Calculus 4.1--4.2 Review Notes 4.1 o Name:________________________________________ Name:________________________________________ Mitchell You do not need to use u substitution if the expression within the integral is written, or can be written, so that each term is in the form ax b (where a and b are rational numbers). EXAMPLES: 3x 8 − x 3 + 7 dx ∫ x5 ∫ (4x − 1) dx 2 o 2x 3 + x 2 − 12x + 9 dx ∫ x+3 2 3 ∫ z 5 − z 3 + 6z dz ∫ (5x − 3)(2x + 5)dx You do not need to use u substitution if the expression within the integral is the derivative of sine, cosine, tangent, secant, cosecant, or cotangent. EXAMPLES: o ∫ sinudu = − cos u + C ∫ cos udu = sinu + C ∫ sec 2 udu = tanu + C ∫ sec u tanudu = sec u + C ∫ csc ucot udu = − csc u + C ∫ csc 2 udu = − cot u + C If the expression in the integral looks similar to the trig integrals above except for the “inside” , then you can set the “inside” of the trig function(s) equal to u. EXAMPLES: ∫ 4 cos( o 1 2 x)dx ∫ cos 4xdx 2 ∫ csc(cos 5x)cot(cos 5x)sin5xdx 5x ∫ x2 − 3 dx sin(6x) ∫ cos (6x) dx 5 ∫ cos (5t)sin(5t)dt 3 x2 x 3 ) tan( 3x )dx dx ∫ (2x 3 + 1)7 x 2 dx ∫ 5x + 7dx ∫ (1 − sin (3t))cos(3t)dt 2 ∫ sin(2x) dx 1 − cos(2x) ∫ cos (5t)sin(5t)dt 3 If there is a tangent to any power and secant squared, set the tangent equal to u (because the derivative of tangent is secant squared). If there there is a cotangent to any power and cosecant squared, set the cotangent equal to u (because the derivative of cotangent is cosecant squared). EXAMPLES: o 3 ∫ sec( If the integral has a sine and cosine, then the one is raised to an exponent should be set equal to u. EXAMPLES: o ∫ cos 3 x 2 If there is a polynomial expression raised to an exponent (other than 2) or the root of a polynomial expression, then you can set the polynomial equal to u. EXAMPLES: o ∫ x cot(x )csc(x )dx ∫ cot 3 (7x)csc 2 (7x)dx If the methods above do not initially work, try rewriting the expression so that one of these methods does work. EXAMPLES: 5 ∫ tan 4x sin 4x dx ∫ sin(2x)sec (2x)dx 5 csc(2x) ∫ sin(2x) dx 1 ∫ sin (5x) dx 2
© Copyright 2026 Paperzz