Comparison of DRIS and critical level approaches for

Naheed Akhter
Comparison of DRIS and critical level approach for
evaluating nutrition status of wheat in District Hyderabad,
Pakistan
To my late mother and father and to my family ABSTRACT
Intensive cropping systems, improper use of fertilizers or no fertilizer application, and
unreliable and poor quality of irrigation water have led to declining soil fertility in the district of
Hyderabad, Pakistan. To date, no comprehensive overview exists on the nutrient status of the
soils in the region and on yield constraints due to mineral nutrient deficiencies or imbalances.
The objectives of this study were to a) determine the nutritional factors limiting productivity of
wheat in Hyderabad, Pakistan, b) compare the DRIS and critical level approach for evaluating
nutrient deficiencies in wheat, and c) identify the most limiting nutrient(s) that should be
applied to increase and stabilize the yield of wheat in the region. Farmers’ fields (181) were
selected on the basis of a survey of wheat-growing areas. Low- and high-yielding areas for two
vegetation seasons (2007-08 and 2008-09) with different crop production management were
selected. Plant sampling of wheat was done for shoot material at GS-29 (tillering stage) and for
leaf tissue at GS-39 (emergence of flag leaf; Zadok et al. 1974). Sample analysis included the
determination of macronutrients (N, P, K) and micronutrients (Zn, Cu, Fe, Mn, and B). For
yield estimates at harvest, data on grains per spike, number of spikelets and thousand-grain
weight were collected. Yield data were divided into low-and high-yielding populations
according to the Cate and Nelson (1971) procedure for partitioning. The mean value and
coefficient of variance were calculated for DRIS norms. The selected DRIS norms were: N/P,
N/K, N/Cu, N/Fe, N/Mn, N/Zn, N/B, P/K, P/Cu, P/Fe, P/Mn, P/Zn, P/B, K/Cu, K/Fe, K/Mn,
K/Zn, K/B, Cu/Fe, Cu/Mn, Cu/Zn, Cu/B, Fe/Mn, Fe/Zn, Fe/B, Mn/Zn, Mn/B and Zn/B. The
DRIS indices were established for N, P, K, Zn, Fe, Cu, and B of the low- and high-yielding
populations. These indices were compared with the developed norms. The interpretation of the
wheat nutrients was done using the nutritional balance index (NBI) approach.
The average index value for N at GS-39 is +47.04, which indicates that N is sufficient
in the leaf tissue. The values of P and K are 58.49 and 21.67, respectively. These positive values
show that N, P and K are sufficient in the leaf tissue, and that the wheat plants do not require
any additional fertilization. The micronutrients are almost in good balance, i.e., neither
sufficient nor deficient except for Fe. The index value of Fe is -93, whereas the index values for
Mn, Zn, Cu, and B are -21.88, +17.77, -1.38 and -28.68, respectively. The NBI is 56.45, which
shows that there is no high nutritional imbalance. The interpretation of the data with respect to
deficiency and adequate and moderate supply shows that all nutrients are adequately supplied
with exception of Zn and B, which show high values. However, the average index values of the
shoot material at GS-29 are different; here the value for N is -54.27, which indicates that N is
deficient at this growth stage. The same applies to P and K. The micronutrient values, however,
are positive. This indicates that these nutrients are not in short supply compared to the
macronutrients. The NBI is 75.23, which shows some nutritional imbalance.
According the results of the critical level approach, the average concentration of N in
the leaf tissue at GS-39 is deficient (which is in contrast to the DRIS evaluation), whereas all
other nutrients are adequate. The average nutrient concentration in the shoot material at GS-29
is similar to that in the leaf at GS 39. The DRIS calculation also indicates that N is in short
supply at the early growth stage, whereas Mn and B are present in high concentrations.
Statistically, the values in the critical level approach are non-significant compared to those of
the DRIS. However, DRIS has an advantage, as the DRIS norms for the study area are similar at
both studied growth stages, which makes the interpretation easier. It has to be stressed, though,
that the DRIS only indicates nutrient supply in relation to the other nutrients. According to the
DRIS evaluation, if the N supply is improved during early development, other nutrients may
become yield limiting, e.g., P and K. The DRIS norms can provide guidelines for the policy
makers in the region regarding recommendations for appropriate fertilizer application.
Vergleich von DRIS und der Methode der kritischen Konzentration
für die Bewertung des Nährstoffstatus von Weizen im Distrikt
Hyderabad, Pakistan
KURZFASSUNG
Intensive Anbausysteme, falscher bzw. kein Einsatz von Düngemitteln sowie unzuverlässige
Bereitstellung und schlechte Qualität des für die Bewässerung eingesetzten Wassers haben zu einer
abnehmenden Bodenfruchtbarkeit im Distrikt Hyderabad, Pakistan, geführt. Es gibt keinen
umfassenden Überblick über den Nährstoffstatus der Böden in der Region oder über
ertragsbegrenzenden Mangel oder Nährstoffungleichgewicht. Die Ziele dieser Studie waren a) die
Nährstoff-Faktoren zu bestimmen, welche die Weizenproduktivität in Hyderabad, Pakistan,
begrenzen, b) die DRIS Methode bzw. die „critical nutrient level Methode“ („CNL“) (kritische
Konzentration) für die Bewertung von Nährstoffmangel bei Weizen zu vergleichen, und c) die am
meisten begrenzenden Nährstoffe zu bestimmen, welche die Weizenerträge in der Region am
meisten limitieren. 181 Praxisschläge wurden für eine Bestandsaufnahme in Weizenanbaugebieten
ausgewählt. Die Schläge wurden unterteilt in Hoch- bzw. Niedrigertragsflächen für zwei
Anbauperioden (2007-08 und 2008-09). Sprossproben wurden zum Wachstumsstadium GS-29
(Bestockung) und vom Blattgewebe zum Wachstumsstadium GS-39 (Erscheinen des Fahnenblatts;
nach Zadoks et al. 1975) genommen. Die Proben wurden auf Makronährstoffe (N, P, K) und
Mikronährstoffe (Zn, Cu, Fe, Mn, B) analysiert. Für die Ertragsbestimmung wurden zur Ernte die
Anzahl an Körnern pro Ähre, die Anzahl der Ährchen und das 1000-Körnergewicht bestimmt. Die
Ertragsdaten wurden vwerendet, um die Gesamtpopulation in Hochertrags- bzw.
Niedrigertragspopulationen zu unterteilen nach der Methode von Cate und Nelson (1971). Mittelwert
und Variationskoeffizient wurden für die DRIS-Normen berechnet. Die ausgewählten DRIS Normen
waren: N/P, N/K, N/Cu, N/Fe, N/Mn, N/Zn, N/B, P/K, P/Cu, P/Fe, P/Mn, P/Zn, P/B, K/Cu, K/Fe,
K/Mn, K/Zn, K/B, Cu/Fe, Cu/Mn, Cu/Zn, Cu/B, Fe/Mn, Fe/Zn, Fe/B, Mn/Zn, Mn/B und Zn/B. Die
DRIS-Indizes wurden für N, P, K, Zn, Fe, Cu, und B für beide Populationen berechnet und mit den
DRIS-Normen verglichen. Die Interpretation der Weizennährstoffe wurde auf der Grundlage des
nutritional balance index (NBI) durchgeführt.
Der durchschnittliche Index für N bei GS-39 ist +47.04; dies deutet daraufhin, dass N im
Blattgewebe zu diesem Zeitpunkt ausreichend vorhanden ist. Die P- bzw. K-Werte betrugen 58.49
bzw. 21.67. Daraus folgt, dass N, P und K im Blattgewebe ausreichend vorhanden sind, und dass die
Weizenpflanzen keine zusätzlichen Düngemittelgaben benötigen. Die Mikronährstoffe sind fast
ausgewogen vorhandenmit Ausnahme von Fe. Der Index für Fe ist -93, während die Werte Mn, Zn,
Cu, bzw. B -21.88, +17.77, -1.38 bzw. -28.68 betragen. Der NBI beträgt 56.45; dies weist auf eine
noch weitgehend ausgewogene Nährstoffversorgung zum Zeitpunkt der Bestockunghin. Die
Interpretation der Daten nach der CNL Methode weist auf hohe Zn und B Werte hin. Jedoch
unterscheiden sich die durchschnittlichen Indizes zum zweiten Probenahmezeitpunkt; hier beträgt
der N-Wert -54.27, das heißt, dass N in diesem Wachstumsstadium nicht mehr ausreichend
vorhanden ist, ebenso P und K. Die Werte der Mikronährstoffe sind jedoch positiv. Dies deutet
darauf hin, dass diese Nährstoffe im Verhältnis zur Makronährstoffversorgung ausreichend
vorhanden sind. Der NBI beträgt 75.23, was auf ein Nährstoffungleichgewicht hindeutet.
Die Ergebnisse der CNL Analyse ergaben (im Gegensatz zur DRIS Evaluierung), dass
die durchschnittliche N-Konzentration im Blattgewebe zum Zeitpunkt GS-39 nicht ausreichend war,
während alle anderen Nährstoffe ausreichend vorhanden sind. Die durchschnittliche
Nährstoffkonzentration im Spross bei GS-29 ähnelt der des Blattgewebes zum Zeitpunkt GS-39. Die
DRIS-Berechnung zeigt außerdem, dass N zum diesem Zeitpunkt nicht ausreichend vorhanden ist,
während die Mn- und B-Konzentrationen hoch sind. Statistisch gesehen, sind die CNL Werte
verglichen mit den DRIS-Werten nicht signifikant voneinander unterschieden. Jedoch hat der DRISAnsatz den Vorteil, dass die DRIS-Normen im zu beiden untersuchten Wachstumsstadien ähnlich
sind. Dies erleichtert die Interpretation. Jedoch muss betont werden, dass das DRIS lediglich die
Nährstoffversorgung im Verhältnis zu anderen Nährstoffen aufzeigt. Auf der Grundlage der DRISAuswertungen kann angenommen werden, dass die Verbesserung der N-Versorgungzu GS-39 zu
einer Limitierung des Ertrags durch andere Nährstoffe führen könnte, wie zum Beispiel P und K.
Die DRIS-Normen können Richtlinien für die politischen Entscheidungsträger in der Region
hinsichtlich sachgerechter Düngung zur Verfügung stellen.
TABLE OF CONTENTS
1 GENERAL INTRODUCTION ......................................................................... 2 1.1 Food production for increasing population ....................................................... 2 1.2 Worldwide role of fertilizer use in nutrient management ................................. 7 1.3 1.3.1 1.3.2 Approaches to assess the nutritional status of plant tissues ............................ 10 Current status of tissue analysis ...................................................................... 10 Plant interpretation methods ............................................................................ 10 1.4 1.4.1 1.4.2 1.4.3 Problem statement ........................................................................................... 18 Wheat production in Pakistan .......................................................................... 19 Wheat production in the Sindh province of Pakistan ...................................... 21 Mineral nutrient management through inorganic fertilizer use for wheat in
Pakistan
.................................................................................................. 23 1.5 Objectives of the study .................................................................................... 28 1.6 Working hypotheses ........................................................................................ 28 2 STUDY AREA ................................................................................................ 29 2.1 Location ........................................................................................................... 29 2.2 Meteorological data ......................................................................................... 30 2.3 Agro-ecological zones (AEZs) in Pakistan ..................................................... 30 2.4 Cropping pattern .............................................................................................. 32 2.5 Irrigation sources ............................................................................................. 32 2.6 Soils ................................................................................................................. 32 3 METHODS ...................................................................................................... 36 3.1 Site selection .................................................................................................... 36 3.2 Sampling strategy ............................................................................................ 37 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 Plant analysis ................................................................................................... 38 Drying of wheat plant material ........................................................................ 38 Digestion of Plant material .............................................................................. 39 Nitrogen analysis by the Kjeldahl digestion method ....................................... 39 Phosphorous determination by molybdenum blue color method .................... 40 Potassium determination ................................................................................. 40 Boron determination by miniaturized curcumin method................................. 41 Micronutrient (Zn, Fe, Cu and Mn) determination.......................................... 41 3.4 Yield calculation .............................................................................................. 42 3.5 Diagnosis and Recommendation Integrated System (DRIS) .......................... 42 3.5.1 3.5.2 Establishment of HYDERABAD DRIS norms for wheat crop....................... 42 Partitioning data into high- and low-yielding sub-populations ....................... 43 3.5.3 Partitioning the data into low- and high-yielding populations ........................ 45 3.5.4 Function value estimates ................................................................................. 45 3.5.5 Coefficient of variance .................................................................................... 47 3.5.6 Index value estimates ...................................................................................... 47 3.5.6.1 Interpretation of index values .......................................................................... 48 4 RESULTS AND DISCUSSION...................................................................... 50 4.1 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 Development of DRIS norms for wheat for Hyderabad district of Pakistan ... 50 Dividing the dataset into high-yielding and low-yielding populations ........... 50 Descriptive statistics for the nutrients in high-yielding and low-yielding
population
.................................................................................................. 51 DRIS norms for Hyderabad district of Pakistan .............................................. 53 Developing the ratio for the high-yielding and low-yielding population ........ 53 Norms for shoot material and leaf tissue ......................................................... 56 4.2 4.2.1 DRIS to evaluate the nutritional status of wheat in Hyderabad ...................... 59 Function values ................................................................................................ 59 4.2.2 Index values for interpretation of the nutrient concentrations in leaf tissue and
shoot material .................................................................................................. 59 4.3 Comparing the critical level approach and the DRIS ...................................... 61 5 CONCLUSIONS ............................................................................................. 63 6 REFERENCES ................................................................................................ 65 7 APPENDICES ................................................................................................. 74 Acronyms/Abbreviations
% DM
Dry-matter Percentage
AAS
Atomic Absorption Spectrophotometer
AEZs
Agro-Ecological Zones
ANOVA
Analysis of Variance
APO
Asian Productivity Organization
CDL
Critical Deficient Level
CIMMYT
Centro Internacional de Mejoramiento de Maíz y Trigo
CLN
Critical Leaf Nutrient level
CV
Coefficient of Variation
CVA
Critical Value Approach
DAP
Di- ammonium Phosphate
DRIS
Diagnosis and Recommendation Integrated System
FAO
Food and Agriculture Organization
FBS
Federal Bureau of Statistics
FFBL
Fauji Fertilizer Bin Qasim Limited
FFC
Fauji Fertilizer Company
GDP
Gross Domestic Production
GIS
Geographic Information System
GPS
Global Positioning System
GS
Growth Stage
IFA
International Fertilizer Agency
NARC
National Agricultural Center
NBI
Nutritional Balance Index
NDFC
National Development Finance Corporation
NP
Nitrophos
NSR
Nutrient Sufficiency Range
PARC
Pakistan Agriculture Research Council
PDS
Pakistan Demographic Survey
PTFE
Polytetrafluoroethylene
SD
Standard Deviation
Ton ha−1
Tons per Hectare
UNDP
United Nations Population Division
USDA
United States Department of Agriculture
VDLUFA
Verband Deutscher Landwirtschaftlicher Untersuchungs- und
Forschungsanstalten
General introduction
1
GENERAL INTRODUCTION
1.1
Food production for increasing population
According to the United Nations Population Division, World Population Prospects, the
world’s population increased from 2.3 billion in 1965 to 6.8 billion in 2008. The
population will further grow to 9 billion by year 2050 (UN’s Population Division,
World Population Prospects: The 2008 Revision). World food projection models show
that to meet the food demand of the global population in 2020, annual cereal production
needs to increase by 40 %, which would then be nearly 2.5 billion tons (Rosegrant et al.,
1999, 2001). Dyson (1999) estimated that the total world cereal production needs to rise
to 2.7 billion tons whereas Wild (2003) modeled 4 billion tons by 2025 to match food
requirements of the world population. Of this increase in demand, 85 % has to come
from the developing countries. It is predicted (e.g., Byrnes and Bumb, 1998) that most
of the anticipated increase in world population will occur in developing countries. Thus,
agricultural production in the developing countries needs to be intensified. However,
these regions are already suffering from serious problems related to food production,
access to food, water availability, malnutrition, and soil degradation (Bos et al., 2005).
Although the grain stock is never able to meet the demand of the growing
population, historically the difference between grain production and the consumption is
almost zero (U.S. Department of Agriculture, Production Supply and Distribution:,
(Figure 1.1).
2
General introduction
2.500
Million Tons
2.000
1.500
1.000
Production
Consumption
500
0
1960
Figure 1.1
1970
1980
1990
Year
2000
2010
2020
World grain production and consumption, 1960-2009
Source: U.S. Department of Agriculture, Production Supply and
Distribution, electronic database at www.fas.usda.gov/psdonline, updated
10 July 2009.
This department further reported the time that the grain stock can meet the
demand of the population dropped from 130 days in 1986 to 77 days in 2009. The grain
stock was 61 days in 2006 which has improved in 2009 to 77 days but still lies below
Days
the long-term average (Figure 1.2).
140
120
100
80
60
40
20
0
1960
1970
1980
1990
2000
2010
Year
Figure 1.2
World grain stocks as days of consumption, 1960-2009
Source: U.S. Department of Agriculture, Production, Supply and
Distribution, electronic database, at www.fas.usda.gov/psdonline,
updated 10 July 2009
3
General introduction
In the absence of an available stock and to meet the challenges of overall food
security, one option is to increase the world`s existing irrigated area.. Although this
area increased from 94 million ha in 1950 to 287 million ha in 2007, during the last 10
years, the rated expansion of the irrigated area actually decreased by 6 % (Figure 1.3)
due to environmental issues, urbanization and increasing water scarcity. In addition,
salinization of many irrigated soils reduces the availability of productive land.
Million Hectares
350
300
250
200
150
100
50
0
1950
1970
1990
2010
Year
Figure 1.3
World irrigated area, 1950-2007
Source: 1950-60 data compiled by Lester R. Brown for "Eradicating Hunger: A
Growing Challenge," in World watch Institute, State of the World 2001 (New
York: W.W. Norton and Company, 2001), pp. 52-53; 1961-2007 data from
U.N. Food and Agriculture Organization, Resource STAT, electronic database at
http://faostat.fao.org/site/405/default.aspx, updated April 2009; population from
U.N. Population Division, World Population Prospects: The 2008 Revision
Population Database, at esa.un.org/unpp, updated 11 March 2009.
