Proofs of Fundamental Trigonometric Identities tan

Proofs of Fundamental Trigonometric Identities hy
pote 𝑐 𝑏 nuse
leg πœƒ π‘Ž leg opposite
𝑏
sin πœƒ hypotenuse
𝑐 = 𝑏 ÷ π‘Ž = 𝑏 βˆ™ 𝑐 = 𝑏 = opposite = tan πœƒ tan πœƒ =
=
=π‘Ž
adjacent
cos πœƒ
𝑐 𝑐 𝑐 π‘Ž 𝑐 adjacent
𝑐
hypotenuse
adjacent
π‘Ž
cos πœƒ hypotenuse
π‘Ž 𝑏 π‘Ž 𝑐 π‘Ž adjacent
cot πœƒ =
=
= 𝑐 = ÷ = βˆ™ = =
= cot πœƒ opposite
𝑏 𝑐 𝑐 𝑐 𝑏 𝑏 opposite
sin πœƒ
hypotenuse
𝑐
!
Proof of sin πœƒ + cos ! πœƒ = 1 Pythagorean Theorem π‘Ž! + 𝑏 ! = 𝑐 ! Divide by 𝑐 ! π‘Ž! 𝑏! 𝑐 !
+
= 𝑐! 𝑐! 𝑐!
Reduce π‘Ž
𝑐
!
Apply Trigonometric Definitions adjacent
hypotenuse
!
+
𝑏
𝑐
!
= 1 opposite
+
hypotenuse
Apply Trigonometric Definitions cos ! πœƒ + sin! πœƒ = 1 Additive Identity sin! πœƒ + cos ! πœƒ = 1 !
= 1