6.6: More Trigonometric Graphs E. Kim MTH 151 All notation and terminology is based on Swokowski, Cole. Algebra and Trigonometry: with analytic geometry. Classic 12th Edition. 1 1 1 Goal Last time we graphed y = a sin(bx + c) y = a cos(bx + c) 2 2 2 Goal Last time we graphed y = a sin(bx + c) y = a cos(bx + c) Build the graphs of y = a csc(bx + c) y = a sec(bx + c) y = a tan(bx + c) y = a cot(bx + c) step-by-step 2 2 2 Review of Section 6.3 3 3 3 y = sin x and y = csc x Reciprocal identity csc x = 1 sin x 3 2 1 −π π −1 2π 3π −2 −3 y = sin(x) 4 4 4 y = sin x and y = csc x Reciprocal identity csc x = 1 sin x 3 2 1 −π π −1 2π 3π −2 −3 y = sin(x) 4 4 y = csc(x) 4 y = sin x and y = csc x Reciprocal identity csc x = 1 sin x 3 2 period 1 −π π −1 2π 3π −2 −3 y = sin(x) y = csc(x) both functions have period 2π 4 4 4 y = cos x and y = sec x Reciprocal identity sec x = 1 cos x 3 2 1 −π π −1 2π 3π −2 −3 y = cos(x) 5 5 5 y = cos x and y = sec x Reciprocal identity sec x = 1 cos x 3 2 1 −π π −1 2π 3π −2 −3 y = cos(x) 5 5 y = sec(x) 5 y = cos x and y = sec x Reciprocal identity sec x = 1 cos x 3 2 period 1 −π π −1 2π 3π −2 −3 y = cos(x) y = sec(x) both functions have period 2π 5 5 5 Use y = sin x and y = cos x to get y = tan x tan x = sin x cos x 3 2 1 −π π −1 2π 3π −2 −3 y = sin(x) 6 y = cos(x) 6 6 Use y = sin x and y = cos x to get y = tan x tan x = sin x cos x 3 2 1 −π π −1 2π 7.5 3π −2 −3 y = sin(x) 6 y = cos(x) 6 6 Use y = sin x and y = cos x to get y = tan x tan x = sin x cos x 3 2 1 −π π −1 2π 7.5 3π −2 −3 y = sin(x) 6 y = cos(x) 6 6 Use y = sin x and y = cos x to get y = tan x tan x = sin x cos x 3 2 1 −π π −1 2π 7.5 3π −2 −3 y = sin(x) 6 y = cos(x) 6 6 Use y = sin x and y = cos x to get y = tan x tan x = sin x cos x 3 2 1 −π π −1 2π 7.5 3π −2 −3 y = sin(x) 6 y = cos(x) 6 6 Use y = sin x and y = cos x to get y = tan x tan x = sin x cos x 3 2 1 −π π −1 2π 3π −2 −3 y = sin(x) 6 y = cos(x) 6 y = tan(x) 6 Use y = sin x and y = cos x to get y = tan x tan x = sin x cos x 3 2 1 −π π −1 2π 3π −2 −3 y = tan(x) 6 6 6 Use y = sin x and y = cos x to get y = tan x tan x = sin x cos x period is π 3 2 1 −π π −1 2π 3π −2 −3 y = tan(x) period of tan x is π 6 6 6 Use y = sin x and y = cos x to get y = cot x cot x = cos x sin x 3 2 1 −π π −1 2π 3π −2 −3 y = sin(x) 7 y = cos(x) 7 7 Use y = sin x and y = cos x to get y = cot x cot x = cos x sin x 3 2 1 −π π −1 2π 3π −2 −3 y = sin(x) 7 y = cos(x) 7 y = cot(x) 7 Use y = sin x and y = cos x to get y = cot x cot x = cos x sin x 3 2 1 −π π −1 2π 3π −2 −3 y = cot(x) 7 7 7 Use y = sin x and y = cos x to get y = cot x cot x = cos x sin x period is π 3 2 1 −π π −1 2π 3π −2 −3 y = cot(x) period of cot x is π 7 7 7 In the graphs of y = csc x, y = sec x, y = tan x, y = cot x There is no “biggest” or “smallest” y value occuring: 8 8 8 In the graphs of y = csc x, y = sec x, y = tan x, y = cot x There is no “biggest” or “smallest” y value