This increase in irrigated area is small compared to the recent growth in
population. In 1979, the irrigated area per thousand people was 47.6 ha, which reduced
to 37.2 ha in 2007 (Figure 1.4). The downward trend is an alarming situation.
4
General introduction
49
Hectares
47
45
43
41
39
37
35
1950
1970
1990
2010
Year
Figure 1.4
World irrigated area per thousand people, 1950-2007
Source: 1950-60 data compiled by Lester R. Brown for "Eradicating Hunger: A
Growing Challenge," in World watch Institute, State of the World 2001 (New
York: W.W. Norton and Company, 2001), pp. 52-53; 1961-2007 data from
U.N. Food and Agriculture Organization, Resource STAT, electronic database
at http://faostat.fao.org/site/405/default.aspx, updated April 2009; population
from U.N. Population Division, World Population Prospects: The 2008
Revision Population Database, at esa.un.org/unpp, updated 11 March 2009.
In addition, the grain production area per person decreased by more than 50 %
compared to 1950.The trend of decline is less pronounced in Australia but tends to be
quite high in most other countries (Table 1.1).
Table 1.1
Grain- Harvested areas per person in selected countries and the world in
1950 and 2000, with projection to 2050.
Area (ha per person)
Country
1950
2000
2050
Australia
0.73
0.90
0.60
Canada
1.42
0.59
0.41
United States
0.51
0.20
0.14
Nigeria
0.26
0.14
0.06
India
0.22
0.10
0.06
China
0.17
0.07
0.06
World Average
0.23
0.11
0.07
Source: Grain area for 1950 from U.S. Department of Agriculture (USDA), Production, Supply, and
Distribution (PS&D), Country Reports, October 1990; 2000 data from USDA, PS&D, electronic
database, updated 10 July 2009; population data and projections from U.N. Population
Division, World Population Prospects: The 2008 Revision Population Database, electronic
database, at http://esa.un.org/unpp, updated 11 March 2009.
5
General introduction
In short, the world population is increasing whereas the area for grain
production per person is decreasing. Due to ecological constraints and lack of land
resources, this area cannot be increased without severe ecological damage (e.g., slashing
remaining rainforests). So the only solution to cope with this situation is to increase
grain production per unit available area.
The number of undernourished people in the world increased from 800 million
in 1999 (Pinstrup-Andersen et al., 1999) to 1020 million people in 2009 (FAO, 2009).
Of this number, 98.5 % live in developing countries of which 65 % are located in Asia
and on the Pacific islands (Figure 1.5).
Developed Countries; 15
Near East and North Africa; 42
Latin America and the Caribbean; 53
Sub‐Saharan Africa; 265
Asia and the Pacific; 642
Figure1.5
Undernourishment in the world and in selected regions (in %), 1996
In South Asia, children under the age of 5 years are particularly at risk.
Worldwide, 30 % of the children are underweight, and low birth weight is becoming a
major factor in child malnutrition and premature death (Pinstrup-Andersen, 1999;
UNDP, 1999). Micronutrient deficiencies, e.g., in iron (Fe), zinc (Zn) and iodine, are
critical in the developing countries, and result in a reduction of physical growth, reduce
the function of the immune system, and enhance maternal mortality (Welch and
Graham, 2000). Approximately 3 billion people in the world suffer from Fe and Zn
6
General introduction
deficiencies (Graham et al., 2001). These deficiencies need to be met preferably by
micronutrient enrichment in crops.
Thus further significant increases in demand for food are to be expected even
if population growth slows down, and this food has to be produced under the limited
land resources through intensified cropping.
For a sustainable soil management, inputs and outputs need to be balanced;
otherwise increases in crop production will lead to continuous depletion of nutrients
from fertile and low fertile soils.
1.2
Worldwide role of fertilizer use in nutrient management
Soil productivity is decreasing in most of the irrigated areas of the world due to soil
degradation and nutrient mining through intensive and high yielding crops. Almost
40 % of the agricultural land is affected by soil degradation (Reynolds et al., 2007). The
factors affecting soil fertility include soil erosion, nutrient depletion, water scarcity,
salinization, and low organic matter contents. Among all these factors, reduction in soil
productivity due to nutrient mining has threatened the food security in many parts of the
world (Li et al., 2007).
The required nutrients may come from various sources, such as the
atmosphere, soil, irrigation water, mineral fertilizers, green manures and bio-fertilizers.
In order to supplement plant nutrients in less fertile soils, the use of mineral fertilizers is
common. Improvement of the nutritional status of plants by applying mineral fertilizers
and maintaining soil fertility has been a critical step in doubling the food production
since the beginning of the ‘Green Revolution’ (Loneragan, 1997). In 1950, the global
fertilizer consumption was 14 million tons, which increased to 160 million tons in 2008
(IFA, 2009). The average world grain yield also increased from 1.06 t ha-1 in 1950 to
3.15 t ha-1 in 2009 (Figure 1.6; USDA, 2009).
Although nutrient recycling through organic substances is one of the options,
mineral fertilizers will be of central importance for meeting future food demands.
However, recent trends indicate that the growth rate (ton ha−1) in crop production has
begun to decline in the last 10 years, and possibly cannot keep pace with the projected
increase in global food demand in the coming decades (Figure 1.6; Rosegrant et al.,
2001). This situation is especially dramatic in many developing countries in Africa and
7
General introduction
Asia where population pressure on agriculture is already very high. For example, in
Sub-Saharan Africa the annual growth of total cereal production dropped from 1.9 % in
the 1970s to 0.66 % in the 1990s. These decreases were attributed to falling cereal
prices, decreases in use of fertilizers, growing water shortages and impairments in soil
fertility and management practices (Gruhn et al., 2000; Pinstrup-Andersen et al., 1999;
Rosegrant et al., 2001). This trend must be reversed; otherwise very serious food
deficits will occur resulting in a significant threat to human nutrition and health.
3,50
Tons ha-1
3,00
2,50
2,00
Average Grain Yield
1,50
1,00
0,50
0,00
1950
Figure 1.6
1960
1970
1980
Year
1990
2000
2010
Average worldwide grain yields, 1950-2008
White and Zasoski (1998) reported that a soil is considered deficient in a given nutrient
when addition of that nutrient as fertilizer produces increased growth, even though the
quantity of added nutrients may be small compared with the total amount in the soil.
Nutrient deficiencies can be the result of inherently low nutrient status of the soils, low
mobility or poor solubility of the given chemical composition of the nutrient. The
solubility and mobility of nutrients is a result of number of factors such as irrigation
amounts, adsorption capacity of the soil, soil pH (Jungk 2001, Shuman 1991), the
chemical composition of nutrients (Crowley and Rengel 1999) and plant-induced
changes in the rhizosphere)(Rengel and Marschner 2005). Meynard (1984) reported that
the supply and availability of nutrients is an important factor that can influence the yield
potential of field crops. Results of this experiment showed that the growth rate in wheat
is directly related to the rate of fertilizer application. But there is no linear relationship,
8
General introduction
Asia where population pressure on agriculture is already very high. For example, in
Sub-Saharan Africa the annual growth of total cereal production dropped from 1.9 % in
the 1970s to 0.66 % in the 1990s. These decreases were attributed to falling cereal
prices, decreases in use of fertilizers, growing water shortages and impairments in soil
fertility and management practices (Gruhn et al., 2000; Pinstrup-Andersen et al., 1999;
Rosegrant et al., 2001). This trend must be reversed; otherwise very serious food
deficits will occur resulting in a significant threat to human nutrition and health.
3,50
Tons ha-1
3,00
2,50
2,00
Average Grain Yield
1,50
1,00
0,50
0,00
1950
Figure 1.6
1960
1970
1980
Year
1990
2000
2010
Average worldwide grain yields, 1950-2008
White and Zasoski (1998) reported that a soil is considered deficient in a given nutrient
when addition of that nutrient as fertilizer produces increased growth, even though the
quantity of added nutrients may be small compared with the total amount in the soil.
Nutrient deficiencies can be the result of inherently low nutrient status of the soils, low
mobility or poor solubility of the given chemical composition of the nutrient. The
solubility and mobility of nutrients is a result of number of factors such as irrigation
amounts, adsorption capacity of the soil, soil pH (Jungk 2001, Shuman 1991), the
chemical composition of nutrients (Crowley and Rengel 1999) and plant-induced
changes in the rhizosphere)(Rengel and Marschner 2005). Meynard (1984) reported that
the supply and availability of nutrients is an important factor that can influence the yield
potential of field crops. Results of this experiment showed that the growth rate in wheat
is directly related to the rate of fertilizer application. But there is no linear relationship,
8
General introduction
i.e., there is a saturation point and excess of fertilizer application may cause toxic
effects. The balance between the quantity and appropriate fertilizer is also important.
For example, Shuman (1988) and Kaushik et al. (1993) reported that different
fertilization treatments can disturb the overall balance of the soil macronutrients and
their available concentrations, which in turn affects soil micronutrient level. They found
that excessive application of phosphorous (P) inhibited the transfer of soil Zn and
resulted in a shortage of Zn in maize, due to possible precipitation of Zn3(PO4)2.
However, when P was applied at the optimum level, it significantly reduced the content
of carbonate-, organic- and Fe oxide-bound soil Zn, and increased the content of
exchangeable and amorphous iron oxide-bound soil Zn, similar to soil manganese (Mn).
Similar effects were found by Agbenin (1998) and Bierman and Rosen (1994). They
reported that the application of appropriate rates of nitrogen (N), phosphorus (P) and
potassium (K) fertilizers can increase soil copper (Cu), Zn, and Mn availability and the
concentrations of Cu, Zn, Fe and Mn in wheat. Larson (1964) concluded that combined
application of nitrophos (NP) at a ratio of 2:1 or 3:1 increase each other’s utilization
efficiency. Hagras (1987) also reported an increased grain yield with the application of
NP. Shafi (1971) obtained best results when N and P were applied in a 2:1 ratio (168 kg
N + 81 kg P ha-1). Drinkwater and Snapp (2007), and Kayser and Isselstein (2005)
reported that plentiful amounts of fertilizers (especially in developing countries) result
in excessive inorganic nutrients in the system that cause disturbance in normal
biogeochemical cycles of nutrients.
The micronutrients Cu, Zn, Fe and Mn in grain directly affect food quality and
are important for human and livestock nutrition. Deficiency of micronutrients will result
in anemia, decreased immunity, slow growth, and nyctalopia. However, little attention
has been paid to micronutrients in response to different fertilization practices, and how
soil fertility impacts on the uptake of micronutrients from soil, and their transfer from
tissues to grains. Borlaug (1983) reported that global cereal grain yields have increased
manifold since the green revolution, but global food systems are not providing sufficient
micronutrients to consumers (Welch, 2002). Over 40% of the world’s population is
currently micronutrient deficient, resulting in numerous health problems, inflated
economic costs borne by society, and learning disabilities for children (Sanchez and
Swaminathan, 2005). Though a diversification of diets to include micronutrient-rich
9
General introduction
traditional foods is a preferred solution to these challenges, staple cereal grains are the
primary dietary source of micronutrients for that part of the world’s population that has
no access to varied food crops (Bouis, 2003).
1.3
Approaches to assess the nutritional status of plant tissues
1.3.1
Current status of tissue analysis
A pre-requisite to properly meet the nutrient demands in crops to optimize production
and eventually fortify the products with micronutrients is the proper assessment of the
nutrient status of a crop plant (Haase and Rose, 1995). Plant analysis is thus important
to learn about the nutritional needs of crops, but requires careful interpretation when
using the most common critical level approach (i.e., the tissue level of a nutrient at
which the crop is most productive, Rosell et al., 1992). Another approach is the socalled “diagnosis and recommendation integrated system” (DRIS) (Beaufils, 1973).
These approaches are tools to estimate the nutrient supply of a plant that can be then
considered for fertilizer application rates.
Although to determine the amount of fertilizer needed by tissue analysis is a
diagnostic tool to assess the nutrient status of a plant (Timmer and Stone, 1978), for
calculating fertilizer rates, information about the productivity and nutrient export from
the soil in addition to information about eventually fixation of nutrients in the soil is
required.
1.3.2
Plant interpretation methods
The use of plant analyses for determining the nutrient status of plants is of paramount
importance. Since many decades, a great deal of work has been done on the use of
chemical plant analyses for diagnosing the nutrient requirements of plants. The
interpretation, which sometimes is also referred to as evaluation of the analytical results,
however, is of decisive importance. There are still difficulties in the interpretation of
plant analyses despite the fact that relationships have been revealed between absorbed
nutrients and growth.
Relationships between maximum yield and concentrations of essential
elements have been assessed by many researchers (Steenbjerg, 1951; Prevot and
10
General introduction
Ollagnier, 1956; Smith, 1962; Ulrich and Hills, 1967; Brow, 1970; Dow and Roberts,
1982; Reuter et al., 1997). Some of these approaches are summarized below.
Steenbjerg (1951) proposed two different methods for the interpretation of
chemical plant analyses. Method-1 illustrates the relationship between the increases in
yield after application of a certain amount of plant nutrients and the nutrient
concentration in a certain plant tissue (Figure 1.7).
Figure 1.7
Relationship between increases in yield and nutrient content after the
application of plant nutrients.
Note: Original graph taken directly from Steenbjerg (1951), where sign
“+” does not mean anything. X-axis scale is from right to left.
With this method, standard values for the plant nutrients in the crop were
found. During the development of these standard values (limiting values) for three level
(high, medium and low content), developmental stages were defined at which the
samples have to be taken.
In Method 2 for nutrient level interpretation, relationships between dry matter
(DM; total yield) and the percentage of the nutrient content of the dry matter are plotted,
(Figure 1.8), and it can be seen that with an increase in yield, the nutrient content (% in
DM) rises (full line).
11
General introduction
Figure 1.8
Relationship between dry matter (total yield) and percentage of nutrient
content.
Note: Original graph taken directly from Steenbjerg (1951). X-axis scale
is from right to left.
The graph indicates severe deficiency in the particular plant nutrient concerned
where the dry matter production is lowest. This point of inflexion means that increasing
relative nutrient contents are found with an increase in dry matter production. Prevot
and Ollagnier (1956) observed an association between plant growth and nutrient
concentration of a selected plant part (Figure 1.9). The objective was to develop a
reliable interpretation for a number of crops, especially during the initial stages of
growth, and whether nutrient concentrations are near or at toxic level. As the response
curve showed a fairly large slope especially in the deficiency range, Ulrich (1961) later
developed a new approach.
12
General introduction
Figure 1.9
Relation of mineral concentration in leaf tissue to growth (Prevot and
Ollagnier, 1956).
Source: http://www.sugarcanecrops.com/agronomic_practices/
fertigation/
Ulrich (1961) presented a response curve in which the slope of the curve in the
deficiency range was very small (Figure 1.10). Later this curve was used for plant
analysis.
Figure 1.10
Relation of nutrients of plant tissue to growth. (Ulrich, 1961)
Source:http://www.sesl.com.au/fertileminds/200711/Plant%20analysis%
20for%20turf%20species.php
13
General introduction
The range between deficiency and the critical concentration is very small. However, for
some elements and plants, this small change in concentration needs to be adequately
defined. Later, one suggested solution was to determine the total amount of a nutrient
per plant, thus minimizing the dilution effect. However, this technique is not applicable
when dry-matter differences are very large for reasons not related to the nutrient under
investigation. The large differences in dry matter accumulation are due to a deficiency
of a particular nutrient which is growth limiting.
Both figures show the general relationship between nutrient concentration in
plant tissue and dry-matter yield, and also define the point where toxicity occurs. Brady
and Wei (2004) and Havlin et al. (2004) revealed that the element absorbed in excessive
quantities can reduce plant yield directly through toxicity or indirectly by reducing the
concentration of other nutrients to below their critical level or reducing their activity in
the physiologically relevant processes resp. cell organelles.
Many researchers have based plant analysis interpretations on "critical" or
"standard values." A critical value in the literature is defined as that concentration below
which deficiency of the specific nutrient occurs. Critical values of several plants have
been widely published despite the fact that this critical level may not be applicable at
different growth stages.
The critical level approach is one of the first methods proposed by Ulrich and
Hills (1967) for assessing the nutrient status of a plant by foliar analysis. It is the most
widely used diagnostic method. Before use of this approach, single concentration values
or critical or standard concentrations were used (Smith, 1962). But in order to interpret
plant analysis results for diagnostic purposes, the full concentration range from
deficiency to excess is needed (Benton, 1993). Critical level is successful in identifying
the deficient and sufficient nutrient concentrations for a variety of plant and tree species.
The critical level is in that portion of curve where plant-nutrient concentration changes
from deficient to adequate; therefore, the critical nutrient concentration (CNC) is the
level of a nutrient below which crop yield, quality, or performance is unsatisfactory.
However, considerable variation exists in the transition zone between deficient and
adequate nutrient concentrations, which makes it difficult to determine actual critical
ranges. Consequently, it is more reliable to use a critical nutrient range that is defined as
that range of nutrient concentration at a specified growth stage above which the crop is
14
General introduction
amply supplied with nutrients and below which the crop is deficient in specific nutrients
(Kelling et al., 2000; Tisdale et al., 2002; Brady and Wei, 2004; Havlin et al., 2004;
Rashid, 2005).
In an interpretation concept developed by Okhi (1987), the critical nutrient
level is that nutrient concentration level at which a 10% reduction in yield occurs; this
level is also defined as the critical deficient level (CDL).
The adequate nutrient concentration has been defined in several ways. For
example, Fageria and Baligar (2005) defined it as 1) the concentration that is just
deficient for maximum growth, 2) the point where the growth is 10% less than the
maximum, 3) the concentration where plant growth begins to decrease, and 4) the
lowest amount of the element in the plant accompanying the highest yield.
Critical nutrient level have been defined for a variety of crops: sugar beet
(Ulrich 1961), corn, soybean and alfalfa (Jones 1967), pecan (Sparks 1978), flowers and
ornamental plants (Criley and Carlson 1970, Mastalerz 1977), deciduous trees, fruits
and nuts (Faust 1980) and for several agronomical crops (Sedberry 1987).
