MATH6501 - Autumn 2016 Solutions to Problem Sheet 5 1. (a) Let u = x2 + 2 ⇒ du = 2x dx. Then Z Z p 1 1 3 2 x x + 2 dx = (u − 2)u 2 du 2 Z 1 1 3 = u 2 − 2u 2 du 2 1 2 5 4 3 = u2 − u2 + C 2 5 3 1 5 2 3 = u2 − u2 + C 5 3 5 2 2 3 1 2 = x +2 2 − x + 2 2 + C. 5 3 (b) Let u = x3 ⇒ du = 3x2 dx, hence Z 2 Z 3 x cos(x ) dx = 1 cos u du 3 1 sin u + C 3 1 = sin (x3 ) + C. 3 = (c) Let u= 1 x ⇒ du = − 1 dx, x2 MATH6501 - Autumn 2016 Z 1 sin x2 Z 1 dx = − sin u du x = cos u + C 1 + C. = cos x (d) Let u = 3x − 7 ⇒ du = 3 dx, Z Z 1 cos (3x − 7) dx = cos u du 3 1 = sin u + C 3 1 = sin (3x − 7) + C. 3 (e) Let u= √ x ⇒ 1 1 du = √ dx = dx 2u 2 x √ Z e x √ dx = x Z eu 2 u du u Z 2eu du = = 2eu + C √ =e x + C. (f) As stated in the question, we will use the following substitution. . . u = ex ⇒ du = ex dx = u dx. MATH6501 - Autumn 2016 Also, note that x) e(x+e x) = ex e(e = ueu , therefore Z x e(x+e ) dx = Z ue Z = u1 u du eu du = eu + C x = e(e ) + C. 2. (a) Start by completing the square. . . Z Z 2 2 dx = dx x2 − 6x + 10 (x − 3)2 + 1 Z 2 = du, 2 u +1 where ⇒ u=x+3 du = dx. Then the denominator of (u2 + a2 ) with a = 1 suggests we should substitute: u = tan θ ⇒ du = sec2 θdθ. MATH6501 - Autumn 2016 This yields Z Z 1 2 du = 2 u2 + 1 Z =2 Z =2 1 tan2 θ +1 sec2 θdθ 1 sec2 θdθ 2 sec θ dθ = 2θ + C = 2 tan−1 u + C = 2 tan−1 (x + 3) + C. Note: This integral can be tackled with just one substitution if you let tan θ = x + 3 ⇒ sec2 θdθ = dx. (b) Start by completing the square: Z Z 1 1 √ p dx = dx 2 −x + 4x − 3 1 − (x − 2)2 Z 1 √ du, = 1 − u2 with u = x − 2 ⇒ du = dx. √ Then the factor of 1 − u2 suggests that we should make a second substitution u = a sin θ with a = 1, i.e. u = sin θ ⇒ du = cos θ dθ, MATH6501 - Autumn 2016 and so we can rewrite the integral as Z Z 1 1 √ p cos θ dθ du = 2 1−u 1 − sin2 θ Z 1 = cos θ dθ cos θ Z = dθ =θ+C = sin−1 u + C = sin−1 (x − 2) + C. (c) Observe that Z Z 2 2 √ p dx dx = 4x2 − 9 (2x)2 − 32 Z 2 q = dx 3 2 2 2 x − 2 Z 1 q = 2 dx, x2 − 23 which contains a factor of So substitute x= 3 cosh θ 2 ⇒ √ x2 − a2 where a = 3/2. dx = 3 sinh θ dθ 2 MATH6501 - Autumn 2016 into the integral to obtain Z Z 2 3 2 √ p sinh θ dθ dx = 2 2 2 4x − 9 (2x) − 3 2 Z 1 3 q = sinh θ dθ 2 2 2 3 3 cosh θ − 2 2 Z 3 1 sinh θ dθ p = 2 3 2 cosh θ − 1 Z 2 sinh θ p dθ, = cosh2 θ − 1 and since cosh2 θ − sinh2 θ ≡ 1, Z Z 2 sinh θ √ dθ dx = 2 sinh θ 4x − 9 Z = dθ =θ+C = cosh−1 2x 3 + C. 3. (a) If one has f (x) = cos x, then we can make the MATH6501 - Autumn 2016 following observation. . . Z Z − sin x tan x dx = − dx cos x Z 0 f (x) =− dx f (x) = ln |f (x)| + C = ln |cos x| + C (b) Using sin2 x + cos2 x ≡ 1 we have Z ⇒ Z 5 sin x dx = Z = sin2 x ≡ 1 − cos2 x, sin4 x sin x dx 2 1 − cos2 x sin xdx. Looking at the rewritten integral, we would like to have a substitution that gives du = ± sin xdx, which suggests we should choose u = cos x ⇒ du = − sin xdx. MATH6501 - Autumn 2016 Then Z Z 2 5 sin x dx = − 1 − u2 du Z = −u2 + 2u2 − 1 du 1 2 = − u5 + u3 − u + C 5 3 2 1 5 = − cos x + cos3 x − cos x + C. 5 3 (c) Note that Z 1 dx = x ln x Z 1 x dx ln x Z 0 f (x) dx, = f (x) for f (x) = ln x. Hence Z 1 dx = ln |f (x)| + C x ln x = ln |ln x| + C 4. To find the expected money made, evaluate Z 3 Z 3 dr 2 dx = 2− dx (x + 1)2 0 dx 0 3 2 = 2x + x+1 0 2 2 = 2·3+ − (2 · 0 + ) 3+1 0+1 = 6.5 − 2 = 4.5, MATH6501 - Autumn 2016 i.e. £4500 for 3000 whisks.
© Copyright 2026 Paperzz