 2 sec(x) tan(x) = sec(x) tan(x)dx Z = sec(x) tan(x)dx = sec(x) + C 1 − sec(x) + C y=0 1 1 = y(0) = − sec(0) + C 1 = −1 + C C −1=1 C=2 1 y= sec(x) + 2 y= the solution we missed for y 2 = 0 7 (b) dy + xy + x + y + 1 = 0 with initial condition y(0) = 0 dx dy = −(xy + x + y + 1) dx dy = −(x + 1)(y + 1) dx dy = −x − 1dx y+1 Z Z dy = −x − 1dx y+1 1 ln |y + 1| = − x2 − x + C 2 − 21 x2 −x+C y=e −1 y = −1 missed solution for y + 1 = 0 0 = y(0) = eC − 1 eC = 1 so C = 0 1 2 −x y = e− 2 x −1 3. Prove the following: Z (a) Let An = xn ex dx. Show An = xn ex − nAn−1 . Integrate by parts with f = xn , g 0 = ex . Z (b) Let Dm,n = xm (ln(x))n dx. Show Dm,n = 1 xm+1 (ln(x))n m+1 n − m+1 Dm,n−1 . Integrate by parts with f = (ln(x))n , g 0 = xm . 4. Use the results from above to integrate the following: (a) Z x3 ex dx = A3 = x3 ex − 3A2 = x3 ex − 3(x2 ex − 2A1 ) = x3 ex − 3x2 ex + 6(xex − A0 ) = x3 ex − 3x2 ex + 6xex − 6ex + C 8 (b) Z x100 ln(x)dx = D100,1 1 1 101 x ln(x) − D100,0 101 101 1 2 1 101 x ln(x) − = x101 + C 101 101 = (c) Z (ln(x))2 dx = D0,2 = x(ln(x))2 − 2D0,1 = x(ln(x))2 − 2x ln(x) + 2D0,0 = x(ln(x))2 − 2x ln(x) + 2x + C 5. Please determine if the following integrals exist. If they do, find an estimate for them or show they are infinite. Notice, these problems are mixed, you will not need to use integral estimation techniques for all of them. (a) Z 0 ∞ M Z M e−x dx xe dx = lim −xe + M →∞ 0 0 M = 0 + lim −e−x −x −x M →∞ 0 =1 (b) Z ∞ 0 Z ∞ Z0 ∞ So 0 ex dx x ex 1 ≥ x Zx ∞ ex 1 dx ≥ dx = ∞ x x 0 ex dx = ∞ x 9 by ex increasing on 0 ≤ x Z ∞ (c) 0 v+2 dv Note the function is positive so the integral exists v5 + 1 v+2 v 1 ∼ 5 = 4 5 v +1 v v v+2 ≤ g(v) Want 5 v +1 v + 2 ≤ v + 2v = 3v v5 + 1 ≥ v5 v+2 3v 3 So 5 ≤ 5 = 4 v +1 v v so we expect finite where g(v) is only leading terms when v ≥ 1 when v ≥ 1 v+2≤3 v5 + 1 ≥ 1 v+2 3 So 5 ≤ =3 v +1 1 Z ∞ 0≤ 0 Z ∞ (d) when 0 ≤ v ≤ 1 when 0 ≤ v ≤ 1 when 0 ≤ v ≤ 1 Z ∞ v+2 v+2 dv + dv 5 v5 + 1 0 v +1 1 Z ∞ Z 1 3 3dv + ≤ dv v4 1 0 1 M = 3 − lim 3 M →∞ v 1 =3+1=4 v+2 dv = v5 + 1 Z 1 √ e−x sin( x)dx 0 √ |e−x sin( x)| ≤ e−x Z ∞ Z ∞ √ −x e sin( x)dx ≤ e−x dx 0 by |sin(θ)| ≤ 1 by the comparison theorem 0 = lim −e−M + 1 = 1 M →∞ Z ∞ (e) −∞ x2 + 1 dx = 2 x4 + 1 Z 0 ∞ x2 + 1 dx By having an even function. This function is positive x4 + 1 10 so we know it exists. x2 + 1 x2 1 ∼ 4 = 2 so we expect finite 4 x +1 x x x2 + 1 ≤ g(x) Want 4 x +1 x2 + 1 ≤ x2 + x2 = 2x2 x4 + 1 ≥ x 4 x2 + 1 2x2 2 So 4 ≤ 4 = 2 x +1 x x x2 + 1 ≤ 2 x4 + 1 ≥ 1 x2 + 1 2 So 4 ≤ =1 x +1 1 Z 0≤2 0 ∞ Z for x ≥ 1 for x ≥ 1 for 0 ≤ x ≤ 1 for 0 ≤ x ≤ 1 Z ∞ 2 x2 + 1 x +1 dx + 2 dx 4 x4 + 1 0 x +1 1 Z 1 Z ∞ 2 ≤2 2dx + 2 dx x2 0 1 −2 ∞ = 4 + lim M →∞ x 1 =4+2=6 x2 + 1 dx = 2 x4 + 1 for g(x) only leading terms 1 11
© Copyright 2026 Paperzz