The diagnosis and recommendation integrated system (DRIS) is a
comprehensive diagnostic approach that considers the nutrient balance instead of
concentrations alone. Unlike the critical level approach, this approach provides an
interpretation of plant nutrients irrespective of their age or tissue origin. The advantage
is that nutrient ratios (or products) change less over development then its
concentrations. This approach was first developed by Beaufils (1971) and was applied
to rubber trees in Vietnam. Later, DRIS went through several phases of improvement
(e.g., Jones and Bowen, 1981; Walworth and Sumner, 1987). DRIS compares elemental
ratio indices of elements with the established norms from an optimum high-yielding
population. Walworth et al. (1986) reported that for determining DRIS norms there
should be several thousand entries, which are randomly selected. Benton (1993)
reported that 10 % of the total samples should be selected for the high yielding group.
Further, the DRIS ranks the nutrients according to the degree of limitation (or excess),
thus emphasizing the importance of balanced crop nutrition (Benton, 1993).
International norms for the DRIS have been obtained by several authors (Sumner, 1981;
Beverly, 1993), but some researchers have suggested that norms calculated from a local
data base may improve DRIS diagnosis (Dara et al., 1992).
15
General introduction
Beaufils and Sumner (1977) studied the effect of the time of sampling on the
diagnosis of the N, P, K, Ca, and Mg requirements of sugarcane by the DRIS approach.
They used a NPK+lime factorial experiment for testing both soil and leaf norms for
sugarcane obtained by DRIS (Beaufils, 1973). The results of their experiments show
that the developed norms could be validly used in the diagnosis of the N, P, K, Ca and
Mg requirements of sugarcane at the four sampling times. Further, they reported that the
diagnoses by the DRIS approach have the advantage over the threshold value approach
in that they can be made over a wide range of ages of sampled material.
Hanson (1981) conducted an experiment on DRIS evaluation of the N, P, and
K status for soybeans in Brazil. He evaluated the DRIS method utilizing 3 datasets of
foliar analyses for N, P, and K. The results of their experiments show that the DRIS
method proved useful as an analytical tool to diagnose the soybean response to P.
Gregoire and Fisherb (2004) investigated the relative benefits of different
approaches for diagnosing nutrient deficiencies from a dataset of loblolly pine (Pinus
taeda L.). They compared the vector analysis, DRIS and critical level approaches for
identifying deficiencies in N and P by means of foliar analysis in 60 managed stands in
southeast Texas. The results of their study reveal that the diagnostic efficacies differed
in predicting the response to fertilization, and no method alone was accurate enough for
precisely predicting the response across soil groups. Further, they reported that the three
methods of interpretation have their advantages and work best when used together.
However, it is vital to understand the limitations of foliar diagnosis regardless of the
accuracy of the diagnostic technique employed.
Soltanpour et al. (1995) reported that DR1S is a potential method for
interpreting plant nutrient composition and compared DRIS with the nutrient
sufficiency range (NSR) for corn (Zea mays L.). They identified the following flaws in
DRIS: (i) very high levels of one nutrient can cause false relative deficiency diagnosis
of other nutrients, and (ii) an optimal ratio between two nutrients produces maximum
yields only when both nutrients are in their respective sufficiency ranges. They
recommend using the NSR technique in combination with a soil test to avoid the
misdiagnosis of Zn and Cu deficiencies in corn when N is extremely deficient.
Galantini et al. (2000) conducted a study to formulate the initial values of
DRIS Norms for artichoke cv. "Violeta de Provenza" (Cynara scolymus L.) in the
16
General introduction
southeast provinces of Alicante and Murcia of Spain. They established leaf diagnosis
standards for the first time for the varieties under the framework of the normality ranks
and using DRIS. Among the several farms, with almost 300 ha of irrigated area, they
selected the three best plots for the collection of samples, every fifteen days for three
months in a row, and for a total of 108 samples. Thereafter, the DRIS norms were
developed for the elements N, P, K, Ca, Mg, Zn, Fe, Cu, Mn and for all their mutual
relations through the respective statistic analysis.
Bailey (1997) conducted a study to diagnose the nutrient status of grassland
using DRIS. They reported that determining the N, P, K and S status of perennial
ryegrass (Lolium perenne) swards by the ‘critical’ approach has disadvantages, as the
concentration of a nutrient in plant tissue for optimum growth varies both with crop age
and with changes in the concentrations of other nutrients. For that reason, they
recommended the use of DRIS, which is based on relative rather than on absolute
concentrations of nutrients in plant tissue. They stated, however, that without an internal
reference, plant growth could be limited by multiple nutrient deficiencies even if N, P,
K and S indices are all close to, or equal, to zero (i.e., the optimum), simply because
the absolute concentrations of each nutrient (while low) are in the correct state of
balance.
Teixeira et al. (2009) conducted a study to form the preliminary DRIS norms
and critical leaf nutrient level (CLN) for the ‘Smooth Cayenne’ pineapple growing in
plantations of São Paulo State (Brazil). To develop the DRIS norms, they created a data
base of leaf nutrient concentrations (N, P, K, Ca and Mg) and fruit yields for 104
samples. They divided the data into high-yielding (>65 t/ha) and low-yielding (<65 t/ha)
sub-populations, and norms were computed using standard DRIS procedures.
Silveira et al. (2005) conducted a study to evaluate three procedures (methods
of Beaufils (1973), Jones (1981), and Elwali & Gascho (1984)) for the calculation of
DRIS indices, and to verify the efficiency of DRIS as interpretation method. They
selected Brachiaria decumbens (signal grass) for the study and the concentrations of N,
P, K, Ca, Mg, S, Cu, Fe, Mn, and Zn were taken from the expanded leaf laminae of the
grass. Subsequently, they calculated the nutritional balance index according to the
generated norms, presented negative and significant correlation coefficients with the
productivity in the combinations of methods tested. DRIS as proposed by Beaufils
17
General introduction
(1973), Jones (1981) and Elwali & Gascho (1984) which were efficient in detecting
concentrations that show nutrient deficiency or excess.
Meyer (1981) conducted a study on sugarcane yield data and third leaf
analysis from 96 fertilizer trials to establish whether DRlS can be used to improve the
quality of the fertilizer advisory service. He reported that in general predictions of a
yield response to applied N, P and K were more reliable when DRlS was used than
when the nutrient threshold approach was used at an early stage of crop development.
The results of his experiments show that imbalances of N, P and K can be detected four
to six weeks earlier by using DRlS than by the threshold approach. He further reported
that DRlS can be used fairly reliably to indicate N, P and K deficiencies in order of
decreasing importance.
1.4
Problem statement
According to the Pakistan Demographic Survey (PDS), in 2007 the total population of
Pakistan was about 150 million out of which 65 % was settled in rural areas and closely
linked to agriculture production. Agriculture is the mainstay of Pakistan’s economy
contributing 24 % of the GDP (FBS, 2007). It employs nearly 50 % of the total
population. As GDP growth continues to depend on crop production, key attention is
given to the agricultural sector.
According to the United Nations Population Division (2010), the population
growth rate in Pakistan in 2005 was 2.26 % and 2.16 % at the end of 2010, i.e., a net
addition of 1.89 million people till 2010. The population increased after independence
more than 4.5 times (United Nations Population Division, 2010), but production of
cereal crops did not increase at the same pace (PARC, 2006).
The total cropped area of Pakistan is 21.2 million ha (PAD, 2008) out of which
80 % is irrigated land. Wheat plays an important role to fulfill the food requirements of
both urban and rural population of country. According to PAD (2008), wheat has the
largest share and is being grown on more than 39 % of the total cropped area followed
by cotton, rice, sugarcane, maize and gram (Figure 1.11).
18
General introduction
Maize:5,7
others:5,2
Gram:3,1
Sugarcane:10,2
Wheat:39,2
Rice:17,9
Cotton:21,9
Figure 1.11
Percentage of cropped area under selected crops during the 2008
cropping season in Pakistan (PAD, 2008)
Total wheat production in Pakistan was approximately 10 million tons in 1970
and increased to about 21 million tons in 2008. This twofold increase in production was
made possible by a concomitant 17 times increase in fertilizer application (NDFC,
2008).
1.4.1
Wheat production in Pakistan
Wheat (Triticum aestivum L.) is the major staple food crop of Pakistan with regard to its
area of cultivation and production (Shuaib et al., 2007). Production increased from 3.8
million tons in 1961 to 21 million tons in 2008 (Figure 1.12). For the same period, the
wheat production area increased by 184 %.
19
General introduction
25
Million Tons
20
15
10
5
2006
2003
2000
1997
1994
1991
1988
1985
1982
1979
1976
1973
1970
1967
1964
1961
0
Year
Figure 1.12
Wheat productions (million tons) in Pakistan, 1961-2008
Although the increase in wheat yield during the last two decades in Pakistan is
impressive, i.e., from 1.83 tons ha-1 in 1990 to 2.72 tons ha-1 in 2007 (FAO, 2007;
Figure 1.13), it is by far lower than that of many countries such as North America
(5.1 tons ha-1). It is unfortunate that though Pakistan is the seventh largest wheat
growing country of the world, it ranks 59 in terms of yield per hectare and still imports
wheat from other countries to meet the demand of a fast growing population (FAO,
2010).
3,00
Tons ha-1
2,50
2,00
1,50
1,00
0,50
1961
1964
1967
1970
1973
1976
1979
1982
1985
1988
1991
1994
1997
2000
2003
2006
2009
0,00
Year
Figure 1.13 Wheat yield per hectare in Pakistan, 1960-2010
20
General introduction
The NARC (2009) reported that major reasons for the low productivity in
wheat production in Pakistan includes among others delayed harvesting of kharif
(summer) crops (e.g., cotton, sugarcane and rice) and
late planting of wheat,
unavailability of improved inputs like certified seeds, imbalance fertilizer use, water
scarcity, soil degradation, and inefficient extension services.
Wheat in Pakistan by far is the leading food grain and occupies a central
position in agriculture and its economy (Shuaib et al., 2007). For example, Shuaib et al.
(2007) reported that the average household spends 9.4% of its income on wheat,
whereas wheat product expenditures are 18.4 %. They further reported that there are
progressive farmers in irrigated areas who are harvesting 6-7 tons yield ha-1 wheat,
whereas in rainfed areas yield ranges only from 0.5-1.3 tons ha-1 depending on the
amount of rainfall. Yields in irrigated areas depend on many factors and range on
average between 2.5 and 2.8 tons ha-1 depending upon the amount of water available
and other factors necessary for high crop yields.
Adsule and Kadam (1986) reported that wheat is one of the most important
domesticated food sources in Pakistan, largely due to the fact that its grain contains
protein with unique chemical and physical properties. They further reported that beside
wheat being a rich source of carbohydrates, it contains other valuable components such
as protein, minerals (P, Fe, Mg, Cu and Zn) and vitamins like niacin and vitamin E.
Chowdhry et al. (1995) reported that as Pakistani wheat varieties are grown over a wide
agro-climatic range they are expected to exhibit yield and quality differences.
1.4.2
Wheat production in the Sindh province of Pakistan
Wheat cultivation in the Sindh province of Pakistan started during the Neolithic period,
i.e., 6,000 to 7,000 years ago with emmer or durum wheat types. Local names for wheat
are ‘kanak’ and ‘gandum’. It is cultivated on most of the irrigated area of Sindh (35 %).
Cotton and rice are the other major crops in the province (Figure 1.14).
21
General introduction
Others; 12
Maize; 3
Gram; 2
Sugarcane; 11
Wheat; 35
Rice; 21
Cotton; 21
Figure 1.14
Percentage of cropped area in Sindh province of Pakistan, 2008
In 2008, wheat was cultivated on approximately 1 million ha of the irrigated
area of the province. Although there has been no substantial reduction or increase in the
wheat area during the last 10 years, there are many factors that force the farmers to
grow other crops than wheat, e.g., high prices of inorganic fertilizers and other inputs,
1,4
4,0
Area
1,2
3,5
Production
3,0
Area
1,0
2,5
0,8
Production
lack of improved inputs like seeds, low government purchasing rate, and water scarcity.
2,0
0,6
1,5
0,4
1,0
0,2
0,5
0,0
0,0
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
Year
Figure 1.15
Wheat production (tons ha-1) and area under cultivation (ha) in Sindh
province of Pakistan, 1999 - 2008
22
General introduction
In recent years, it has been observed that wheat production has increased in the
province. For example in 2008, the increase in wheat production was 3.4 tons ha-1 and
in that year was the highest since 1999 (Figure 1.15). This increase is mainly attributed
to improved cultivars.
Sowing time for the wheat crop in southern Sindh is from 1 November to 15 of
December whereas in northern Sindh it ranges from 7 November to 21 December.
Three sowing methods are applied, i.e., drilling, broadcasting and broadcasting
in standing water (ghurbi). Each of these methods has different seed rate applications.
For example, a seed rate of 50 (early sowing) - 60 (late sowing) kg acre-1 (124 – 142 kg
ha-1) is recommended for the drilling method. For broadcasting, the recommendation is
55 (early sowing) - 65 (late sowing) kg acre-1 (136 and 161 kg ha-1). With the ghrubi
method, the recommendation is 60 (early sowing) - 70 (late sowing) kg acre-1 (148 and
173 seed kg ha-1).
Normally wheat is followed by green manure crops such as green gram
(moong), cluster-bean (guar), black-eyed pea (lobia), or hubam clover, which are sown
immediately after the wheat crop to enrich the soil. Cotton, gram, linseed, barley, and
mustard are included in rotations.
1.4.3
Mineral nutrient management through inorganic fertilizer use for wheat
in Pakistan
Balanced fertilization supplies N, P, K and/or other nutrients to enhance crop yield, crop
quality, and farm income. It corrects soil nutrient deficiencies and maintains soil
fertility. According to FAO statistics, NPK fertilizer consumption in Pakistan has
increased manifold between 1961 and 2007 (Figure 2.3). For example, in 1990, the
NPK fertilizer use was 1.9 million tons and rose to 3.6 million tons in 2007 (Figure
1.16). The recent increase in fertilizer costs has, however, led to a reduction from 3.9
million tons in 2004 to the 3.6 million tons in 2007.
23
2006
2003
2000
1997
1994
1991
1988
1985
1982
1979
1976
1973
1970
1967
1964
4,5
4
3,5
3
2,5
2
1,5
1
0,5
0
1961
Million Tons
General introduction
Years
Figure 1.16
NPK fertilizer use (million tons) in Pakistan, 1960-2007
The total fertilizer use in Pakistan is approximately 3.6 million tons (NDFC,
2008), of which most is used for wheat production (50 %) followed by cotton,
sugarcane, rice and maize (Figure 1.17). However, the use of nutrients is not balanced.
Growth in food production and hence of fertilizer use will continue due to increased
food demand. There are recommendations for fertilizer application, but these are not
being implemented by farmers. Rashid (2006) reported several reasons for this. For
example, most of the research information is documented and published through
scientific conferences and seminars, but the transmission to the stakeholders is rather
slow and ineffective. They further reported that farmers are not willing to adopt
micronutrient-enriched fertilizers. Moreover there is also inadequate availability of such
micronutrient-enriched fertilizers. Due to the low fertilizer quality and the lack of
adequate methods for its application (especially foliar application), the farmers do not
make adequate use of fertilizers to compensate for losses and imbalances. The lack of
appropriate technology also leads to uneven random application. Fertilization practices
are far from the recommendations with consequent loss of yield, financial waste and
environmental contamination.
24
General introduction
Maize; 1,5
others; 9,5
Sugarcane; 8
Wheat; 50
Rice; 6
Cotton; 25
Figure 1.17
Fertilizer use by crop (percentage) in Pakistan. Total consumption 3.6
million tons in 2008 (NFDC)
Urea and di-ammonium phosphate (DAP) are the two major fertilizers
(sources of N and P) used in Pakistan. Afzall and Ahmad (2009) reported that the
demand for urea and DAP is increasing at an average rate of 6 and 8%, respectively;
82% of the fertilizers are produced within the country. The Fauji Fertilizer Company
has a 51.5% share, Engro Chemicals a 20%, and FFBL a 10.5% share in the total
production of urea in the country.
Saleem (1983, 1992) reported that fertilizer efficiency is quite low in Pakistan.
Selection of suitable fertilizers and their appropriate combination, application method
and time can increase their efficiency even with poor quality water. He further reported
that management of irrigation is necessary for improving fertilizer use efficiency. There
is a positive interaction between fertilizer and irrigation water.
According to the NDFC (2008), the total consumption of fertilizer use in
Pakistan was approximately 3.6 tons in 2008. Wheat occupies that largest area because
of food security, whereas cotton is a cash crop with a smaller area and using smaller
amount of fertilizers but a large amount of pesticides. Wheat uses about 50 % of the
total fertilizers followed by cotton, sugarcane, rice and maize (Figure 1.8). Returns on
wheat are not very high because of low water productivity and nutrient use efficiency
25
General introduction
(FAO 2004). According to Krauss (1997), the USA was produced more than double the
amount of food grain per ha than Pakistan with the same amount of nutrients per ha.
Unfortunately, Pakistan’s soils are deficient in N (100 %), P (90%), Zn (70%) and B
(55%). Potassium is generally adequate in irrigated areas, but it is becoming deficient,
and only 1-2% of farmers apply potash to fruits, vegetables and sugarcane (APO 2002).
Ahmed and Rashid (2004) reported that the low yields wheat in Pakistan may
be attributed to many genetic, environmental and agronomical factors. Among
agronomical factors, fertilizer plays a prominent role in increasing the production per
unit area. The average yield of 58 trials of irrigated wheat in Sind showed that
application of 150-100-60 NPK kg ha-1 increased yield (4218 kg ha-1) by 224% over the
control (1302 kg ha-1) (NFDC, 2001). The recommended fertilizer doses for irrigated
wheat in Sind are 130-170 N, 60-90 P and 50 K kg ha-1.
Amjad (2004) reported that the fertilizer application methods in Pakistan are inefficient.
