NAME:____________________________ Spring 2006 Student Number:______________________ Chemistry 1000 Practice Test #3 INSTRUCTIONS: 1) Please read over the test carefully before beginning. You should have 6 pages of questions, and a formula/periodic table sheet (7 pages total). 2) If your work is not legible, it will be given a mark of zero. 3) Marks will be deducted for improper use of significant figures and for missing or incorrect units. 4) Show your work for all calculations. Answers without supporting calculations will not be given full credit. 5) You may use a calculator. 6) You have 60 minutes to complete this test. 1. Balance the following reaction equations: (a) ____UO2 + __4__HF [2 marks] → ____UF (b) ____Na2SiO3 + __8__HF 2. ____/ 50 marks → 4 + __2__H2O ____H2SiF6 + __2__NaF + __3__H2O Complete the following table. [5 marks] Molecular Formula Name Co(NO3)2·6H2O cobalt(II) nitrate hexahydrate (NH4)3PO3 ammonium phosphite SnF4 tin(IV) fluoride PbSO4 lead(II) sulphate NaClO4 3. or lead(II) sulfate sodium perchlorate The structural formula of glycine is shown below. Name the hybrid orbital set used by each ‘central’ atom. [4 marks] sp3 sp3 H H ..O.. N C C H H .. .. O .. sp3 H sp2 Suggested Approach: 1. Add lone pairs to convert structural formula to Lewis dot structure. 2. Determine shape family for each 'central' atom. 3. Choose hybrid orbital set based on shape family. NAME:____________________________ 4. Student Number:______________________ The structural formula of formaldehyde (CH2O) is shown below. .. .O. [8 marks] H C H (a) Name the hybrid orbital set used by C. (3 atoms bonded + 0 lone pairs ∴ trigonal planar ∴ sp2) sp2 (b) Name the hybrid orbital set used by O. (1 atom bonded + 2 lone pairs ∴ trigonal planar ∴ sp2) sp2 (c) Consider the C–O bond according to valence bond theory. Use the pictures below as skeletons on which to draw the atomic orbitals involved in bonding and the bonding molecular orbitals formed for the C–O bond only. (Choose whichever view will give the clearest picture of the orbitals. Please use a different picture for each molecular orbital – you may draw another copy of a view if necessary.) atomic orbital(s) molecular orbital(s) H O C H C O H H σ sp2 + sp2 O C H H C O H H π p + p (d) top view Label each molecular orbital drawn in part (c) to indicate the type of bond. see σ and π labels in part (c) side view NAME:____________________________ 5. The structural formula of the allyl cation is shown below. Note: (c) H C C C Calculate the average C–C bond order. H Bond Order = (b) H + H (a) Student Number:______________________ [7 marks] H # bonds = 3 = 1.5 # C-C links 2 Draw a molecular orbital diagram for the π bonds only of the allyl cation. Be sure to: (i) show the relative energies of the molecular orbitals, (ii) draw a picture of each molecular orbital, (iii) label each molecular orbital as bonding, nonbonding or antibonding, (iv) include electrons on your diagram. #eπ = #etotal – #eσ = # electrons in Lewis dot structure – 2 (# σ bonds) = [3(4) + 5(1) + (-1)] – 2(7) = 16 – 14 #eπ = 2 π electrons to put on molecular orbital diagram Based on your molecular orbital diagram, would adding two more π electrons change the average C–C bond order? Why or why not? No. The next two electrons go in πnonbonding, and electrons in a nonbonding orbital don’t affect bond order. NAME:____________________________ Student Number:______________________ 6. When burned without proper ventilation, propylene gas (C3H8) reacts with molecular oxygen to produce carbon monoxide and water. (a) Write a balanced chemical equation for this reaction including states of matter. [3 marks] (b) If burning 4.67 g propylene produces 4.67 g of carbon monoxide, calculate the percent yield of this reaction. [5 marks] (a) 2 C3H8(g) + 7 O2(g) (b) nC3H8 = mC3H8 MC3H8 = (4.67 g) . (44.096 g/mol) nC3H8 = 0.106 mol → 6 CO(g) + 8 H2O(g) nCO = nC3H8 × mole ratio = (0.106 mol C3H8) × (6 mol CO) . (2 mol C3H8) nCO = 0.318 mol CO mCO = nCO × MCO = (0.318 mol)(28.010 g/mol) mCO = 8.90 g ***This is the theoretical yield*** % yield = actual yield × 100% theoretical yield = (4.67 g)(100%) (8.90 g) % yield = 52.5 % ***3 significant figures*** NAME:____________________________ Student Number:______________________ 7. In2S3(s) can be converted to elemental indium