1.2--Finding Limits Graphically & Numerically Evaluate the following limits (if possible): 1) lim f(x) = x 2) 4 f(x) lim f(x) = x 2 2 3) 4 lim f(x) = x 4) 0 f(2) = Evaluate the following limits (if possible): 5) 6) 7) 8) f(x) = lim x 5- lim x x 2 lim - -3 f(x) = + f(x) = lim f(x) = x 0 1 1.2--Finding Limits Graphically & Numerically Evaluate the following limits (if possible): 9) lim x 5 f(x) = 10) lim f(x) = x 2 11) lim f(x) = x -3 - 12) lim f(x) = x -3 The Properties of Limits (p. 59) simply involve common sense & are Algebra 1 related. It's better just to work out problems to reinforce these concepts... lim x 0 sin x x = 1 This formula is on page 65. It is EXTREMELY important!!! 2 1.3--Finding Limits Analytically 1) 3) 5) 7) lim x 11 lim x 7 9 lim x (x - 8) 2019 x2 - 4x - 45 lim x 4x + 1 2x + 3 4 x2 - 2x - 63 2x + 8 5x2 - 80 2) 4) 6) 8) x lim -8 lim x 3 x2 - 15x + 36 x2 - 19x + 48 lim 5x3 + 2x2 lim x2 - 4 x x (x2 + 4) 0 -2 x3 - 8x2 2x2 + x - 6 3 1.3--Finding Limits Analytically 9) 11) 13) 15) x lim 2.5 x x 0 x lim 17+ lim -4 6x - 15 4 sin x lim x 8x3 - 125 - lim 10) x lim 12) (int x) 14) (int x) 16) 5x - 19 3 x x x 0 lim 17- lim -5 - 8 sin 6x 3x (int x) x x 4 1.3--Finding Limits Analytically 17) x lim 18) f(x) = 31 x + 90 - 11 x - 31 f(x) = lim ∆x 2 2 (x+∆x) + 3(x+∆x) - 5 - (x + 3x - 5) 0 ∆x 5 1.3--Finding Limits Analytically The SQUEEZE THEOREM, p. 65 (also called the "Sandwich Theorem") g(x) f(x) h(x) 19) Use the Squeeze Theorem to evaluate the following: x2 sin ( 1 x ) 0 lim x 6 1.3--Finding Limits Analytically (Textbook--page 68) 7
© Copyright 2026 Paperzz