Phosphate fertilizer in wheat is conventionally applied broadcast before sowing the crop
by which only 15-25% of the applied P is directly utilized by the wheat crop. The seedcum-fertilizer drills are also inefficient as these drills place fertilizer either too far from
the seed or in direct contact with it. In both cases, the fertilizer use efficiency is
hampered. Currently, fertilizer band-placement drills are used. This drill places fertilizer
about 5 cm away from and 5 cm deeper than the seed. Alam et al (2002b) emphasized
balanced proportion of P fertilizer at proper time and by a suitable method has
significant impact on crop yield.. Results of experiments conducted by the Pakistan
Agriculture Research Council showed that 60-70% of the applied P is utilized by the
wheat crop. Field experiments have confirmed that this drill saves 50% P fertilizer
compared to the broadcast method. In addition, a 10% higher grain yield was obtained
in plots where a 50% fertilizer dose (99 kg DAP ha-1) was band-applied using this drill
compared to the broadcast-applied recommended dose (198 kg DAP ha-1). Thus, a
farmer may get a benefit of Rs. 3211 ha-1 using this technology as compared to
conventional broadcast method. But the situation is different in reality where, farmers
use their old fertilization method and consequently get very low yields, although inputs
are high.
26
General introduction
Ahmad et al. (2005) observed a significant increase in the use of P fertilizer
for wheat crops in 1999-2000. This was made possible by improving the fertilizer
distribution system and its timely availability to the wheat growers. Furthermore,
implementation of strict quality control measures improved the quality of fertilizers.
About 38% of the farmers recognized that they had received fertilizers of improved
quality. The remaining farmers reported that the quality was either same (55%) or poor
(7 %) as compared with the previous year. The soils in the study area in Sindh vary in
texture from light sandy soils to moderately fine and fine clayey soils. Medium-textured
soils, i.e., loams of different composition, constitute 39 % of the total. The soils are
calcareous to varying degrees because of the presence of free calcium carbonate. Soil
pH generally ranges from 7.5 to 8.5. Higher pH values are found in sodic soils where
sodium dominates in relation to calcium and magnesium (Memon, 2004).
Sindh soils, like most soils of Pakistan, are invariably deficient in N.
Phosphorous is deficient in 80-90 % of the soils despite the use of P fertilizers in the last
four decades. Levels are generally adequate in the majority (60 %) of soils, and some 40
% soils are marginal to deficient. Organic matter level are very low (<1.0 %), and in 7580% of the soils even below 0.5 %.
As for the micronutrients, numerous soil samples obtained from various
districts of Sindh indicate that Cu, Fe, and Mn levels are generally adequate for crop
nutrition. However, Zn is the most deficient micronutrient in Sindh soils, and on
average, more than 50% of the soils are deficient in Zn. Boron and Fe are also deficient
(Memon 1986). In another study by Memon (1985), soil samples from Hyderabad
district were reported to be adequate in Cu, Fe, and Mn.
Due to population and economic growth and because of the importance of soil
nutrients for food quality, nutrient mining is expected to be the main hindrance for crop
growth in the region. Therefore, guidelines should be provided to the farmers on when
to apply nutrients and how much.
It is hypothesized that imbalanced and non-judicious use of fertilizers and
other sources of plant nutrition limits productivity in the cropping systems in
Hyderabad. The above-mentioned literature clearly shows that good quality and
balanced use of fertilizers is very important for good yields. However, in the study area,
the farmers do not focus on proper fertilizer use for sustainable crop management.
27
General introduction
According to the survey in the Hyderabad fields, the farmers use N fertilizers but do not
keep to the recommended fertilizer dose and apply heavy doses throughout the growing
season. Therefore, crop lodging and leaching of N from the soil frequently occurs, and
in the long run the soil fertility declines. To improve the limited possibilities of dryland
farming, it is essential to apply sustainable management practices. Use of crop rotations
with legumes improves soil physical (Andriulo et al., 1990a, b), chemical (Miglierina et
al., 1995) and biological conditions, thereby enhancing nutrient availability and soil
water contents.
1.5
Objectives of the study
Considering the aforementioned situation, the objectives of the present study were:

To determine the nutritional factors limiting productivity of wheat in the district
Hyderabad, Pakistan.

To compare DRIS and the critical level approach for evaluating nutrient deficiencies
in wheat.

To identify the most limiting nutrient(s) that should be applied to improve and
stabilize the yield of wheat in Hyderabad.
1.6
Working hypotheses
It is hypothesized that DRIS evaluation and/or critical level approach are able to
identify the most limiting nutrients in the district Hyderabad, Pakistan, and provide a
tool to improve crop management in this area by correcting nutrient deficiencies in the
most appropriate manner.
28
Study area
2
STUDY AREA
2.1
Location
The study was conducted in Hyderabad, one of the southern districts in Sindh province,
Pakistan (Figure 2.1). It is located between latitude 25° 22' 0" N and longitude 68° 22'
0" E at an elevation of 40 m a.s.l. The lands are known to be the most fertile irrigated
plains in the region. The Indus River flows on the northwest side of the district, and the
desert Rann of Kach is located in the southeast. The total area of Hyderabad is
3,198 km2 with an irrigated area of 2,620 km2.
Figure 2.1
Location of the soil and plant sampling in the Hyderabad district of Sindh
province, Pakistan
29
Study area
2.2
Meteorological data
Climatically, the study area is arid to semi-arid and receives a long- term average annual
rainfall of about 178 mm (PAS, 2009). The average maximum temperature reaches
41.ºĊ in May and the minimum 11.°C in January. The four seasons in Pakistan are,
winter (December to February), spring (March to April), summer (May to September)
and autumn (October to November). July, August and September receive monsoon
45
Precipitation
Max. Temperature
Min. Temperature
70
40
60
Temperature (Co)
35
50
30
25
40
20
30
15
20
10
Precipitation (mm)
rainfall, which is more than 70 % of the total annual precipitation (Figure 2.2).
10
5
0
0
J
F
M
A
M
J
J
A
S
O
N
D
Month
Figure 2.2
2.3
Mean monthly precipitation, minimum (min.) temperature and maximum
(max.) temperature, 1999 -2008
Agro-ecological zones (AEZs) in Pakistan
Based upon the climatic conditions, Pakistan is divided into 10 agro-ecological zones
(Figure 2.3). These zones are: Indus delta, southern irrigated plain, sandy desert,
northern irrigated plains, Barani areas, wet mountains, northern dry mountains, western
dry mountains, dry western plateau and the Sulaiman Piedmont (PARC 1980).
30
Study area
Figure 2.3
Agro-ecological zones of Pakistan (Redrawn in Arc-GIS; PARC 1980)
The study area is located in the agro-ecological zone II. In this zone, the
irrigated area is arid with maximum temperatures from 30–50 °C and a minimum
temperature of 12 °C. The annual rainfall is 136 mm and the mean monthly summer
rainfall is 18 mm in the north and 45 - 55 mm in the south. Cotton, wheat, sugarcane,
rice, sorghum, berseem, and clover are the major crops in this area.
Overall there are two cropping seasons in Pakistan, namely “Kharif”, and
“Rabi”. For the Kharif season, sowing of the crops begins in April while harvesting is
between October and December. For Rabi crops, the sowing starts at the beginning of
October and ends in April. The main Kharif crops include rice, sugarcane and cotton,
while wheat and barley are the main Rabi crops.
31
Study area
2.4
Cropping pattern
Due to low rainfall and high evapotranspiration, canal and groundwater is used for
irrigating the crops in the region. The study area is mainly cultivated with wheat-cotton
and wheat-sugarcane rotation. It is divided into two belts of cropping systems, the
sugarcane and the cotton belt, respectively. Cotton-wheat rotation is the most common
practice in the region. Wheat-sugarcane is also practiced where some fields are used for
intercropping of sugarcane with wheat. The other field crops include vegetables and
maize as fodder crop, while banana and rose farming are for commercial purposes.
Mango gardening is also quite popular in the region.
2.5
Irrigation sources
The surface irrigation system in Pakistan is the world’s largest contiguous irrigation
system. In Sindh, an extensive network of irrigation canals established mainly after the
construction of the Sukkur Barrage on the Indus River. The Indus River is the sole
source for surface irrigation in the area and begins in the Himalayan Mountains and the
Hindu Kush. However, due to shortage of water and intensive irrigation, the surface
water is insufficient for irrigation. Therefore, many farmers install tube wells for
pumping the groundwater. The farmers with land at the tail end of the canals suffer from
a lack of freshwater supply. Thus, crop production level there are much lower than those
in the head area. Therefore, crop selection depends on the availability and the reliability
of the irrigation water supply.
The crops with high water requirements, such as
sugarcane, are hardly found in the tail area.
2.6
Soils
A total of eight soil series varying in parent material and pedagogical development
exists in the study area (Figure 3.4). These soil series are Sultanpur, Shahdra, Pacca,
Sarhad, Matli, Bagh, Garhi, and Rustam (Table 2.1).
32
Study area
Table 2.1
Soil series in the study region
Local name Order
Sub-order
Great group
Sub-group
1
Sultanpur
Ardisols
Orthids
Camborthids
Typic camborthids
2
Shahdra
Entisols
Fluvents
Torri fluvents
Typic torri fluvents
3
Pacca
Ardisols
Orthids
Camborthids
Typic camborthids
4
Sarhad
Entisols
Psamments
Torri psamments Typic torri psamments
5
Matli
Ardisols
Orthids
Camborthids
Typiccamborthids
6
Bagh
Ardisols
Orthids
Camborthids
Fluventic camborthids
7
Garhi
Entisols
Orthents
Torri orthents
Halic torri orthents
8
Rustum
Entisols
Orthents
Torri orthents
Halic torri orthents
The Sultanpur soils consist of deep and well drained calcareous soils with a pH 8.0-8.2.
They consist of a Cambic B horizon, which is about 50 cm thick and has a dark greyish
brown colour. The silty clay loam topsoil is underlain by brown\dark brown and friable
calcareous silt loam.
Shahdra soils are stratified and moderately calcareous with different textural
grades such as silty loam, sandy loam, loamy sand, and clay texture. These are found in
recent flood plains. A few mottles are present in the subsoil under arid and semiarid
conditions.
Pacca soils have a B-horizon, which is 56-60 cm thick. It has a sub-angular
blocky structure with a silty clay to clay texture. They are moderately calcareous with
pH 8.0-8.5. Some mottles with some cutans are present in the B horizon.
33
Study area
LEGEND
Active and Recent Floodplains
Shahdarea-Sarhad associoation (seasonally flooded)
Rustarn association (seasonally flooded)
Matli-Rustarn association (seasonally flooded)
Recent Floodplains
Meander, bars and levees
Sarhad association
Shadara association
Shadara-Rustarn association
Subrecent Floodplains
Level plains
Matli association
Miani association
Nabipur association
Pacca association
Shapur association
Sultanpur association
Subrecent Dissected River
Garhi association
Pitafi association
Estuary plain/Spill areas
Arib association
Bulri association
Daro association
Dhand association
Gujo association
Gungro association
Thatta association
Miscellaneous Areas
Duneland
Marshland
Rockland
Riverbed
Urban land
CONVENTIONAL SIGNS
District boundary
Tehsil boundary
Main road
Secondary road
Main canal
Branch canal
Distributary
Railway line
Embankment
Figure 2.4
Soil map of Hyderabad district (Soil Survey of Pakistan, 2007)
34
Study area
Sarhad soil series are formed from recent alluvium under an arid climate.
These soils are loamy sand to sandy in texture with massive, and in few places with a
stratified sand structure. They are moderately calcareous with pH 7.8-8.2 in A and C
horizons.
Matli soil series are formed in basins and are moderately calcareous with a
silty clay to clay texture. B horizons with a weak subangular blocky structure develop in
arid and semi- arid climates.
Bagh soil series are formed on level or nearly level areas, mottled on recent
alluvium in arid and semi -arid climate. These soils have B a horizon with a subangular
blocky structure, and are loamy to sandy loam in texture, and moderately calcareous.
Garhi soils have sandy loam, fine loamy sand, silty clay and loam stratified
structures at various depths. Gypsum is present at various depths, notably below the
sandy loam to loamy sand layer. These soils are moderately calcareous with pH 8.0-8.5
and are saline in nature.
Rustum soil series have a silty clay and clay texture with massive structures
and weak platy structures at various depths. These soils are moderately calcareous with
pH 8.2 - 8.5. The soil profile was formed in recent alluvium. Some faint (light colour)
or clay mottle is found in the subsoil.
35
Methods
3
METHODS
3.1
Site selection
The farmer’s fields were selected on the basis of a survey of wheat growing areas in the
district of Hyderabad. Both low- and high-yielding areas with different crop production
management were chosen. DRIS implementation requires over one hundred tissue
samples for a successful diagnosis of the plant nutrition status in a region. Therefore, a
comprehensive wheat plant sampling was conducted in famers' fields in the district of
Hyderabad at different development stages during the wheat cropping seasons 20072008 (80 samples) and 2008-2009 (101 samples). All samples were collected randomly
in places representative of the area (Figure 3.1)
Figure 3.1
Plant sampling locations in district Hyderabad, Sindh, Pakistan
Sampling sites were marked using GPS. The soil survey map of Pakistan (Soil
Survey of Pakistan, 2007) was used to digitize the Hyderabad district. To geo-reference
this map, GPS points during the field survey were taken from known places e.g., canals
crossings and road crossings. The map was then geo-referenced and digitized with the
36
Methods
ARC GIS software. GPS points taken from the 181 sampling sites were then imported
(Figure 3.1).
For the sampling sites, along with plant data collection, a short survey was
conducted. For this purpose, a questionnaire was generated (Table 3.1) to collect basic
information from the farmers.
Table 3.1
S.No
.
GPS
Point
Basic information collected in the survey area
Soil
Series
Cultivar
Name of
Farmer
Name of
Village
Area
Previous
Crop
Fertilizer
amount
Source of
Irrigation
The soil series map was used to determine the location of a farmer’s field from
where the plant samples were taken. As different varieties of wheat are grown in the
region, data on the variety of the wheat were also collected. To determine the cropping
patterns, data on the previous crop and its schedule were also collected from the
farmers. . Farmers were also asked which type of fertilizer they used and the amount in
kilogram per hectare applied for a specific crop. Some of the farmers in the region apply
water directly to their fields from canals whereas the others use underground tube wells
for irrigation. However, some use both; data on the irrigation source were included in
the questionnaire.
3.2
Sampling strategy
For sampling, the different growth stages of the wheat crop for determination of mineral
nutrients and the assessment by the diagnosis and recommendation integrated system
(DRIS) were selected according to recommendations of Reuter and Robinson (1986)
(Figure 3.3). The first sampling was done at development stage of plant based on the
Zadok scale of growth stages (Zadok et al., 1974). The whole shoot material was taken
above the ground level at end of the tillering stage (GS-29) from every plot. Four
samples were taken from every plot and subsequently pooled. The second sampling was
conducted at the emergence of the flag leaf (GS-39). Here the youngest leaf (not flag
leaf) was taken from 20 different plants that were randomly selected in the field. These
samples were homogenized to make one representative sample of the field. The third
sampling was done at harvesting. Plants were counted on one meter square for yield
37
Methods
calculation. Twenty plants were selected randomly, and the ears
were used to assess
the number of grains per spike, number of spikelets and thousand-grains weight.
Figure 3.2
Zadok scale of wheat growth stages (Zadok et al., 1974) with days after
sowing in parenthesis.
3.3
Plant analysis
3.3.1
Drying of wheat plant material
Before oven drying the samples at 80 °C, the tissues were air dried and placed in paper
bags. After drying, the tissues were homogenised and ground and then stored in, airtight
plastic bags. .
From the composite samples, sub-samples were taken for analysis of
macronutrients (N, P, K) and micronutrients (Zn, Cu, Fe, Mn, and B). The analysis was
carried out in the laboratory of the Institute of Plant Nutrition at Bonn University,
Germany, in accordance with methods of the Association of German Agricultural
Analytical and Research Institutes (VDLUFA). The samples were analysed in duplicate
for each nutrient to reduce analytical error.
38
Methods
Figure 3.3
3.3.2
Plant analyses in the laboratory of the Institute of Plant Nutrition at Bonn
University, Germany.
Digestion of Plant material
Material was wet digested in PTFE bombs according to Vigler et al. (1980) and
Okamoto and Fuwa (1984).
Dried plant material was subject to pressure digestion in duplicate: 0.5g plant
material was weighed in Teflon digesting cups, and 4ml of 65% nitric acid (analytical
grade) was added for digestion. The PTFE cups were kept in a heating oven at constant
temperature (180°C) for one hour. After digestion, the samples were kept overnight for
cooling. Then the cups were opened and several rinses were done with ultra pure water
(Millipore-Q GmbH, Eschborn) and a constant volume was made in duplicate by the
addition of ultra pure water in micro tubes (Eppendorf) for the elemental analysis.
3.3.3
Nitrogen analysis by the Kjeldahl digestion method
Total N was determined in both shoot dry matter and leaf tissue by the Kjeldahl method.
The analysis was done by using Vapodest Kjeldahl by Gerhardt GmbH and Co., Bonn.
With this method, 0.5 g of plant material in duplicate was taken in the 100 mL glass
digestion tubes including a blank without plant material in each set of samples. The
plants were digested with 10 mL of concentrated sulphuric acid with a catalyst mixture
39
Methods
by Kjeldahl. The mixture was then placed on a heated block digester Gallagher et al.
(1975) and Tucker (1974) reported that block digestion is useful for proper heating in a
given time period. It shortens digestion time and allows very uniform temperature
control. The samples were digested for 60 min at 280°C. After digestion, samples were
allowed to cool. The tubes were connected with the, using the auto distillation
equipment. The reagents needed for distillation are sodium hydroxide solution, boric
acid and deionised water. Ammonia (NH3) was forced into a 4% boric acid solution by
distillation, after NaOH had been added to the solution. Care had to be taken to
immediately attach the flask for distillation to the distillation unit after adding the (10N)
NaOH concentration to avoid N losses before the distillation process.
All tubes were connected to the distillation unit and the solutions were
dispensed in each tube of digested plant material. The distillation period was
4
minutes. Then titration was done using 0.01N sulphuric acid at pH 5.0 with an
autotitrator, which recorded the volume of acid used for titration.
3.3.4
Phosphorous determination by molybdenum blue color method
Phosphate in the digest was measured by the reaction of phosphate with ammonium
molybdate
in
an
acid
medium
to
form
molybdophosphoric
acid.
The
molybdophosphoric acid is reduced to a blue colored complex through reaction with
ascorbic acid (Murphy and Riley 1962).
With this method, a spectrophotometer (ECOM 6122 (Eppendorf)) was used
where the samples were analysed at 660 nm wave length. A set of different working
standards was applied for the calibration curve. A standard curve constructed from
absorbance reading of standards is used to convert absorbance value of samples to
phosphate concentration.
