Math 2263 Multivariable Calculus Homework 23: 16.2 #8,20 July 18, 2011 16.2#8 R Evaluate the line integral C sin x dx + cos y dy, where C consists of the top half of the circle x2 + y 2 = 1 from (1, 0) to (−1, 0), and the line segment from (−1, 0) to (−2, 3). We can parametrize C as two curves C1 and C2 , where C1 is parametrized by r1 (t) = hcos t, sin ti, 0 ≤ t ≤ π and C2 is parametrized by r2 (t) = h−1 − t, 3ti, 0 ≤ t ≤ 1. Z Z sin x dx + cos y dy = = π Z sin x dx + cos y dy + C Z C1 sin x dx + cos y dy C2 Z sin(cos t)(− sin t) + cos(sin t)(cos t) dt + 0 1 sin(−1 − t)(−1) + cos(3t)(3) dt 0 = π π 1 1 − cos(cos(t)) + sin(sin(t)) + − cos(−1 − t) + sin(3t) 0 0 0 0 = (− cos(−1)) − (− cos(1)) + sin(0) − sin(0) + (− cos(−2)) − (− cos(−1)) + sin(3) − sin(0) = cos(1) + sin(3) − cos(2) 16.2#20 R Evaluate the line integral C F · dr, where C is given by the vector function r(t) = t2 i + t3 j + t2 k, 0 ≤ t ≤ 1, and where F (x, y) = (x + y)i + (y − z)j + z 2 k. Z Z 1 F · dr = F (r(t)) · r0 (t) dt Z C 1 = Z 0 1 = 0 ht2 + t3 , t3 − t2 , t4 i · h2t, 3t2 , 2ti dt 3 4 5 4 5 (2t + 2t ) + (3t − 3t ) + 2t dt 0 1 Z (2t3 − t4 + 5t5 ) dt = 0 = 1 4 1 5 t − t − 2 5 1 1 = − + 2 5 17 = 15 1 5 6 t 6 0 5 6
© Copyright 2026 Paperzz