occuring: No notion of amplitude 8 8 8 In the graphs of y = csc x, y = sec x, y = tan x, y = cot x There is no “biggest” or “smallest” y value occuring: No notion of amplitude (contrast: y = sin x or y = cos x) 8 8 8 Goal Build the graphs of y = a csc(bx + c) y = a sec(bx + c) y = a tan(bx + c) y = a cot(bx + c) step-by-step 9 9 9 How about just a? y = a csc x y = a sec x y = a tan x y = a cot x 10 10 10 y = tan x vs y = 2 tan x vs y = 3 tan x 3 2 1 −π π −1 2π 3π −2 −3 y = tan(x) 11 11 11 y = tan x vs y = 2 tan x vs y = 3 tan x 3 2 1 −π π −1 2π 3π −2 −3 y = tan(x) 11 y = 2 tan(x) 11 11 y = tan x vs y = 2 tan x vs y = 3 tan x 3 2 1 −π π −1 2π 3π −2 −3 y = tan(x) 11 y = 2 tan(x) 11 y = 3 tan(x) 11 y = tan x vs y = − tan x 3 2 1 −π π −1 2π 3π −2 −3 y = tan(x) 12 12 12 y = tan x vs y = − tan x 3 2 1 −π π −1 2π 3π −2 −3 y = tan(x) 12 12 y = − tan(x) 12 y = tan x vs y = 21 tan x vs y = 13 tan x 3 2 1 −π π −1 2π 3π −2 −3 y = tan(x) 13 13 13 y = tan x vs y = 21 tan x vs y = 13 tan x 3 2 1 −π π −1 2π 3π −2 −3 y = tan(x) 13 y= 13 1 2 tan(x) 13 y = tan x vs y = 21 tan x vs y = 13 tan x 3 2 1 −π π −1 2π 3π −2 −3 y = tan(x) 13 y= 13 1 2 tan(x) y= 1 3 tan(x) 13 y = sec x vs y = 2 sec x vs y = 3 sec x 3 2 1 −π π −1 2π 3π −2 −3 y = sec(x) 14 14 14 y = sec x vs y = 2 sec x vs y = 3 sec x 3 2 1 −π π −1 2π 3π −2 −3 y = sec(x) 14 y = 2 sec(x) 14 14 y = sec x vs y = 2 sec x vs y = 3 sec x 3 2 1 −π π −1 2π 3π −2 −3 y = sec(x) 14 y = 2 sec(x) 14 y = 3 sec(x) 14 y = sec x vs y = − sec x 3 2 1 −π π −1 2π 3π −2 −3 y = sec(x) 15 15 15 y = sec x vs y = − sec x 3 2 1 −π π −1 2π 3π −2 −3 y = sec(x) 15 15 y = − sec(x) 15 y = sec x vs y = 12 sec x vs y = 13 sec x 3 2 1 −π π −1 2π 3π −2 −3 y = sec(x) 16 16 16 y = sec x vs y = 12 sec x vs y = 13 sec x 3 2 1 −π π −1 2π 3π −2 −3 y = sec(x) 16 y= 16 1 2 sec(x) 16 y = sec x vs y = 12 sec x vs y = 13 sec x 3 2 1 −π π −1 2π 3π −2 −3 y = sec(x) 16 y= 16 1 2 sec(x) y= 1 3 sec(x) 16 What does a do? Sign of a: 17 I a > 0 ! don’t flip I a < 0 ! flip vertically 17 17 What does a do? Sign of a: I a > 0 ! don’t flip I a < 0 ! flip vertically Size of |a|: 17 I |a| > 1 ! vertical expand I |a| < 1 ! vertical contract 17 17 How about just b? y = csc bx y = sec bx y = tan bx y = cot bx 18 18 18 y = tan bx 3 2 1 −π π −1 2π 3π −2 −3 y = tan(x) 19 19 19 y = tan bx 3 2 1 −π π −1 2π 3π −2 −3 y = tan(x) 19 y = tan(2x) 19 19 y = tan bx 3 2 1 −π π −1 2π 3π −2 −3 y = tan(x) 19 y = tan(2x) 19 19 y = tan bx 3 smaller period 2 1 −π π −1 2π 3π −2 −3 y = tan(x) 19 y = tan(2x) 19 19 y = tan bx 3 2 1 −π π −1 2π 3π −2 −3 y = tan(x) 19 y = tan(2x) 19 y = tan(3x) 19 y = tan bx where b is a fraction 3 2 1 −π π −1 2π 3π −2 −3 y = tan(x) 20 20 20 y = tan bx where b is a fraction 3 2 1 −π π −1 2π 3π −2 −3 y = tan(x) 20 y = tan( 12 x) 20 20 y = tan bx where b is a fraction 3 2 1 −π π −1 2π 3π −2 −3 y = tan(x) 20 y = tan( 12 x) 20 y = tan( 13 x) 20 b in y = tan(bx) or y = cot(bx) What does b do? 21 I Since original period of tangent and cotangent is π I For y = tan(bx) or y = cot(bx), period is 21 π |b| 21 y = sec bx 3 2 1 −π π −1 2π 3π −2 −3 y = sec(x) 22 22 22 y = sec bx 3 2 1 −π π −1 2π 3π −2 −3 y = sec(x) 22 y = sec(2x) 22 22 y = sec bx 3 2 1 −π π −1 2π 3π −2 −3 y = sec(x) 22 y = sec(2x) 22 22 y = sec bx 3 2 1 smaller period −π π −1 2π 3π −2 −3 y = sec(x) 22 y = sec(2x) 22 22 y = sec bx 3 2 1 −π π −1 2π 3π −2 −3 y = sec(x) 22 y = sec(2x) 22 y = sec(3x) 22 y = sec bx where b is a fraction 3 2 1 −π π −1 2π 3π −2 −3 y = sec(x) 23 23 23 y = sec bx where b is a fraction 3 2 1 −π π −1 2π 3π −2 −3 y = sec(x) 23 y = sec( 21 x) 23 23 y = sec bx where b is a fraction 3 2 1 −π π −1 2π 3π −2 −3 y = sec(x) 23 y = sec( 21 x) 23 y = sec( 13 x) 23 b in y = csc(bx) or y = sec(bx) What does b do? 24 I Since original period of cosecant and secant is 2π I For y = csc(bx) or y = sec(bx), period is 24 2π |b| 24 b and c together y = tan(bx + c) y = cot(bx + c) y = csc(bx + c) y = sec(bx + c) 25 25 25 How to graph y = tan(bx + c) 26 26 26 How to graph y = tan(bx + c) Factor b 26 h c i y = tan b x + b 26 26 How to graph y = tan(bx + c) Factor b 26 h c i y = tan b x + b π |b| I period = I phase shift = − cb 26 26 How to graph y = tan(bx + c) Factor b h c i y = tan b x + b π |b| I period = I phase shift = − cb Consecutive vertical asymptotes for one branch of y = tan(bx + c) found by solving π π − < bx + c < 2 2 26 26 26 How to graph y = tan(bx + c) Factor b h c i y = tan b x + b π |b| I period = I phase shift = − cb Consecutive vertical asymptotes for one branch of y = tan(bx + c) found by solving π π − < bx + c < 2 2 − 26 π π − c < bx < − c 2 2 26 26 How to graph y = tan(bx + c) Factor b h c i y = tan b x + b π |b| I period = I phase shift = − cb Consecutive vertical asymptotes for one branch of y = tan(bx + c) found by solving π π − < bx + c < 2 2 − π π − c < bx < − c 2 2 − π2 − c <x< b 26 26 π 2 −c b 26 How to graph y = tan(bx + c) Factor b h c i y = tan b x + b π |b| I period = I phase shift = − cb Consecutive vertical asymptotes for one branch of y = tan(bx + c) found by solving π π − < bx + c < 2 2 − π π − c < bx < − c 2 2 − π2 − c <x< b A branch takes up the interval x ∈ ( 26 26 π 2 −c b − π2 −c b , π −c 2 b ) 26 Example: y = tan(2x + π2 ) Rewrite y = tan(2x + π2 ) as h π i y = tan 2 x + 4 27 27 27 Example: y = tan(2x + π2 ) Rewrite y = tan(2x + π2 ) as h π i y = tan 2 x + 4 27 π |b| I period = I phase shift = π 2 − cb = = − π4 27 27 Example: y = tan(2x + π2 ) 3 2 1 −π π −1 2π 3π −2 −3 y = tan(x) 28 28 28 Example: y = tan(2x + π2 ) 3 2 1 −π π −1 2π 3π −2 −3 y = tan(x) 28 y = tan(2x) 28 28 Example: y = tan(2x + π2 ) 3 2 1 −π π −1 2π 3π −2 −3 y = tan(x) 28 y = tan(2x) 28 y = tan(2x + π2 ) 28 Example: y = 31 tan(2x + π2 ) 3 2 1 −π π −1 2π 3π −2 −3 y = tan(x) 29 29 29 Example: y = 31 tan(2x + π2 ) 3 2 1 −π π −1 2π 3π −2 −3 y = tan(x) 29 y = tan(2x) 29 29 Example: y = 31 tan(2x + π2 ) 3 2 1 −π π −1 2π 3π −2 −3 y = tan(x) 29 y = tan(2x) 29 y = tan(2x + π2 ) 29 Example: y = 31 tan(2x + π2 ) 3 2 1 −π π −1 2π 3π −2 −3 y = tan(x) 29 y = tan(2x) y = tan(2x + π2 ) y = 13 tan(2x + π2 ) 29 29 How to graph y = cot(bx + c) 30 30 30 How to graph y = cot(bx + c) Factor b 30 h c i y = cot b x + b 30 30 How to graph y = cot(bx + c) Factor b 30 h c i y = cot b x + b π |b| I period = I phase shift = − cb 30 30 How to graph y = cot(bx + c) Factor b h c i y = cot b x + b π |b| I period = I phase shift = − cb Consecutive vertical asymptotes for one branch of y = cot(bx + c) found by solving 0 < bx + c < π 30 30 30 How to graph y = cot(bx + c) Factor b h c i y = cot b x + b π |b| I period = I phase shift = − cb Consecutive vertical asymptotes for one branch of y = cot(bx + c) found by solving 0 < bx + c < π −c < bx < π − c 30 30 30 How to graph y = cot(bx + c) Factor b h c i y = cot b x + b π |b| I period = I phase shift = − cb Consecutive vertical asymptotes for one branch of y = cot(bx + c) found by solving 0 < bx + c < π −c < bx < π − c −c π−c <x< b b 30 30 30 How to graph y = cot(bx + c) Factor b h c i y = cot b x + b π |b| I period = I phase shift = − cb Consecutive vertical asymptotes for one branch of y = cot(bx + c) found by solving 0 < bx + c < π −c < bx < π − c −c π−c <x< b b π−c A branch takes up the interval x ∈ ( −c b , b ) 30 30 30 Example: y = cot(2x − π2 ) Rewrite y = cot(2x − π2 ) as π y = cot 2 x − 4 31 31 31 Example: y = cot(2x − π2 ) Rewrite y = cot(2x − π2 ) as π y = cot 2 x − 4 31 π |b| I period = I phase shift = π 2 − cb = = π 4 31 31 Example: y = cot(2x − π2 ) 3 2 1 −π π −1 2π 3π −2 −3 y = cot(x) 32 32 32 Example: y = cot(2x − π2 ) 3 2 1 −π π −1 2π 3π −2 −3 y = cot(x) 32 y = cot(2x) 32 32 Example: y = cot(2x − π2 ) 3 2 1 −π π −1 2π 3π −2 −3 y = cot(x) 32 y = cot(2x) 32 y = cot(2x − π2 ) 32 Example: y = 2 cot(2x − π2 ) 3 2 1 −π π −1 2π 3π −2 −3 y = cot(x) 33 33 33 Example: y = 2 cot(2x − π2 ) 3 2 1 −π π −1 2π 3π −2 −3 y = cot(x) 33 y = cot(2x) 33 33 Example: y = 2 cot(2x − π2 ) 3 2 1 −π π −1 2π 3π −2 −3 y = cot(x) 33 y = cot(2x) y = cot(2x − π2 ) 33 33 Example: y = 2 cot(2x − π2 ) 3 2 1 −π π −1 2π 3π −2 −3 y = cot(x) 33 y = cot(2x) y = cot(2x − π2 ) 33 y = 2 cot(2x − π2 ) 33 How to graph y = sec(bx + c) 34 34 34 How to graph y = sec(bx + c) Factor b 34 h c i y = sec b x + b 34 34 How to graph y = sec(bx + c) Factor b 34 h c i y = sec b x + b 2π |b| I period = I phase shift = − cb 34 34 Example: y = sec(x − π4 ) There is already a coefficient of 1 in front of x. 35 35 35 Example: y = sec(x − π4 ) There is already a coefficient of 1 in front of x. No factoring to do. 35 35 35 Example: y = sec(x − π4 ) There is already a coefficient of 1 in front of x. No factoring to do. 35 2π |b| I period = = 2π I phase shift = − cb = π 4 35 35 Example: y = sec(x − π4 ) 3 2 1 −π π −1 2π 3π −2 −3 y = sec(x) 36 36 36 Example: y = sec(x − π4 ) 3 2 1 −π π −1 2π 3π −2 −3 y = sec(x) y = sec(x − π4 ) 36 36 36 Example: y = 2 sec(x − π4 ) 3 2 1 −π π −1 2π 3π −2 −3 y = sec(x) 37 37 37 Example: y = 2 sec(x − π4 ) 3 2 1 −π π −1 2π 3π −2 −3 y = sec(x) y = sec(x − π4 ) 37 37 37 Example: y = 2 sec(x − π4 ) 3 2 1 −π π −1 2π 3π −2 −3 y = sec(x) y = sec(x − π4 ) y = 2 sec(x − π4 ) 37 37 37 How to graph y = csc(bx + c) 38 38 38 How to graph y = csc(bx + c) Factor b 38 h c i y = csc b x + b 38 38 How to graph y = csc(bx + c) Factor b 38 h c i y = csc b x + b 2π |b| I period = I phase shift = − cb 38 38 Example: y = csc(2x + π) Rewrite y = csc(2x + π) as π y = csc 2 x + 2 39 39 39 Example: y = csc(2x + π) Rewrite y = csc(2x + π) as π y = csc 2 x + 2 39 2π |b| I period = I phase shift = 2π 2 =π − cb = − π2 = 39 39 Example: y = csc(2x + π) 3 2 1 −π π −1 2π 3π −2 −3 y = csc(x) 40 40 40 Example: y = csc(2x + π) 3 2 1 −π π −1 2π 3π −2 −3 y = csc(x) y = csc(2x) 40 40 40 Example: y = csc(2x + π) 3 2 1 −π π −1 2π 3π −2 −3 y = csc(x) y = csc(2x) y = csc(2x + π) 40 40 40 Example: y = 21 csc(2x + π) 3 2 1 −π π −1 2π 3π −2 −3 y = csc(x) 41 41 41 Example: y = 21 csc(2x + π) 3 2 1 −π π −1 2π 3π −2 −3 y = csc(x) 41 y = csc(2x) 41 41 Example: y = 21 csc(2x + π) 3 2 1 −π π −1 2π 3π −2 −3 y = csc(x) 41 y = csc(2x) y = csc(2x + π) 41 41 Example: y = 21 csc(2x + π) 3 2 1 −π π −1 2π 3π −2 −3 y = csc(2x) 41 y = csc(2x + π) 41 y= 1 2 csc(2x + π) 41 More graph transformations 42 42 42 y = | cos(x)| + 2 3 2 1 −π π −1 2π 3π −2 −3 y = cos(x), y = | cos(x)| and y = | cos(x)| + 2 43 43 43 y = | cos(x)| + 2 3 2 1 −π π −1 2π 3π −2 −3 y = cos(x), y = | cos(x)| and y = | cos(x)| + 2 43 43 43 y = | cos(x)| + 2 3 2 1 −π π −1 2π 3π −2 −3 y = cos(x), y = | cos(x)| and y = | cos(x)| + 2 43 43 43 Recall y = 2 sin(x) 3 2 1 −π π −1 2π 3π −2 −3 44 44 44 Recall y = 2 sin(x) 3 2 1 −π π −1 2π 3π −2 −3 44 44 44 What about y = f (x) sin(x)? f (x) is damping factor 45 45 45 What about y = f (x) sin(x)? f (x) is damping factor “damped sine wave” y = f (x) sin(x) 45 45 45 Recall y = 2−x sin(x) 3 2 1 −π π −1 2π 3π −2 −3 In gray are y = ±2−x 46 46 46 Recall y = 2−x sin(x) 3 2 1 −π π −1 2π 3π −2 −3 In gray are y = ±2−x 46 46 46 Recall y = 2−x sin(x) 3 2 1 −π π −1 2π 3π −2 −3 In gray are y = ±2−x 46 46 46 y = cos(x) + sin(x) 3 2 1 −π π −1 2π 3π −2 −3 47 47 47 y = cos(x) + sin(x) 3 2 1 −π π −1 2π 3π −2 −3 47 47 47 y = cos(x) + sin(x) 3 2 1 −π π −1 2π 3π −2 −3 47 47 47 Just for fun: y = 2 cos(x) + .4 sin(5x) + .8 sin(8x) 3 2 1 −π π −1 2π 3π −2 −3 See http://method-behind-the-music.com/mechanics/physics How do we instantly recognize the sounds of various musical instruments? 48 48 48 Just for fun: y = 2 cos(x) + .4 sin(5x) + .8 sin(8x) 3 2 1 −π π −1 2π 3π −2 −3 See http://method-behind-the-music.com/mechanics/physics How do we instantly recognize the sounds of various musical instruments? 48 48 48
© Copyright 2026 Paperzz