3.3.5
Potassium determination
The samples of leaf tissue and wheat shoot dry matter were analysed for potassium by a
flame photometer (ELEX 6361; Eppendorf) using the digested plant material directly or
after dilution according to the concentration.
40
Methods
3.3.6
Boron determination by miniaturized curcumin method
For boron determination, the modified and miniaturized spectrophotometric curcumin
method developed by Wimmer and Goldbach (1998) was used. This method allows the
determination of boron in sample volumes of 50 - 150
l with a detection limit of 0.010
mgB l-1.
To avoid contamination from glass, high grade plastic ware was used for
analysis. The analysis was done by taking 100 µl of aliquot in micro tubes (Eppendorf).
In these tubes, 100µl of 0.1N hydrochloric acid and 50µl of Diol\chloroform extracted
solution (2-Ethyl-1,3-hexanediol 10% (v/v) in chloroform) were added. The tubes were
closed with air tight lids, shaken for 30 seconds and then centrifuged to yield a clear
solution. After centrifugation, the separation of two phases was complete. 20 µl of the
organic phase of the sample were taken from the bottom of the tube and then transferred
to microtubes. To this phase was then added 200 µl of an acid mixture (concentrated
acetic acid and sulphuric acid, 1:1 v/v). For the color reaction, 250 µl of curcumin
solution (curcumin and isobutylmethyl ketone) was added, shaken again on a shaker for
30 seconds and then centrifuged. Then the sample was left to stand for one hour for
completing the colour reaction. After one hour, the reaction was stopped by the addition
of 500 µl B-free water. After complete separation of the two phases, 120 µl of the upper
organic phase were transferred into quartz micro cuvette and measurements were done
with a Lambda 20 UV/VIS spectrophotometer (Perkin Elmer) at 550 nm. Blanks were
run as analytical controls for each set of samples. B concentrations were calculated
according to a calibration curve that was prepared with defined B concentrations.
3.3.7
Micronutrient (Zn, Fe, Cu and Mn) determination
The wheat plant shoots and leaf tissue were analysed for micronutrients (Zn, Fe, Cu and
Mn) by atomic absorption spectrometry from the acid digested plant material as
described above. Values were computed against standard curves prepared freshly each
day.
The atomic absorption spectrophotometer (AAS) Perkin-Elmer Model 1100B
was used with an air-acetylene flame.
41
Methods
3.4
Yield calculation
In order to develop the DRIS norms for high-yielding populations, yield was estimated
using the following formula (CIMMYT website):
.
(3.1)
10,000
During the field work, the data on the required variables, i.e., spikes per square
meter, average number of grains per spike and 1000-grains weight, were collected from
each site.
For determining the number of spikes per square meter, a wooden frame of
1 m2 was constructed and from the 20 plants, ear heads were collected and the number
of grains per spike counted. Using a “Numagrain” seed counter, 1000 healthy grains
were counted and weighed.
3.5
Diagnosis and Recommendation Integrated System (DRIS)
The diagnosis and recommendation integrated system (DRIS) method was applied for
the determination of N, P, K, Cu, Fe, Mn, Zn and B nutritional balances of the wheat at
two different growth stages. DRIS indices were obtained by the methodology proposed
by Beaufils (1973) in which the optimum ratios (norms) for all nutrient combinations
are determined and used as a diagnostic criterion. Therefore, the first step for the
application of DRIS is to establish the norms. A norm is reckoned as a standard value
that is used to evaluate nutrient status/relationships in a plant tissue to be diagnosed.
The procedure used to establish norms for a wheat crop is given below.
3.5.1
Establishment of HYDERABAD DRIS norms for wheat crop
Sumner (1979) suggested a survey -type approach for collecting the crop production
data from the random experimental or farmer fields to develop the DRIS norms. These
crop production data are used to differentiate between low yielding and high yielding
populations. The high yielding population data sets are used to develop the norms.
Adopting this approach, yield and nutrient data were collected randomly from 181 sites
42
Methods
to represent the wheat production area. This population of observations was then
divided into two subpopulations, i.e., high-yielding and low-yielding population, on the
basis of yield data. To divide the population, a simple statistical approach was used as
described below.
3.5.2
Partitioning data into high- and low-yielding sub-populations
The Cate and Nelson (1971) procedure, which is often referred to as statistical Critical
Value Approach (CVA), was used to derive the cut-off value between the high-yielding
and low-yielding populations (Table 3.2). First, the yield data were arranged in
descending order. Starting with the initial yield value (I), the corrected sums of squares
of the two populations that result from moving to each successive yield value were
calculated. Then the total sum of squares was calculated. This total sum of squares was
subtracted from the corrected sum of squares for each population. The difference
between the total sum of squares and the corrected sum of squares was then expressed
as the percentage of the total corrected sum of squares, which is also referred to as R2.
By this simple iterative process, a series of R2 values was obtained from which the
maximum R2 value was selected as a cut-off point, i.e., the yield value where R2
maximum is a cut-off value between the high-yielding and low-yielding subpopulations
43
181
Y2
Y3
-
Yn
3
-
n
Yn-1+Yn
-
Y2+Y3
Y1+Y2
b
44
(Yn-1 +
Yn)-Yn
-
(Yn-1+Yn)Y3
((Y2)2+(Y3)2)(Y2 + Y3)2/3
(Yn1)2+(Yn)2(Y3)2/n
(Yn-1+Yn)Y2
TX2c
((Y1)2+(Y2)2)(Y1+Y2)2/2
(Yn-1)2+(Yn)2 - (Yn-1 + Yn)2/
181
b
Y
TX1
CSS1d
Y1
Y1
(Y1)2
2
I
1
TSSa
Total
Samples
R2
((Yn-1)2+(Yn)2)TSS(CSS1,2+CSS2,2)/
((Y1)2+(Y2)2-(Yn-1+Yn Y2)2/(181-2)
TSS *100
2
2
TSS((Yn-1) + (Yn) )((Y2)2+(Y3)2 - (Yn-1 + Yn - (CSS1,3+CSS2,3)/
TSS *100
Y3)2/(181-3)
MAX
2
2
((Yn-1) + (Yn) )-((YnTSS-(CSS1n +
1)2+(Yn)2- (Yn-1 + Yn CSS2n)/
TSS ·100
Yn)2/(181-n)
CSS2e
Mathematical expression for determining the cut-off value using the Cate and Nelson (1971) procedure
TSS is total sum of square
TX1 is yield of subgroup-1 and
c
TX2 is yield of subgroup-2
d
CSS1 is corrected sum of squares for sub-population-1, and
e
CSS2 is corrected sum of squares for sub-population-2.
a
Table 3.2
Methods
Methods
3.5.3
Partitioning the data into low- and high-yielding populations
From the high-yielding population, the mean and coefficient of variance were calculated
as proposed by Sumner (1977) for each expression. The expressions representing the
norms selected for this study were: N/P, N/K, N/Cu, N/Fe, N/Mn, N/Zn, N/B, P/K,
P/Cu, P/Fe, P/Mn, P/Zn, P/B, K/Cu, K/Fe, K/Mn, K/Zn, K/B, Cu/Fe, Cu/Mn, Cu/Zn,
Cu/B, Fe/Mn, Fe/Zn, Fe/B, Mn/Zn, Mn/B and Zn/B.
3.5.4
Function value estimates
After establishing the norms, the next step in DRIS calculation is to determine the socalled “function value”. The function values determine the variation of the observed
ratio, i.e., the tissue samples to be diagnosed, against the norms.
Different scientists have proposed different formulae to determine the function
values. For example, according to Jones (1981), the function value can be determined
by the following formula:
⁄
1000
⁄
(3.2)
where A/B is the value of the ratio of the two elements in the tissue under diagnosis, a/b
is the value of the corresponding norms, and S is the standard deviation
associated with each nutrient ratio norm.
Elwali & Gascho (1984) suggested using the following formula:
⁄
⁄
1
when A/B > a/b - S
0,
1
when A/B = a/b
⁄
when A/B < a/ b + S
⁄
where A/B is the value of the ratio of the two element in the tissue under diagnosis, a/b
is the value of the corresponding norms, and S is the standard deviation
associated with each nutrient ratio norm.
45
Methods
However, in this study, DRIS function values for nutrients were calculated
using the original procedures proposed by Beaufils (1973), which have been used in
many studies (e.g., Silveira et al., 2005). This procedure involves two formulae,
depending on the ratio of the two nutrients under study is smaller or larger than their
corresponding norm values. These formulae are explained below:
Formula 1:
If the ratio between the two elements is greater than their corresponding norm, i.e.,
when A / B > a / b, then following formula is applicable:
⁄
⁄
1000
1
(3.3)
where A/B is the value of the ratio of the two element in the tissue under diagnosis, a/b
is the value of the corresponding norms, and CV is the coefficient of variation
associated with each nutrient ratio norm.
Formula 2:
If the ratio between the two elements is less than their corresponding norms, i.e., when
A / B < a / b then the following formula is applicable:
1
⁄
⁄
1000
(3.4)
The function value, for example of N and P, thus will be derived from the
general formula as below:
⁄
⁄
1
when N/P > n/p
0,
1
when N/P = n/p
⁄
when N/P < n/ p
⁄
where N/P is the value of the ratio of the N and P in the tissue under diagnosis, n/p is
the value of the corresponding norm, and CV is the coefficient of variation. The
other functions were calculated similarly using appropriate values of A/B and
a/b.
46
Methods
3.5.5
Coefficient of variance
The coefficient of variance (CV) is a measure of the variability among different
individuals in a group as a percentage of the group mean. The CV is determined by
calculating the standard deviation in a group and dividing by the group mean and can be
expressed as:
CV
SD
X
where SD is standard deviation, and
(3.5)
100
is mean of the group.
The standard deviation is a square root of the variance in a group and is expressed as:
SD
X
n
X
1
(3.6)
where X is the value of the mean, n is the sample size, and Xi represents each data value
from i=1 to i = n.
3.5.6
Index value estimates
The index value for each nutrient represents an integrated measure of its sufficiency as
compared to all other nutrients. The index is the mean of all the function values
involving the particular nutrient. However, the function value will be added to
determine the index for the nutrient in numerator and will be subtracted if the required
nutrient index is in the denominator. The DRIS indices were obtained using the
methodology proposed by Beaufils (1973), which is explained below for N.
It is important to know that a nutrient may seem to be either in the numerator
or denominator of any ratio, and that function values may be either positive or negative
in sign. The function value is added in calculating the index for the nutrient in the
numerator. However, the function value is subtracted in calculating the index for the
nutrient in the denominator.
47
Methods
Below is an example of the N index. As N is in the numerator in all function
values, all function values will be added and then divided by the total number of
functions involved, i.e., 8 in this study. The following formula was used:
(3.7)
7
3.5.6.1 Interpretation of index values
The values of the DRIS indices (IN, IP, IK, ICu, IFe, IMn, IZn, IB) are not independent.
However the sum of the index values should be equal to zero and can be expressed by
the following equation:
IN + IP + IK + ICu + IFe + IMn + IZn + IB = 0
(3.8)
For the interpretation of the DRIS indices, the methodology proposed by Wadt
(1996) was used in this study. According to this methodology, first of all the Nutritional
Balance Index (NBI) was calculated based on the sum of the absolute values of the
DRIS indices for all 7 nutrients irrespective of their sign by the following equation:
NBI = |IN| + |IP| + |IK| + |ICu| + |IFe| + |IMn| + |IZn| + |IB|
(3.9)
In a second step, the Average Nutritional Balance Index (NBIa) was calculated. The
NBI calculated in the first step was divided by the 7 nutrients concerned according to
the equation:
(3.10)
In the final step, three ranges were established that indicate deficiency,
adequacy, and excess of the nutrients in the plant tissues. The following relationships
well describe the nutrient balance:
48
Methods
Relation 1 (Deficiency)
If the index value of a nutrient (IA) is less than zero but greater than the Average
Nutritional Balance Index (NBIa) that nutrient is considered as deficient in plant tissue.
Deficient = IA < 0 and |IA| > NBIa
Relation 2 (Adequacy)
If the index value of a nutrient (IA) is less than or equal to the NBIa, that nutrient is
considered as adequately supplied.
Adequate = |IA| ≤ NBIa
Relation 3 (High)
If the index value of a nutrient (IA) is greater than zero and also greater than the NBIa,
that nutrient is considered as oversupplied in relation to the other nutrients.
Excess = IA > 0 and | IA| > NBIa
49
Results and discussion
4
RESULTS AND DISCUSSION
The following section describes 1) Diagnosis and Recommendation Integrated System
(DRIS) norms of wheat developed for the Hyderabad district of Pakistan for the shoot
material and leaf tissue for the data set of two vegetation seasons (2007-08 and 200809), 2) nutrient status determined by DRIS for shoot material and leaf tissue at
different two growth stages (GS-29 and GS-39) from different farms for the 2007-08
and 2008-09 vegetation seasons, 3) nutrient status as determined by the critical level
approach and 4) the comparison of the two methods.
4.1
Development of DRIS norms for wheat for Hyderabad district of Pakistan
4.1.1
Dividing the dataset into high-yielding and low-yielding populations
Previous studies have shown that that the selection of the reference population has a
significant impact on the effectiveness and success of DRIS. There are several ways to
select the reference population. For example, Walworth & Sumner (1987) suggested
that the reference limit to separate two populations should be arbitrarily selected, as
each population is supposed to present the normal distribution. Letzsch & Sumner
(1984) recommended that the reference population should contain at least 10% of the
overall database observations. Malavolta (1989) recommended that the reference
population should be obtained with 80 % maximum yield observations. However, in
this study, the critical level was determined by the most sophisticated statistical method
proposed by Cate and Nelson (1969). The maximum R2 value obtained from the yield
data was 54.68 (Appendix 1). The samples with higher values were referred to as the
high-yield or reference population. Using this R2 value, 86 out of 181 samples were
referred to as the high-yielding or reference population.
Literature shows that there are no specific limits to the selection of the size of
a high-yielding population for developing the norms. A large variation in the database
size for DRIS norms definition is given from just 24 observations (Leite, 1992) up to
about 2,800 (Sumner, 1977) or even more. Sumner (1977) suggested that despite the
large population quantity, the quality of the collected data should be the goal for
database choice. According to Letzsch & Sumner (1984), the only criteria for the
validated norms are that they should represent all the soil types, climates, and cultivars.
Previous studies reported that the norms should be considered as representative just if
50
Results and discussion
they include all the population variability. Walworth et al. (1988) reported that the
database size might not be directly related to norms quantity but the database quality is
an important factor. For example, the authors reported that the DRIS norms for corn
developed from just 10 corn field observations, with yields exceeding 18t ha-1, were
more representative and efficient than norms deriving from larger databases. In the
current study, these attributes was given the main emphasis. For example, Figure 3.4
represents the soil types in the district Hyderabad. While selecting the sampling points,
this map was used so that all the soil types should be represented by the sampling
points. Although there is not a great variability in the selection of the cultivars in the
region, as most of the farmers used the local varieties named as TJ-83 and Sarsabz, all
the grown cultivars were included in the data collection (TD-1, Momal, Marvi, Inqlab,
Kiran-95, Imdad, Heera). Based upon the results of the Cate and Nelson (1977) method,
48 % of the total dataset was used to develop the DRIS norms.
4.1.2
Descriptive statistics for the nutrients in high-yielding and low-yielding
population
After dividing the nutrient concentrations for all the elements N, P, K, Ca, Mg, Zn, Fe,
Cu and Mn into two subgroups, the means and standard deviations of the high and low
yielding populations for GS-29 (Table 4.1) and for GS-39 (Table 4.2) were compared.
Based upon the results of the standard deviations, the sufficiency level with coefficient
of variance were also developed (Table 4.3 and Table 4.4).
Table 4.1
Nutrient
N (%)
P (%)
K (%)
Fe (mg/kg)
Mn (mg/kg)
Zn (mg/kg)
Cu (mg/kg)
B (mg/kg)
Comparison of nutrient concentrations in shoot material (dry weight) at
growth stage GS-29; mean and standard deviation (SD) between the
high-and low-yielding populations of irrigated wheat 2007-2009
High-yielding population
Mean
3.76
0.37
5.49
296
46.43
24.82
11.63
12.07
SD
0.79
0.11
0.79
70.41
11.95
6.18
2.28
6.63
Low-yielding population
Mean
2.80
0.22
4.21
260
44.62
21.79
9.20
11.11
51
SD
0.78
0.07
0.82
73.66
11.97
5.56
2.45
5.36
Univariate one-way
ANOVA
F-value
p-value
67.09319
124.7834
115.0557
11.16904
1.036494
12.08809
47.59187
1.165241
<.05*
<.05*
<.05*
0.001*
0.31
0.001*
<.05*
0.28
Results and discussion
Table 4.2
Comparison of nutrient concentrations in leaf tissue (dry weight) at
growth stage GS-39; mean and coefficient of variation (CV) between the
high- and low-yielding populations in irrigated wheat 2007-2009
Nutrient
High-yielding
population
Mean
SD
3.80
0.61
0.30
0.11
4.29
0.72
411
59.96
52.44
15.47
20.86
5.80
10.66
2.24
11.55
5.04
N (%)
P (%)
K (%)
Fe (mg/kg)
Mn (mg/kg)
Zn (mg/kg)
Cu (mg/kg)
B (mg/kg)
Table 4.3
Mean
3.91
0.28
3.99
288
43.95
19.14
9.32
8.84
SD
0.59
0.10
0.61
50.50
12.44
4.98
2.02
5.04
Univariate one-way
ANOVA
F-value
p-value
1.62
0.67
9.44
223
16.68
4.58
18.03
13.04
0.21
0.41
<.05*
<.05*
<.05*
0.03*
<.05*
<.05*
Statistical parameters of nutrients in shoot material (dry weight) at
growth stage GS-29 for high-yielding population in irrigated wheat 20072009
Nutrient
N (%)
P (%)
K (%)
Fe (mg/kg)
Mn (mg/kg)
Zn (mg/kg)
Cu (mg/kg)
B (mg/kg)
Table 4.4
Low-yielding population
Mean
3.76±0.79
0.37±0.11
5.49±0.79
296±70
46.43±11.95
24.82±6.18
11.63±2.28
12.07±6.63
Sufficiency level
2.96-4.55
0.25-0.47
4.71-6.28
226-366
34.48-58.38
18.64-31
9.35-13.91
5.44-18.70
Coefficient of Variance
(%)
0.21
0.31
0.14
0.24
0.26
0.25
0.20
0.55
Statistical parameters of nutrients of leaf tissue (dry weight) at growth
stage GS-39 for high-yielding population in irrigated wheat 2007-2009
Nutrients
N (%)
P (%)
K (%)
Fe (mg/kg)
Mn (mg/kg)
Zn (mg/kg)
Cu (mg/kg)
B (mg/kg)
Mean
3.80±0.61
0.3±0.11
4.27±0.72
411±59
52.44±15.47
20.86±5.8
10.66±2.24
11.55±5.04
Sufficiency level
3.19-4.41
0.19-0.40
3.58-5.01
351-471
36.97-67.91
15.06-26.65
8.42-12.91
6.51-16.59
Coefficient of Variance
(%)
0.16
0.37
0.17
0.15
0.30
0.28
0.21
0.44
Results show that the means of the nutrients of the low-yielding population are
mostly lower than those of the high-yielding population at the end of the tillering stage.