through a two-step process. In the first step, the In2S3(s) is reacted with oxygen gas to give In2O3(s) and sulfur dioxide gas. In the second step, the In2O3(s) is reacted with solid carbon to give In(s) and carbon dioxide gas. (a) Write a balanced reaction equation for each step. (b) Write a balanced reaction equation for the overall process. (c) Calculate the mass of indium produced if 75.00 kg In2S3 is reacted with 4.75 kg carbon and 30.00 kg oxygen. [7 marks] (a) step 1: 2 In2S3(s) + 9 O2(g) step 2: 2 In2O3(s) + (b) overall: 2 In2S3(s) + 9 O2(g) + 3 C(s) (c) nIn2S3 = mIn2S3 = (75.00 kg)(1000 g/kg) MIn2S3 (325.84 g/mol) nIn2S3 = 230.2 mol n*In2S3 = nIn2S3 = (230.2 mol) 2 2 n*In2S3 = 115.1 mol nO2 = mO2 = (30.00 kg)(1000 g/kg) MO2 (31.9988 g/mol) nO2 = 937.5 mol n*O2 = nO2 = (937.5 mol) 9 9 n*O2 = 104.2 mol nC = mC = (4.75 kg)(1000 g/kg) MC (12.011 g/mol) nC = 395 mol n*C = nC = (395 mol) 3 3 * n C = 132 mol 3 C(s) → → [4 marks] [1 mark] 2 In2O3(s) + 6 SO2(g) 4 In(s) + 3 CO2(g) → 4 In (s) + 6 SO2(g) + 3 CO2(g) lowest n* therefore limiting reactant nIn = nO2 × mole ratio = (937.5 mol O2) × (4 mol In) (9 mol O2) nIn = 416.7 mol In mIn = nIn × MIn = (416.7 mol)(114.82 g/mol) = 4.784 × 104 g × 1 kg . 1000 g mIn = 47.84 kg ***4 significant figures*** NAME:____________________________ Student Number:______________________ 8. Analysis of an unknown molecule shows that it contains 28.79% Ti and 71.21% Se. (a) Find the empirical formula of the unknown molecule. (b) If the molecular formula is the same as the empirical formula, name the unknown molecule. [1 mark] (a) 100 g of unknown molecule contains 28.79 g Ti and 71.21 g Se. nTi = mTi MTi nSe = mSe MSe = = nTi (b) (28.79 g) . (47.88 g/mol) = 0.6013 mol nSe (71.21 g) . (78.96 g/mol) = 0.9018 mol Therefore, nTi : nSe = 0.6013 mol Ti : 0.9018 mol Se 0.6013 0.6013 = 1.000 mol Ti : 1.500 mol Se nTi : nSe = 2.000 mol Ti : 3.000 mol Se Therefore, the empirical formula is Ti2Se3 Ti2Se3 = titanium(III) selenide [3 marks] Some Useful Constants and Formulae Fundamental Constants and Conversion Factors Atomic mass unit 1.6605 × 10-24 g Avogadro's number 6.02214 × 1023 mol–1 Bohr radius 5.29177 × 10-11 m Coulomb constant 8.998 × 109 N·m2·C-2 Electron charge (e) 1.6022 × 10-19 C Electron mass 5.4688 × 10-4 µ 6.626 × 10-34 J·s 1.0072765 µ 1.0086649 µ 1.097 x 107 m-1 2.179 x 10-18 J 2.9979 x 108 m·s-1 Planck's constant Proton mass Neutron mass Rydberg Constant (R) Rydberg unit (Ry) Speed of light in vacuum Formulae v = υλ (often, c = υ λ ) d = m V E = hυ U = m n 2 rn = a 0 n Z F = k λ = h ρ ∆x . ∆ρ > En = -1 Ry 1 (n+e)(n-e) d2 ρ = mv Z2 n2 E = k (n+e)(n-e) d = R 1 - 1 n12 n22 1 h 4π λ 1 - 1 n 22 n12 ∆E = En2 - En1 = Ry . Z 2 Chem 1000 Standard Periodic Table 18 4.0026 1.0079 H He 2 13 14 15 16 17 6.941 9.0122 10.811 12.011 14.0067 15.9994 18.9984 Li Be B C N O F Ne 3 22.9898 4 24.3050 5 26.9815 6 28.0855 7 30.9738 8 32.066 9 35.4527 10 39.948 1 2 20.1797 Na Mg 11 39.0983 12 40.078 3 4 5 6 7 8 9 10 11 12 44.9559 47.88 50.9415 51.9961 54.9380 55.847 58.9332 58.693 63.546 65.39 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 19 85.4678 20 87.62 21 88.9059 22 91.224 23 92.9064 24 95.94 26 101.07 27 102.906 28 106.42 29 107.868 30 112.411 31 114.82 32 118.710 33 121.757 34 127.60 35 126.905 36 131.29 Rb Sr 37 132.905 38 137.327 Cs Ba 55 (223) 56 226.025 Fr 87 Ra Y 39 La-Lu Ac-Lr 88 P S Cl Ar 15 74.9216 16 78.96 17 79.904 18 83.80 Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 41 180.948 42 183.85 43 186.207 44 190.2 45 192.22 46 195.08 47 196.967 48 200.59 49 204.383 50 207.19 51 208.980 52 (210) 53 (210) 54 (222) Hf Ta W Re Os Ir Pt Au 72 (261) 73 (262) 74 (263) 75 (262) 76 (265) 77 (266) 78 (281) 79 (283) Rf Db Sg 105 106 138.906 140.115 140.908 144.24 La Ce Pr Nd 57 227.028 58 232.038 59 231.036 60 238.029 Ac Si 14 72.61 40 178.49 104 89 25 (98) Al 13 69.723 Th 90 Pa 91 U 92 Bh Hs Mt Dt Hg Tl Pb Bi Po At 80 81 82 83 84 85 174.967 Rg 108 109 110 111 (145) 150.36 151.965 157.25 158.925 162.50 164.930 167.26 168.934 173.04 Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 61 237.048 62 (240) 63 (243) 64 (247) 65 (247) 66 (251) 67 (252) 68 (257) 69 (258) 70 (259) 71 (260) 107 Np 93 Pu 94 Am 95 Cm 96 Rn 86 Bk 97 Cf 98 Es 99 Fm 100 Md 101 No 102 Lr 103 Developed by Prof. R. T. Boeré
© Copyright 2026 Paperzz