1 Worksheet 12, Math 10560 The partial fraction decomposition of the rational function 2x + 1 (x + 1)2 (x2 + 4)3 is of the form: A Bx + C Cx + D Ex3 + F x2 + Gx + H Ix5 + Jx4 + Kx3 + Lx2 + M x + N + + + 2 + x + 1 (x + 1)2 x +4 (x2 + 4)2 (x2 + 4)3 Ax + B Cx + D + (x + 1)2 (x2 + 4)3 A B Ex + F Cx + D Gx + H + + 2 + 2 + 2 2 2 x + 1 (x + 1) x +4 (x + 4) (x + 4)3 Cx5 + Dx4 + Ex3 + F x2 + Gx + H Ax + B + (x + 1)2 (x2 + 4)3 A B Cx + D Gx + H + + + x + 1 (x + 1)2 x2 + 4 (x2 + 4)3 Solution: The denominator is the product of a repeated linear factor (x + 1)2 and a repeated irreducible quadratic factor (x2 + 4)2 . Our decomposition must be of the form A B Cx + D Ex + F Gx + H + + + + . x + 1 (x + 1)2 x2 + 4 (x2 + 4)2 (x2 + 4)3 2 Which of the following expressions give the partial fraction decomposition of the function f (x) = 4x2 + 3x + 8 . x(x − 2)3 (x2 + 8) A B C D Ex + F + + + + 2 2 3 x x − 2 (x − 2) (x − 2) x +8 A Bx + C Dx + E F x + G Hx + I + + + + 2 2 x x−2 (x − 2) (x − 2)3 x +8 A Bx2 + Cx + D Ex + F + + 2 x (x − 2)3 x +8 A B Cx + D + + 2 x x−2 x +8 A B C D E + + + + 2 2 3 x x − 2 (x − 2) (x − 2) x +8 Solution: Page 2 3 Find Z 2x3 − 2x2 + 1 dx x2 − x Solution: 4 Give the FORM of the partial fraction. Do NOT solve for the coefficients. 3x2 − 9x = x(x − 1)2 (x2 + 1)2 Solution: Page 3 5 Calculate the integral Z dx √ . x+ 3x Solution: Make substitution u = x1/3 . Then u3 = x and with dx = 3u2 du Z Z Z 3udu dx 3 3 3u2 du √ = = ln(u2 + 1) = ln(x2/3 + 1) + C. = 3 2 2 u(u + 1) u +1 2 2 x+ x 6 Evaluate the integral Z 1 (1 − √ 8 x) dx. 0 √ √ Solution: We do this with u-substitution. Let u = 1− x so that x = 1−u and hence x = (1−u)2 . Using this, we see that dx = −2(1 − u)du. Also, the bounds of integration go from x = 0 to u = 1 and from x = 1 to u = 0. Making the substitution gives: Z 0 Z 1 Z 1 √ 8 8 u8 − u9 du −2(1 − u)u du = 2 (1 − x) dx = 1 0 0 1 9 u u10 1 1 1 1 =2 − − −0 =2 = =2 9 10 9 10 90 45 0 Page 4 7 Find Solution: Let u = Z x2 + 3x √ dx. x+4 √ x + 4. then du = 21 (x + 4)−1/2 dx and x = u2 − 4. Hence dx = 2udu and Z x2 + 3x √ dx = 2((u2 − 4)2 + 3(u2 − 4)) du x+4 Z 5u3 u5 = 2 4 − 5u2 + u4 du = 2[4u − + ]+C 3 5 h √ (x + 4)5/2 i 5 3/2 = 2 4 x + 4 − (x + 4) + + C. 3 5 2√ = x + 4 (8 + x + 3x2 ) + C. 15 Z 8 Find Solution: Let u = Z √ x dx. x+1 √ x. then du = 21 (x)−1/2 dx and x = u2 . Hence Z Z = √ x dx. = x+1 Z 2u2 du u2 + 1 2 du = 2u − 2 tan−1 (u) + C +1 √ √ = 2 x − 2 tan−1 ( x + C. 2− u2 Page 5 Z 9 Find √ e x dx Solution: 10 Compute the integral Z 2 dx . + 1) x(x2 Solution: We write A Bx + C 2 = + 2 + 1) x x +1 x(x2 Then grouping by powers of x, we determine x2 : x1 : x0 : A+B =0 C=0 A=2 Hence, A = 2, B = −2, and C = 0. Therefore, R R 2 R 2 dx = dx − x(x2 +1) x 2x dx x2 +1 = ln x2 − ln(x2 + 1) + C Page 6 11 Evaluate the integral Z Solution: 4x2 + 3 dx. x3 + x 4x2 + 3 A Bx + C 4x2 + 3 = = + 2 3 2 x +x x(x + 1) x x +1 Multiplying both sides by x(x2 + 1), we get 4x2 + 3 = A(x2 + 1) + (Bx + C)x = Ax2 + Bx2 + Cx + A Comparing coefficients, we get → A = 3, C = 0, A + B = 4, Hence we have and A = 3, C = 0, B = 1. 4x2 + 3 3 x = + 2 3 x +x x x +1 Z 4x2 + 3 dx = x3 + x Z Z 3 x dx + dx 2 x x +1 Z 1 1 = 3 ln |x| + du 2 u (where u = x2 + 1) == 3 ln |x| + == 3 ln |x| + 1 ln |u| + C 2 1 ln |x2 + 1| + C 2 Page 7 12 Evaluate the integral Z x3 + 4x + 6 dx. x4 + 4x2 Solution: Use a partial fraction decomposition. Factoring the denominator x4 + 4x2 = x2 (x2 + 4) where x2 is a repeated linear factor and x2 + 4 is an irreducible quadratic factor. Therefore the decomposition is of the form x3 + 4x + 6 A B Cx + D = + 2+ 2 2 2 x (x + 4) x x x +4 This leads to the equation: x3 + 4x + 6 = Ax(x2 + 4) + B(x2 + 4) + (Cx + D)x2 = Ax3 + 4Ax + Bx2 + 4B + Cx3 + Dx2 which breaks down into system of equations A+C =1 B+D =0 4A = 4 4B = 6. We solve this to find A = 1, B = 23 , C = 0, and D = − 32 . Therefore Z x3 + 4x + 6 dx = x4 + 4x2 Z Z Z 1 3 1 3 1 dx + dx − dx 2 2 x 2 x 2 x +4 3 3 x = ln |x| − − arctan + C. 2x 4 2 Page 8 Z 13 Evaluate 0 1 2x2 dx (x + 1)(x2 + 1) Solution: 14 Find the integral Z 3x + 1 dx. x3 + x2 Solution: Use partial fraction decomposition 3x + 1 A B C Ax(x + 1) + B(x + 1) + Cx2 3x + 1 = = + + = . x 3 + x2 x2 (x + 1) x x2 x + 1 x2 (x + 1) Therefore 3x + 1 = (A + C)x2 + (A + B)x + B. It follows that A + C = 0, A = 2, and Z 3x + 1 dx = x3 + x2 Z A + B = 3, B = 1, B = 1, C = −2, 2 1 2 1 ( + 2− )dx = 2 ln |x| − − 2 ln |x + 1| + C. x x x+1 x Page 9
© Copyright 2026 Paperzz