52
Results and discussion
These differences are more visible in the shoot material (GS-29), where all nutrients of
the low -yielding population have a lower concentration than the high-yielding
population. The results of the one way univariate analysis of variance (ANOVA) using
F and p-values show that the concentrations of almost all elements differ significantly at
the 5 % confidence interval except for Mn and B (Table 4.1). The statistical analysis of
the nutrients in leaf tissue at growth stage GS-39 yielded almost the same results as for
the earlier sampling at growth stage GS-29. The p-value is below 0.05 for almost all
nutrients except P. This is the first indication that high- and low -yielding populations
differ significantly. Although this analysis does not have any influence on developing
the DRIS norms for the interpretation of the nutrient availability, this analysis gives a
first impression on the nutrient concentrations at both plant-growth stages.
4.1.3
DRIS norms for Hyderabad district of Pakistan
DRIS norms are defined as the average value of foliar nutrient ratio pairs for high
yielding stands. Using the nutrient concentrations of N, P, K, Ca, Mg, Zn, Fe, Cu and
Mn of the reference population, in accordance with the Sumner’s (1987)
recommendations, quotients for the pairs of elements for both GS-29 (Appendix 2 and
Appendix 3) and GS-39 (Appendix 4 and Appendix 5) were developed. The coefficient
of variance for each ratio was calculated to analyse the variability within each norm
(Walworth and Sumner, 1987). The standard deviation, according to the same authors,
permits determination of the rank above and below the standard in which the nutrient is
considered to be in balanced supply.
4.1.4
Developing the ratio for the high-yielding and low-yielding population
Nutrient ratios for the high-yielding and low-yielding population were developed for the
shoot material collected at the growth stage GS-29 (Appendix 2 and Appendix3 ) and
for the leaf tissue collected at the growth stage GS- 39 (Appendix 4 and Appendix 5),
respectively. The 28 nutrient ratios considered for this study are N/P, N/K, Fe/N, Mn/N,
N/Zn, N/Cu, N/B, K/P, Fe/P, Mn/P, Zn/P, Cu/P, B/P, Fe/K, Mn/K, K/Zn, K/Cu, K/B,
Fe/Mn, Fe/Zn, Fe/Cu, Fe/B, Mn/Zn, Mn/Cu, Mn/B, Zn/Cu, Zn/B, and Cu/B. Beaufils
(1971) suggested to not including the ratios that differ significantly between the highand low-yielding populations. For this purpose, the descriptive statistics were calculated
53
Results and discussion
for every pair of ratios. For each sub-population the mean, standard deviation (SD), and
coefficient of variation (CV) values were calculated. Similarly, one way univariate
analyses of variance (ANOVA) using F and p-values were conducted at 5 % confidence
interval to determine the statistical difference between the high- and the low-yielding
population. A ratio with a greater variability in the low population class (i.e., a
significant F and p-value) indicated that the parameter had discriminatory ability.
The ANOVA (F and p-test) for the comparison of the means of the nutrient
ratios between the high- and low-yielding populations for shoot material showed that 17
out of 28 ratios differed significantly at the 0.05 confidence interval (Table 4.5). the
results were almost the same when the analysis was conducted for leaf tissue (Table
4.6). The ratios in the leaf tissue were also 17, but 9 of these ratios were different from
the shoot tissue. The ratios with significant differences between the high- and lowyielding populations for shoot material include N/P, Fe/N, Mn/N, N/Zn, K/P, Fe/P,
Mn/P, Zn/P, Cu/P, B/P, Fe/K, Mn/K, K/Zn, Fe/Cu, Mn/Zn, Mn/Cu, and Zn/Cu. The
ratios with significant differences between the high- and low-yielding populations for
leaf tissue are N/K, Fe/N, Mn/N, N/Zn, N/Cu, N/B, Fe/P, B/P, Fe/K, Mn/K, K/B,
Fe/Mn, Fe/Zn, Fe/Cu, Mn/B, Zn/B, and Cu/B.
Table 4.5
Comparison of individual nutrients, nutrient ratio means and coefficient of
variation (CV) between the high- and low-yielding populations for shoot
material (GS-29)
High-yielding population
Ratio
N/P
N/K
Fe/N
Mn/N
N/Zn
N/Cu
N/B
K/P
Fe/P
Mn/P
Coefficient
Mean
of variance
(%)
11.47±5.35
47
0.7±0.19
27
83.61±31.69
38
13.32±7.04
53
0.16±0.05
32
0.33±0.09
26
0.4±0.23
56
16.66±7.21
43
898.19±426.33
47
141.36±67.03
47
Low-yielding
population
Coefficient
Mean
of variance
(%)
14.18±6.22
44
0.71±0.28
39
110.15±85.5
78
18.65±14.14
76
0.14±0.06
43
0.33±0.14
42
0.39±0.42
108
21.3±7.84
37
1322.69±559.5
42
227.34±95.66
42
54
Univariate one-way
ANOVA
F-value
p-value
1.68
7.87
123.33
15.01
4.64
8.05
10.14
0.076
19.53
3.06
0.002*
0.95
0.007*
0.002*
0.0043*
0.86
0.93
<0.05*
<0.05*
<0.05*
Results and discussion
Table 4.5 continued
High-yielding population
Ratio
Zn/P
Cu/P
B/P
Fe/K
Mn/K
K/Zn
K/Cu
K/B
Fe/Mn
Fe/Zn
Fe/Cu
Fe/B
Mn/Zn
Mn/Cu
Mn/B
Zn/Cu
Zn/B
Cu/B
*
Mean
76.49±38.36
35.12±14.68
37.1±27.34
55.01±15.26
8.53±2.19
0.23±0.06
0.48±0.08
0.61±0.41
6.92±2.78
12.55±3.89
26.26±7.48
32.67±21.76
1.97±0.73
4.07±1.07
5.12±3.53
2.18±0.54
2.76±2.08
1.26±0.79
Coefficient
of variance
(%)
50
42
74
28
26
26
16
67
40
31
28
67
37
26
69
25
75
63
Low-yielding population
Coefficient
Mean
of variance
(%)
110.67±44.94
41
46.91±20.74
44
56.79±33.72
59
63.68±19.65
31
10.96±3.59
33
0.2±0.06
30
0.47±0.09
19
0.57±0.57
100
6.34±2.78
44
12.64±4.38
35
29.52±8.95
30
34.49±34.12
99
2.2±0.87
40
5.21±2.05
39
6.23±6.62
106
2.5±0.8
32
2.84±2.54
89
1.18±1.01
86
Univariate one-way
ANOVA
F-value
p-value
0.041
1.25
5.53
55.28
4.62
.0003
1.185
7.695
10.345
35.282
11.864
0.142
2.646
0.285
3.273
0.231
7.305
5.483
<0.05*
<0.05*
<0.05*
0.002*
<0.05*
0.002*
0.46
0.56
0.16
0.89
0.0089*
0.67
0.06*
<0.05*
0.17
0.0024*
0.82
0.54
Significant at 5 % level of probability.
Table 4.6
Comparison of individual nutrients, nutrient ratio means and coefficient of
variation (CV) between the high- and low-yielding populations for leaf
tissue (GS-39)
High-yielding population
Ratio
N/P
N/K
Fe/N
Mn/N
N/Zn
N/Cu
N/B
K/P
Fe/P
Mean
Coefficient
of variance
(%)
14.64±6.53
0.91±0.21
111.72±27.41
14.28±4.98
0.2±0.07
0.38±0.15
0.45±0.39
16.37±6.49
1565.83±606.7
45
24
25
35
34
40
87
40
39
Low-yielding population
Mean
Coefficient
of variance
(%)
15.91±6.61
1.01±0.26
75.18±15.86
11.62±4.25
0.22±0.06
0.44±0.15
0.68±0.56
16.11±6.27
1191.57±532.5
55
42
26
21
37
27
34
82
39
45
Univariate one-way
ANOVA
F-value
p-value
1.68
0.197
7.87
123.33
15.01
4.64
8.05
10.14
0.076
19.53
0.006*
<0.05*
0.000*
0.033*
0.005*
0.002*
0.784
0.000*
Results and discussion
Table 4.6 continued
High-yielding population
Coefficient
of variance
(%)
203.03±105.48
52
79±34.14
43
41.08±19.04
46
45.09±27.38
61
98.53±21.85
22
12.32±3.39
27
0.22±0.08
37
0.43±0.20
46
0.49±0.40
81
8.55±2.77
32
21.23±6.45
30
41.96±23.47
56
47.64±40.11
84
2.78±1.50
54
5.47±4.35
79
6.05±5.13
85
2.1±1.27
61
2.33±1.78
76
1.22±0.99
81
Mean
Ratio
Mn/P
Zn/P
Cu/P
B/P
Fe/K
Mn/K
K/Zn
K/Cu
K/B
Fe/Mn
Fe/Zn
Fe/Cu
Fe/B
Mn/Zn
Mn/Cu
Mn/B
Zn/Cu
Zn/B
Cu/B
Low-yielding population
Coefficient
of variance
(%)
178.26±84.75
48
77.88±39.68
51
38.03±17.64
46
36.11±23.98
66
74.65±21.33
29
11.22±3.5
31
0.22±0.07
32
0.46±0.21
46
0.71±0.61
86
7.21±2.82
39
16.1±5.17
32
32.61±11.64
36
49.86±39.4
79
2.47±1.07
43
5.18±2.89
56
7.85±7.86
100
2.18±1.03
47
3.25±2.63
81
1.62±1.31
81
Mean
Univariate one-way
ANOVA
F-value
p-value
3.06
0.041
1.25
5.53
55.28
4.62
0.0003
1.185
7.695
10.345
35.282
11.864
0.142
2.646
0.285
3.273
0.231
7.305
5.483
0.082
0.839
0.266
0.020*
<0.05*
0.033*
0.986
0.278
0.006*
0.002*
<0.05*
0.001*
0.707
0.106
0.594
0.072
0.631
0.008*
0.020*
*: Significant at 5 % level of probability.
4.1.5
Norms for shoot material and leaf tissue
All ratios with a significant difference between the high and low-yielding populations
were considered as DRIS norms (Table 4.7). However, ratios that yielded nonsignificant variance relations between the low and high-yielding population were
included in the analysis according to Beaufils and Sumner (1977) that retained the
highest variance relation in order to be sure to take into consideration the interaction
with other elements.
56
Results and discussion
Table 4.7
expression
N/K
Fe/N
Mn/N
N/Zn
N/Cu
N/B
Fe/P
B/P
Fe/K
Mn/K
K/B
Fe/Mn
Fe/Zn
Fe/Cu
Mn/B
Zn/B
Cu/B
Statistical parameters of nutrients norms for high yielding population in
irrigated wheat (2007-2009) for shoot and leaf tissue.
Norms for leaf tissue
Coefficient
Mean
of variance
(%)
0.91±0.21
24
111.72±27.41
25
14.28±4.98
35
0.2±0.07
34
0.38±0.15
40
0.45±0.39
87
1565.83±606.73
39
45.09±27.38
61
98.53±21.85
22
12.32±3.39
27
0.49±0.40
81
8.55±2.77
32
21.23±6.45
30
41.96±23.47
56
6.05±5.13
85
2.33±1.78
76
1.22±0.99
81
Expression
N/P
Fe/N
Mn/N
N/Zn
K/P
Fe/P
Mn/P
Zn/P
Cu/P
B/P
Fe/K
Mn/K
K/Zn
Fe/Cu
Mn/Zn
Mn/Cu
Zn/Cu
Norms for shoot material
Coefficient
Mean
of variance
(%)
11.47±5.35
47
83.61±31.69
38
13.32±7.04
53
0.16±0.05
32
16.66±7.21
43
898.19±426.33
47
141.36±67.03
47
76.49±38.36
50
35.12±14.68
42
37.1±27.34
74
55.01±15.26
28
8.53±2.19
26
0.23±0.06
26
26.26±7.48
28
1.97±0.73
37
4.07±1.07
26
2.18±0.54
25
According to the original concept of the DRIS, the system should be
applicable irrespective of variety and age of the sampled plants Sumner (1981). The
author also rated this capacity of the DRIS as a major advantage over the critical value
approach. Keeping this advantage in mind, the norms of leaf tissue (sampled at GS-39)
and shoot material (sampled at GS-29) should be similar. To test the validity of this
approach, an analysis of variance (ANOVA) was performed (Table 4.8). The ANOVA
was applied for the ratios that were similar in both samples (GS-29 and GS-39) and
significantly different from the low-yielding population: Fe/N, Mn/N, N/Zn, Fe/P, B/P,
Fe/K, Mn/K, and Fe/Cu. It can be seen that the norms for leaf tissue and shoot material
differ slightly. Often, slightly higher values can be observed for leaf tissue than for
shoot material. However, these differences are non-significant at p = 5 %.
57
Results and discussion
Table 4.8
ANOVA between GS-29 and GS-39 norms for irrigated wheat (20072009)
Source of Variation
Between
populations
Within populations
SS
df
MS
F
P-value
F crit.
36840
2693350
1
14
36840
192382.2
0.191494
0.668352
4.60011
From the above results, it can be concluded that the developed DRIS norms
can be universally applied in the Hyderabad district. Originally DRIS was developed
by Beaufils (1973) for the interpretation of leaf or plant analyses. This comprehensive
system identifies all nutritional factors limiting crop yield. It was also developed by
different researcher for a many horticultural, fruit and ornamentals plant species.
Among the main horticultural species already diagnosed by this method are lettuce
(Sanchez et al., 1991), tomato (Car on et al., 1991; Hartz et al., 1998; Parent et al.,
1993; Mayfield et al., 2002), potato (Mac Kay et al., 1987; Parent et al., 1994a), onion
(Caldwell et al., 1994), cucumber (Mayfield et al., 2002), and carrot (Parent et al.,
1994b). There are only few references about the application of the DRIS method for
irrigated crops.
The only available DRIS norms for wheat in literature were only developed for
macronutrients by Sumner et al. (1977b) and Sumner (1981) for Washington and
Florida, USA. There cannot be a direct comparison between the DRIS norms developed
for Hyderabad district and the norms for Washington. First, these norms are only for
macronutrients and secondly, they are for different agro-climatic conditions. Although
different researchers argue that the DRIS norms developed within one region can also
be used for another, the experiment by Sumner (1981) clearly showed that the
universality of the norms is misleading, as they can lead to a wrong interpretation of the
results. Reis (2002) took four different norms developed for corn by Sumner (1977),
Dara et al. (1992), Escano et al. (1981), and Elwali et al. (1985). Using these norms, the
order of nutrient requirement was different in all interpretations. Reis (2002) reported
that changes of the index signal for the same nutrient among the different standards
were observed, e.g., the Mg index was negative when using the DRIS norms of Sumner
(1977) and Dara et al. (1992), while it was positive when using those of Escano et al.
(1981) and Elwali et al. (1985). Reis (2002) reported that the difference in norms is not
because they were not reliable but because they were developed for different regions.
58
Results and discussion
Therefore, these norms can be useful in the geographic region where they were derived,
but the universal application of these four DRIS norms should not be recommended to
evaluate (corn) nutritional status.
Several factors make the universal use of DRIS norms unsuitable, such as
climate, soil, variety, etc. It can be stated that the nutrient concentrations of the highyielding (or desirable) group used by Sumner (1977), Escano et al. (1981), and Elwali et
al. (1985) to derive their DRIS norms were different, leading to a different optimum
nutrient balance.
The farmers need to know the nutrient concentrations normally found in their
high-yielding crops and to adopt those DRIS standards with nutrient ratio values similar
to those found in their high-yielding crops before using the DRIS to evaluate the crop
nutritional status. Therefore, in the absence of DRIS norms locally calibrated, norms
developed under one set of conditions should only be applied to another if the nutrient
concentrations of high-yielding plants from these different sets of conditions are similar.
4.2
DRIS to evaluate the nutritional status of wheat in Hyderabad
After developing the DRIS norms for irrigated wheat in Hyderabad, DRIS was applied
to diagnose the nutrient status in the low -yielding population. The results are presented
in the following sections.
4.2.1
Function values
After establishing the norms, the DRIS function values for nutrients were calculated
using the original procedures proposed by Beaufils (1973; see section 3.5.4). The
function values for the leaf tissue (GS-39) and for the shoot material (GS-29) are shown
in Appendix 6 and Appendix 7, respectively. After knowing the function values, the
index values were calculated for each nutrient.
4.2.2
Index values for interpretation of the nutrient concentrations in leaf tissue
and shoot material
After calculating the function values, the methodology presented in section 3.5.3 was
used to determine the index values for leaf tissue and shoot material. The index value
shows requirement of that particular nutrient at the two different growth stages, i.e., GS-
59
Results and discussion
29 and GS-39. For example, IN indicates the N requirements in the leaf tissue or shoots
material. There are both positive and negative values of the indices in the entire dataset
(Appendix 8 and Appendix 9), and the sum of all indices is zero. This shows the correct
implementation of the DRIS method.
The average index values at GS-39 are different to those at the GS-29 (Figure
4.1). The average index value for N is +47.04, which indicates that N is sufficient in the
leaf tissue. The values of P and K are 58.49 and 21.67, respectively. These positive
values show that N P and K are sufficient in the leaf tissue, and that the wheat plants do
not require any fertilization. The micronutrients are almost in good balance, i.e., neither
sufficient nor deficient except Fe. The index value of Fe is -93, whereas the index
values for Mn, Zn, Cu, and B are -21.88, +17.77, -1.38 and -28.68, respectively. The
Nutritional Balance Index was 56.45, which means that the there is no high nutritional
imbalance. The interpretation of the data according to the three standards deficient,
adequate and medium shows the mixed results. Appendix 10 shows that all the nutrients
are adequate except Zn and B, which are in high concentrations.
Index value
100,00
50,00
0,00
-50,00
-100,00
-150,00
IN
Figure 4.1
IP
IK
IFe
IMn
Nutrient index
IZn
ICu
IB
Nutrient index values for leaf tissue at GS-39
The average index values of the shoot material are different for different
nutrients (Figure 4.2). The average index value for N is -54.27 at GS-29, which
indicates that N was deficient in plants at this growth stage of development. The values
of P and K are also negative, indicating deficiency of these nutrients. The micrnutrients, however, are positive, which indicates that these nutrients were not in short
supply (see Appendix 9). The interpretation for the nutrients for this dataset is based on
60
Results and discussion
the methodology described in section 3.5.1.1. The NBI averaged around 75.23, which
indicates some nutritional imbalance. Santos (1997) and Mourão Filho & Azevedo
(2003) also suggested that the lower the NBI, the better the nutritional balance. The
three criteria, namely deficient, adequate and high nutrient concentrations were then
determined (Appendix 11).
60
Index value
40
20
0
-20
-40
-60
IN
Figure 4.2
4.3
IP
IK
IFe
IMn
Nutrient index
IZn
ICu
IB
Nutrient index values for whole shoot material at GS-29
Comparing the critical level approach and the DRIS
Critical levels for irrigated wheat are taken from the guidelines provided by Reuter and
Robinson (1997) (Table 4.9 and Table 4.10). These guidelines were used for
interpretation of the nutrient concentrations in leaf tissue and shoot material. The
average concentrations of the leaf tissue showed N to be deficient, whereas all other
nutrients were adequate. These results coincide with the results of the DRIS. DRIS
always gives relative information; therefore, according to DRIS, the concentrations of B
and Zn are relatively higher compared to the other nutrients according to Reuter and
Robinson (1997), which are adequate (Table 4.9)
61
Results and discussion
Table 4.9
Critical levels for irrigated wheat for leaf tissue according to Reuter and
Robinson, (1997)
Nutrient
Deficient critical Marginal Adequate
High
Toxic
N (%)
<3.4
3.7-4.2
4.0-6.5
5.5-6.5
>6.5
P (%)
0.16-0.2 0.44-47
0.2
>0.2
K (%)
<2.5
2.5-6.0
>6.0
Zn (mg\kg)
4.0-6.0
17.0-25.0
Fe (mg\kg)
<10
10-300 301-500
>10
Cu (mg\kg)
2.0-4.0
5.0-50
Mn (mg\kg)
<10
10-13
20-100
>400
>10
B (mg\kg)
<3
3.0-25
>30
<3
The average concentration of nutrients in the shoot material GS-29 is similar
to that in the leaf tissue. In the shoot material as well N is deficient whereas all the other
nutrients are adequate. The DRIS calculation also showed N to be in short supply,
whereas Mn and B are present in high concentrations.
Table 4.10
Critical level for irrigated wheat for shoot material according to Reuter
and Robinson, (1997)
Nutrient
Deficient Critical Marginal Adequate
High
Toxic
N (%)
<3.4
3.7-4.2
3.25-5.4
5.5-6.5
>6.5
P (%)
<0.2
0.3
0.3.0.5
K (%)
<1.5
1.5-2.3
1.5-2.3
4.1-5.5
>6.0
Zn (mg\kg)
<13
13-21
19-84
Cu (mg\kg)
5.6
Mn (mg\kg)
<12
25-300
300-600 700
B (mg\kg)
<3
3-4.5
4.5
-
62
Conclusions
5
CONCLUSIONS
As outlined earlier, soils in the study area are considered as deficient in N, P, Zn and B,
whereas K, Cu, Fe and Mn contents are adequate. However, the results of the plant
analysis at both growth stages, i.e., GS-29 and GS-39, show that the nutrient
concentrations in the plant tissues did not correspond to this observation. To which
extent nutrient interactions are an important factor possibly affecting affect the nutrient
availability of plants is discussed below.
Other than hypothesized, Zn and B in the plant tissues were sufficient. Generally,
relatively high doses of N fertilizer had been applied to the study plots. This was also
reflected by the total nutrient levels and DRIS indices. It has been shown that
ammonium from N fertilizers can indirectly acidify the soil solution via nitrification and
physiologically by decreasing the pH of the rhizosphere. In neutral or alkaline soils,
acidification of the rhizosphere of plants fed with ammonium can enhance the uptake of
Zn and B (Jurkowska et al. 1996; Fageria and Baligar 2005; Diatta and Grzebisz 2006).
Furthermore, the form of N fertilizer can affect B accumulation in plants. Wójcik (2000)
reported that in B-deficient soils, N added as Ca (NO3)2 and NH4NO3 increased the
availability and uptake of B by the roots. This increase was attributed to the fact that
NO3 inhibited B sorption on Fe and aluminum oxides and increased B in the soil
solution. Studies show that N fertilizers such as ammonium sulphate ((NH4)2SO4) can
have a marked acidifying effect on soils and so lead to an increase in the availability of
Zn to crops in soils of relatively high pH status. In alkaline soils, rhizosphere
acidification in plants fed with ammonium can enhance mobilization of sparingly
soluble Ca3PO4and thereby favor the uptake of P (Gahoonia et al. 1992), as well as the
uptake of micronutrients such as B (Reynolds et al., 1987), Fe, Mn and Zn. Cakmak et
al. (2000) demonstrated that phytosiderophores released from cereal roots enhanced the
solubility and mobility of Zn by chelation from sparingly soluble Zn compounds in
calcareous soils.
Sufficient Zn can also be attributed to P fertilizer application. Alloway (2008) reported
that application of P fertilizers can lead to an increase in the Zn concentration in plants.
This can be explained by an increase in acidity in the root environment (and enhanced
uptake of Zn) or by Zn impurities in the P fertilizer. Commercial fertilizers, such as
superphosphate, may contain appreciable amounts of Zn and also acidify the soil due to
63
Conclusions
their high sulphate content. The author further mentioned that N can affect Zn
availability in two possible ways. Firstly, increased protein formation following N
fertilizer additions can lead to Zn being retained in the root as a Zn-protein complex and
not translocated to the shoot. Secondly, acidifying N fertilizers, such as ammonium
nitrate and ammonium sulphate can lead to a decrease in the rhizosphere soil pH and an
increase in Zn availability. In the study area, farmers apply heavy doses of N and P
fertilizers, which thus subsequently may lead to relatively higher Zn and B
concentrations in plant tissues.
The data in this study reveals a deficiency of N during an early growth stage of wheat
(visible in the field), i.e., GS-29, whereas sufficiency was found later at GS-39. This
trend was consistent, i.e., low availability of soil N during the early growth stage, and
was due to the subsequent fertilizer application and internal recycling of N at stage GS39. Improved new growth after nutrient loading may be attributed to an increased net N
retranslocation (Grime, 1979; Malik and Timmer, 1998; Salifu and Timmer, 2001). One
possible reason for the contradictions (no trace element deficiency found in contrast to
what has been hypothesised and what is reported for this area) is the irrigation. In case
of drought, nutrient levels could be high due to an inhibited growth (concentration
effect), but they would probably be too low to sustain higher yields even if more water
were available. Based on the results of this study in the district Hyderabad, Pakistan, it
is recommended that fertilization of wheat needs more attention specifically regarding
application of N fertilizers at earlier growth stages, which ultimately may affect the
uptake of micronutrients and the crop yield. The results of the critical level approach
and the Diagnosis and Recommendation Integrated System (DRIS) are in close
agreement. The results of DRIS greatly depend on the selection of the cut-off value. The
Cate and Nelson (1979) procedure applied to compare the cut-off value between the
high-yielding and low-yielding population was satisfactory. However, changing the cutoff value affects the DRIS norms and hence the DRIS interpretation. Therefore, it can
be concluded that the cut-off value between high- and low-yielding populations is of
significant importance and that application of the Cate and Nelson (1979) procedure
provides a reliable interpretation.
64
References
6
REFERENCES
Adsule RN and Kadam SS (1986) Quality of wheat. Salunkhe DK, (eds) Quality of
Wheat and Wheat Products. New Delhi India, Metropolitan Book Co, pp 1–6
Agbenin JO (1998) Quantifying soil fertility changes and degradation induced by
cultivation techniques in the Nigerian savanna. Advances in Geoecology
31:435-441
Ahmad N and Rashid M (2004) Fertilizer and their use in Pakistan. Government of
Pakistan, Planning and Development Division NFDC, Islamabad
Ahmad Z et al (1988) Weed management strategies for wheat in the irrigated Punjab.
Farmers Knowledge Adoption and Economics, Pakistan Agricultural Research
Council, Islamabad (PARC/ CIMMYT Paper No 88-3)
Ahmed N and Rashid M (2003) Fertilizer use in Pakistan. NFDC Planning and
development division, Islamabad, pp: 94
Alloway, BJ (2008) Zinc in soils and crop nutrition. IZA Publications, International
Zinc Association, Brussels
Alexandratos N (1995) World Agriculture: Towards 2010 an FAO Study, Jhon Wiley,
New York
Amjad M Anjum MA and Akhtar N (2004) Influence of phosphorous and potassium
supply to the mother plant on seed yield quality and vigor in pea. Asian Journal
of Plant Science 3(1): 108-113
Anderson OE and Harrison RM (1970) Micronutrient variation within cotton leaf tissue
as related to variety and soil location. Commun. Soil Sci. Plant Anal 1:163-172
Andriulo AE et al (1990ª) Sistemas de producción con trigo en el Sudoeste bonaerense.
II Algunas propiedades fisicas edáficas ligadas al agua Actas II Congreso
Nacional de Trigo, Pergamino, Argentina, I: 219–225
Andriulo AE (1990b) Sistemas de producción con trigo en el Sudoeste bonaerense I
Propiedades fisicomecánicas del suelo Actas II. Congreso Nacional de Trigo,
Pergamino, Argentina, I: 209–218
Arshad LA (1976) Effect of NP and their methods of application on the growth and
yield of wheat. Dissertation, University of Faisalabad
Aslam Muhammad (1991) Zero tillage wheat pilot production programme for the
Punjab rice-wheat system. Coordinated Wheat Barley and Triticale Programme,
National Agricultural Research Center (NARC), Islamabad
Bailey JS (1997) The diagnosis and recommendation integrated system (DRIS) for
diagnosing the nutrient status of grassland swards: I Model establishment. Plant
Soil 197:109–117
Bailey JS (1997) The diagnosis and recommendation integrated system (DRIS) for
diagnosing the nutrient status of grassland swards: I Model establishment. Plant
and Soil 197:127-135
Beaufils ER (1973) Diagnosis and recommendation integrated system (DRIS) A general
scheme for experimentation and calibration based on principles developed from
research in plant nutrition. Soil Sci Bul Univ 1 Natal Pietermaritzburg, South
Africa
Beaufils ER and Surnner ME (1976) Application of the DRIS approach for calibrating
soil and plant factors in their effects on yield of sugarcane - SASTA Proc,
50:118-124
65
References
Beaufils ER (1971) Physiological Diagnosis, a guide for improving maize production
based on principles developed for rubber trees. J. Fert. Soc. S. Afr. 1:1-31
Beaufils ER (1972) A contribution to plant physiological diagnosis Analysis of a long
term factorial fertilizer experiment with maize on acid Hutton soil series. J.Fert.
Soc SAfr, 1:23-28
Beaufils ER (1976) Plant/soil/environment calibration (DRIS) 4th International
Colloquium on the control of plant nutrition. Vol 1 , Ghent, Belgium, pp21-36
Beaufils, ER and Sumner ME (1977) Effect of time of sampling on the diagnosis of the
N, P, K, Ca, and Mg requirements of sugarcane by the DRIS approach. Proc.
South Afr.Sugar Technol. Assoc. 51: 62–67
Beaufils ER (1971) Physiological diagnosis - a guide for improving maize production
based on principles developed for rubber trees. Fertilizer Society of South
African Journal 1:1-30
Bergmann W (ed) (1992) Nutritional disorders of plants colour Atlas Gustav. Fischer
Verlag, Jena, Stuttgart, p386
Beverly RB (1993) Re-evaluation reveals weaknesses of DRIS and sufficiency range
diagnoses for wheat corn and alfalfa. Comm. Soil Sci. Plant Anal. 24:487-501
Benton Jones , Wolf B and Mills HA (1991) Plant Analysis, Handbook. Micro-Macro
Publishing, Athens Georgia, p 213
Bierman PM and Rosen CJ (1994) Phosphate and trace metal availability from sewagesludge incinerator ash. Journal of Environmental Quality 23:822-830
Borlaug NE and Dows well CR (1993) To nourish infertile soil that feeds a fertile
population that crowds a fragile world. Fertilizer News 38:11–20
Borlaug NE (1983) Contributions of conventional plant breeding to food production.
Science 219:689-693
Bouis HE (2003) Micronutrient fortification of plants through plant breeding: can it
improve nutrition in man at low cost? Proc. Nutr. Soc 62:403-411
Bremner JM Mulvaney CS (1982) Nitrogen-total. Methods of Soil Analysis. Mille RH,
(eds) Soil. Sci Soc. Am. Madison WI: 9(2):595-624
Byrnes BH and Bumb BL (1998) Population growth, food production and nutrient
requirements. In Journal of Crop Production. Ed. Z. Rengel. The Haworth Press,
New York, pp 1–27
Cakmak I, Ozkan H, Braun HJ, Welch RM and Romheld V (2000) Zinc and iron
concentrations in seeds of wild, primitive and modern wheats. Food Nutr. Bull.
21: 401–403
Caldwell JO et al (1994) Development and testing of preliminary foliar DRIS norms for
onions. Hort Science 29:1501-1504
Campbell CA (1992) Comparative effects of grain lentil-wheat and monoculture wheat
on crop production N economy and N fertility in a Brown Chernozem. Can J
Plant Sci 72:1091-1107
Caron J Parent LE and Gosselin A (1991) Effect of nitrogen and salinity levels in the
nutrient solution on the DRIS diagnosis of greenhouse tomato. Communications
in Soil Science and Plant Analysis 22:879-892
Cate RB and Nelsen LA (1971) A simple statistical procedure for partitioning soil test
correlation data into two classes. Soil Sci .Soc. Amer. Proc 35:658–660
Cate RB Jr and Nelson LA (1971) A simple statistical procedure for partitioning soil
test correlation data into two classes. Soil Sci Soc Am Proc 35:658-659
66
References
Cate RB Jr and Nelson LA (1965) A rapid method for correlation of soil test analysis
with plant response data North Carolina. Agric Exp Stn International soil
Testing Series Bull No 1
Chapman SB (1967) Nutrient budgets for a dry heath ecosystem in south of England. J
Ecol. 55:677-89
Chaudhry TM and Qureshi SM (1982) Review of work. Agricultural chemistry section,
Agriculture research institute, Tandojam, government of Sindh: (19):26-80.
Chowdhry MA et al (1995) Correlation analysis for grain yield and quality traits in
wheat. J Agric Res; 33(2):71–74
Chowdhury FA and Hore KC (1995) Effect of zinc and phosphorus on the yield of
wheat. J Bangladesh Agril Sci 23(1):125-128
Criley RA and Carlson WH (1970) Tissue analysis standards for various floricultural
crops. Florist's Rev 146:19-20, 70-73
Dara ST, Fixen PE and Gelderman RH (1992) Sufficiency level and diagnosis and
recommendation integrated system approaches for evaluating the nitrogen status
of corn. Agron J.84:1006-1010
Diatta JB and Grzebisz W (2006) Influence of mineral nitrogen forms on heavy metals
mobility in two soils. Part I. Pol. J. Environ. Stud. 15 (2a), 56-62.
Dyson T (1999) World food trends and prospects to 2025. Proc Natl Acad Sci USA 96
:5929–5936
Elwali AMO and Gascho GJ (1984) Soil testing foliar analysis and DRIS as guides for
sugarcane fertilization. Agron J. 76: 466-470
Elwali AMO, Gascho GJ and Sumner ME (1985) DRIS norms for 11 nutrients in corn
leaves. Agron. J. 77: 506–508
Escano CR, Jones CA and Uehara G (1981) Nutrient diagnosis in corn on hydric
dystrandepts: II comparison of two systems of tissue diagnosis. Soil. Sci Soc.
Am. J. 45: 1140–1144
Evans FE and Wennerström H (1994) The colloidal domain – where physics chemistry
biology and technology meet. Cambridge,VCH
Evans (1959) Elements other than N P and K in the mineral nutrition of sugarcane.
ISSCT Proc 10: 473-508
Fageria NK and Baligar VC (2005) Enhancing nitrogen use efficiency in crop plants.
Advances in Agronomy 88: 97–185
FAO (1999) FAOSTAT database gateway Disponível em: http://wwwfaoorg Acesso
em: fev (Rome Italy)
FAO (2004) The State of Food Insecurity in the World: Monitoring progress towards
the World Food Summit and Millennium, Development Goals Food and
Agricultural Organisation of the United Nations, Rome
FAO (2004) Impact of climate change on agriculture in Asia and the Pacific. Twentyseventh FAO regional conference for Asia and the Pacific Beijing, China 17–21
May 2004
Galantini JA (2000) The effects of crop rotation and fertilization on wheat productivity
in the Pampean semi-arid region of Argentina 2 Nutrient balance yield and grain
quality. Soil. Till Res 53:137–144
Galantini JA (1992) RotacioÂn y fertilizacioÂn en sistemas deproduccioÂn de la
regioÂn semiaÂrida bonaerense IProductividad (calidad y rendimiento) del trigo
Rev Facultad de AgronomõÂa 13: 67-75
67
References
Galantini JM (1984) Statistical procedures for agricultural research. 2nd Edition Wiley,
New York: 680
Gahoonia, TS Nielsen NE (1992) Control of pH at soil-root interfaces. Plant and Soil
140: 49–54.
Gorsline GW, Baker DE and Thomas WI (1965) Accumulation of eleven elements by
field corn (Zea mays L).Penn State. Univ. Exp. Sta Bull 725: 30
Graham J R and Campbell RH (2001) The theory and practice of corporate finance:
evidence from the field. Journal of Financial Economy 60: 187–243
Graham R (1999) Breeding for micronutrient density in edible portions of staple food
crops: conventional approaches. Field Crops Research 60: 57–80
Grime, JP (1979) Plant strategies and vegetation processes. John Wiley and Sons,
London, UK
Gruhn P, Goletti F and Yudelman M (2000) Integrated nutrient management soil
fertility and sustainable agriculture: Current issues and future challenges Food
Agriculture and the Environment Discussion Paper 32, International Food Policy
Research Institute, Washington DC
Haase DL and Rose R (1995) Vector analysis and its use for interpreting plant nutrient
shifts in response to silvicultural treatments. For Sci 41:54–66
Hagras AM (1987) Influence of seed rates and nitrogen fertilization on yield of durum
wheat. Wheat, Barley and Tropical Absts 4(1):322
Hanson RG (1981) DRIS Evaluation of N P K status of determinant soybeans in Brazil.
Commun. Soil Sci. Plant Nutr. 12: 933–948
Hartz TK, Miyao EM and Valencia JG (1998) DRIS evaluation of the nutritional status
of processing tomato. HortScience. Alexandria 33:830-832
Hussain F and Yasin M (2003) Soil fertility monitoring and management in rice-wheat
system: Annual Report LRRP, NARC, Islamabad: 1-14
Hussain F and Yasin M (2004) Soil fertility monitoring and management in rice-wheat
system: Annual Report LRRP, NARC, Islamabad: 1–33
Hussain N (1973) Effect of different NP levels on the growth and yield of two wheat
varieties Maxipak-65 and Ch-70. Dissertation, University of Agriculture,
Faisalabad
IFADATA (2009) Accessed at http://wwwfertilizerorg/ifa/ifadata/search between
February and April 2009
IUCN (2004) Agriculture: The Chitral conservation strategy. IUCN, Pakistan Sector
paper, IUCN Chitral Office, Pakistan
Jones JB jr and Mederski HJ (1964) Effect of time and soil moisture level on the
mineral composition of field grown soybean plants. Agron. Abst. Am Soc.
Agron. Madison, Wisconsin: 32
Jones CA and Bowen JE (1981) Comparative DRIS and crop log diagnosis of sugar
cane tissue analysis. Agron. J. 73: 941–944
Jones JB jr (1993) Modern interpretation systems for soil and plant analysis in the
United States of America. Aust. J. Exp Agric. 33:1039–1043
Jones Wolf B and Mills HA (1991) Plant Analysis, Handbook. Micro-Macro
Publishing, Athens Georgia, p 213
Jones JB jr (1967) Interpretation of plant analysis for several agronomic crops. Soil
Testing and Plant Analysis, Shuman GW and Welch RM (Ed), Soil Science
Society America, Book Series 4 (2):371-426
68
References
Jones CA and Bowen JE (1981) Comparative DRIS and crop log diagnosis of sugarcane
tissue. Agron. J.73:941-944
Jones CA (1981) Proposed modifications of the diagnosis and recommendation
integrated system (DRIS) for interpreting plant analysis. Communications in
Soil Science and Plant Analysis 12:785-794
Jurkowska H, Rogo A and Wojciechowicz T (1996) FitotoksycznoϾ Cu, Zn, Pb i Cb
w zale¿noœciod rodzaju nawozu azotowego. [Phytotoxicity of Cu, Zn, Pb and
Cd depending on the type of a nitrogen fertilizer]. Zesz. Probl. Post. Nauk Rol.,
434:955. (in Polish)
Kaushik RD, Gupta VK and Singh JP (1993) Distribution of zinc cadmium and copper
forms in soils as influenced by phosphorus application. Arid Soil Res Rehabil 7:
163–171
Kenworthy AL (1961) Plant analysis and fertilizer problems. Publication 8 Am Inst of
Biological Sciences, Washington DC: 28-43
Khan BR et al (1986) Effect of different tillage implements on the yield of wheat
Pakistan. Journal of Agricultural Research 7:3 141–147
Khokhar MA (1981) Growth and yield of two wheat genotypes as influenced by
different plant populations and fertilizer levels. Dissertation, University of
Agriculture, Faisalabad
Kirilav Yu I (1986) Phosphorus rate and yield structure of spring wheat. Wheat, barley
and tropical Absts. 3(5):42-52
Larson CA (1964) Production of five varieties of wheat with seven fertility increments
and four water treatments at Lyallpur. Pak. J. Agri Sci I: 12-16
Leite R de (1992) A Avaliação do estado do cafeeiro conilon no estado do Espírito
Santo utilizando diferentes métodos de interpretação de análise foliar Viçosa:
Universidade Federal de Viçosa, (Tese de Doutorado) p,87
Letzsch WS and Sumner ME (1984) Effect of population size and yield level in
selection of Diagnosis and Recommendation Integrated System (DRIS) norms.
Communications in Soil Science and Plant Analysis15: 997-1006
Loneragen JP (1997) Plant nutrition in 20th and perspectives for the 21 century. Plant
soil 196:163-174
Mackay DC, Carefoot JM and Entz T (1987) Evaluation of the DRIS procedure for
assessing the nutritional status of potato (Solanum tuberosum L). Commun. Soil
Sci. Plant Ana.l18:1331–1353
Malik V and Timmer VR (1995) Interaction of nutrient-loaded black spruce seedlings
with neighbouring vegetation in greenhouse environments. Can. J. For. Res.
25:1017–1023.
Mastalerz JW (1977) The greenhouse environment. John Wiley and Sons, New York,
pp510-516
Mayfield JL (2002) Effect of current fertilization practices on nutritional status of
double-cropped tomato and cucumber produced with plasticulture. Journal of
Plant Nutrition 25:1-15
Mead DJ (1984) Diagnosis of nutrient deficiencies in plantation. Nutrition of Plantation
Forests, Bowen GD Nambiar EKS (eds). (Academic Press London): 250–291
Memon KS (1984–85, 1985–86) Cooperative research program on micronutrient status
of Pakistan–soils. 2nd Annual Report Department of Agriculture Chemistry,
Sindh Agriculture University, Tandojam
69
References
Meynard MJ (1984) Relationship between growth and development of winter wheat
during shoot elongation: effect of nutrition field crop. Absts 35(4): 2920
Miglierina AM (1995) Rotación y fertilización en sistemas de producción de la región
semiárida bonaerense II Cambios en algunas propiedades químicas del suelo
Rev Facultad Agronomía 15: 9–14
Miller TD (1992) Growth stages of wheat. Better crops with plant food. Potash
Phosphorus Institute. 76:12-17
Mourão Filho (2004) FAA DRIS: Concepts and applications on nutritional diagnosis in
fruit crops. Scientia Agricola.61:550-560
Munson RD (1969) Plant analysis, varietal and other considerations. Proceeding
symposium on plant analysis, Greer F (ed), International Min. & Chem. Corp.,
Skokie, I(ll):85-104
Murphy J and Riley JP (1962) A modifed single solution method for the determination
of phosphate in natural waters. Anal Chim Acta 27:31-36
NFDC (2001) Balanced fertilization through phosphate promotion. Terminal report,
NFDC Planning and development division, Islamabad
PARC (2002) Effect of boron ob rice productivity. Annual Report 2002, Pakistan
Agriculture Research Council, Islamabad p, 97
Parent LE, Cambouris AN and Muhawenimana A (1994a) Multivariate diagnosis of
nutrient imbalance in potato crops. Soil Science Society of America Journal
58:1432-1438
Parent LE, Karam A and Visser SA (1993) Compositional nutrient diagnosis of the
greenhouse tomato. Hort Science 28:1041-1042
Pinstrup-Andersen P (1999) Selected aspects of the future global food situation. In: 25th
International Fertilizer Industry Association Enlarged Council Meeting, Rome
Italy
Pinstrup-Andersen P, Pandya-Lorch R and Rosegrant MW (1999) World food propects:
critical issues for the early twenty-first century 2020, Vision Food Policy
Report. International Food Policy Research Institute, Washington DC
Prevot P and Ollagnier M (1956) Méthode d’utilisation du diagnostic foliaire (Analyses
de Plantes et Problèmes des fumures minerals. Vle. Congr. Intern. Sci. du
Sol, Paris, II:177 - 192
Prevot P and Ollangnier M (1961) Law of the minimium and balanced nutrition. In
'Plant Analysis and Fertilizer Problems, Reuther W (Ed) American Institute of
Biological Sciences: Washington DC 8:257-77
Rashid A (1996) Secondary and Micronutrients, Soil Science. Rashid A (eds) National
Book Foundation, Islamabad: pp, 341-386
Rashid AE, Rafique E and Ryan J (2002) Establishment and management of boron
deficiency in crops in Pakistan: A country report In: Goldbach HE et al (eds)
Boron in Plant and Animal Nutrition Kluwer Acad Publication, New York, pp
339-340
Rashid A and Fox RL (1992) Evaluating internal zinc requirements of grain crops by
seed analysis. Agronomy Journal 84: 469-474
Reuter DJ and Robinson JB (eds) (1986) Plant Analysis: An Interpretation Manual.
Inkata Press, Melbourne
Reuter DJ et al (1983) Intra specific variation in the external and internal copper
requirements of subterranean clover. Agronomy Journal 75: 45–49
70
References
Reuter DJ, Edwards DG and Wilhelm NS (1997) Temperate and sub-tropical crops.
Plant analyses, An Interpretation Manual edited by DJ Reuter and JB Robinson
(CSIRO Publishing Australia), 2: 81-284
Reynolds SB, Scaife A and Turner MK (1987) Effect of nitrogen form on boron uptake
by cauliflower. Commun. Soil Sci. Plant Anal. 18:1143-1154
Rosegrant MW et al (2001) Global food projections to 2020: Emerging trends and
alternative futures. International Food Policy Research Institute, Washington DC
Rosell RA et al (1992) Effect of sorghum residues on wheat productivity in semi-arid
Argentina I Stover decomposition and N distribution. Crop. Sci. Total Environ
117/118: 253-261
Rosell (2000) The effects of crop rotation and fertilization on wheat productivity in the
Pampean semiarid region of Argentina 2 Nutrient balance yield and grain
quality. Soil and Till Res 53:137-144
Saleem M (1983) Water and fertilizer management in Pakistan. Proc 17th Coll Intern
Potash Inst Morcco: 359-385
Saleem M (1992) Efficient use of plant nutrients. Proc 4th National Congress of Soil
Science, Islamabad May 24-26, p, 5
Salifu KF and Timmer VR (2001) Nutrient retranslocation response of Picea mariana
seedlings to nitrogen supply. Soil Sci. Soc. Am. J. 65(3):905–913
Sanchez PA and Swaminathan MS (2005) Cutting world hunger in half. Science
307:357–359
Sanchez CA, Snyder GH and Burdine HW (1991) DRIS evaluation of the nutritional
status of crisphead lettuce. Journal of Horticulture Science 26:274- 276
Scherr SJ (1999) Soil degradation a threat to developing country food security by 2020?
Food Agriculture and the Environmental Discussion Paper 27. International
Food Policy Research Institute, Washington DC
Sedberry JE et al (1987) Plant-tissue analysis as a diagnostic aid in crop production. La
Agric Expt Sta Bull 783:15
Shahid M, Mohammad F and Tahir M (2002) Path coefficient analysis. Sarhad Journal
of Agriculture 18(4):383- 388
Shear CB and Faust M (1980) Nutritional ranges in deciduous tree fruits and nuts.
Horticulture Review 2:142–163
Shuman LM et al., (1992) Comparison of Mehlich-1 and Mehlich-3 extractable soil
boron with hot water-water extractable boron. Commun. Soil Sci. Plant Anal
23:1–14
Shuman LM (1988) Effect of phosphorus level on extractable micronutrients and their
distribution among soil fractions. Soil Science Society American Journal 52:
136–141
Sillanpaa M (1982) Micronutrients and the Nutrient Status of Soils. Soils Bull 48, FAO
(Rome)
Smith PF (1962) Mineral analysis of plant tissues. Annual Review Plant Physiology
13:81–108
Soltanpour PN, Malakouti MJ and Ronaghi A (1995) Comparison of DRIS and nutrient
sufficient range of corn. Soil Science Society of America Journal Madison
59:133-139
Sparks D (1978) Nutrient concentrations of pecan leaves with deficiency symptoms and
normal growth. Horticulture Science 13(3):256-257
71
References
Sumner ME (1981) Diagnosing the sulfur requirements of corn and wheat using the
DRIS approach. Soil Science Society America Journal 45: 87-90
Sumner ME (1977a) Use of the DRIS system in foliar diagnostic of crops at high yield
levels. Soil Science Plant Analyses 8:251–268
Sumner ME (1977) Application of Beaufils' diagnostic indices to maize data published
in the literature irrespective of age and conditions. Plant and Soil 46, 1
Sumner ME (1977) Preliminary N P and K foliar diagnostic norms for soybeans.
Agronomy Journal: 69
Sumner ME (1977) Preliminary NPK foliar diagnostic norms for wheat. Comm. Soil
Sci. Plant Anal. 8(2)
Sumner ME and Beaufils ER (1975) Diagnosis of the NPK requirements of sugarcane
irrespective of plant age and season using Beaufils' system (DRIS) Preliminary
observations. SASTA Proc 49:147-141
Sumner ME (1977) Use of the DRIS system in foliar diagnosis of crops at high yield
levels. Commun. Soil Sci. Plant Anal. 8:251-268
Sumner ME (1977a) Use of the DRIS system in foliar diagnostic of crops at high yield
levels. Soil. Sci Plant. Anal.8:251–268
Sumner ME (1981) Diagnosing the sulfur requirement of corn and wheat using foliar
analysis. Journal of Agronomy 45:87-90
Sumner ME (1982) The diagnosis and recommendation integrated system (DRIS) as a
guide to orchard fertilization. International Seminar on Leaf Diagnosis as a
Guide to Orchard Fertilization. Food Fertil. Technol Center for Asia and Pac
Reg Suweon, Korea
Timmer VR and Stone EL (1978) Comparative foliar analysis of young balsam is
fertilized with nitrogen phosphorus potassium and lime. Soil Science Society
American Journal 42:125-130
Tsadilas CD et al (1994) The availability of soil boron fractions to olive trees and barley
and their relationships to soil properties. Plant and Soil 162:211–217
Ulrich A (1952) Physiological bases for assessing the nutritional requirements of plants.
Annual Review Plant Physiology 3: 207–228
Ulrich A and Hills FJ (1967) Principles and practices of plant analysis In: Soil testing
and plant analysis Part II Madison (WI): Soil Science Society of America
(Special publication series; 2)
UNDP (1999) Human Development Report. Oxford University Press, Cary NC
Walworth JL et al (1986) Preliminary DRIS norms for alfafa. Journal of Agronomy
78:1046–1052
Walworth JL and Sumner ME (1987) The diagnosis and recommendation integrated
system (DRIS). Adv Soil Science 6: 149–188
Walworth JL and Sumner ME (1987) The diagnosis and recommendation integrated
system (DRIS) In: Stewart BA (ed) Advances in soil science. Springer-Verlag,
New York, 6:149–88
Walworth JL (1986) Preliminary DRIS norms for alfalfa. Agronomy Journal 78:104652
Walworth JL and Sumner ME (1987) The diagnosis and recommendation integrated
system. Advances in Soil Sciences 6:149-188
Warner RM and Fox RL (1972) Concentration and distribution of S Mg and five
micronutrients in macadamia in relation to yields. Hawaii Macadami Producers
Association Hilo, Hawaii, pp 26–37
72
References
Welch RM and Graham RD (2000) A new paradigm for world agriculture: productive
sustainable nutritious healthful food systems. Food Nutrition Bull 21:361–366
Welch RM (2002) The impact of mineral nutrients in food crops on global human
health. Plant and Soil 247:83-90
Wilson JR (1976) Variation of leaf characteristics with level of insertion on a grass tiller
I Development rate chemical composition and dry matter digestibility.
Australian Journal of Agriculture Research 27:343–354
Worley RE (1969) Pecan leaf analysis service summary 1967.University of Georgia
Exp Sta. Res. Rep. 55 p, 26
Wojcik P (2000) Behavior of soil boron and boron uptake by M26 apple rootstock as
affected by application of different forms of nitrogen rates. J. Plant Nutr. 23:
1227-1239.
Yadahalli YH and Patil SV (1974) Response of tall and dwarf wheat to date of sowing
and fertilizer levels under rainfall conditions. Mysore.J. of Agri. Sci. 8(1):20-30
and Soil and Fertilizer vol.38-1975.
Zadoks JC, Chang TT and Konzak CF (1974) A Decimal Code for the Growth Stages of
Cereals. Weed Research 14:415-421
73
Appendices
7
APPENDICES
Appendix 1
Cate and Nelson (1979) method to partition the dataset into low-yielding
and high-yielding populations
Total samples
181.00
Parameters
8.00
TSS
153.73
Yield
I
TX1
CSS1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
6.28
12.43
18.43
24.31
29.25
34.10
38.87
43.57
48.16
52.64
56.98
61.25
65.24
69.22
73.20
77.07
80.84
84.60
88.32
91.99
95.62
99.21
102.76
106.31
109.84
113.34
116.83
120.32
123.81
127.28
130.71
134.14
137.56
39.44
77.26
113.26
147.84
172.24
195.76
218.51
240.60
261.67
281.74
300.58
318.81
334.73
350.57
366.41
381.39
395.60
409.74
423.58
437.05
450.22
463.11
475.71
488.32
500.78
513.03
525.21
537.39
549.57
561.61
573.37
585.14
596.84
TX2
493.26
487.26
481.38
476.44
471.59
466.82
462.12
457.53
453.05
448.71
444.44
440.45
436.47
432.49
428.62
424.85
421.09
417.37
413.70
410.07
406.48
402.93
399.38
395.85
392.35
388.86
385.37
381.88
378.41
374.98
371.55
368.13
CSS2
1489.27
1453.27
1418.70
1394.30
1370.77
1348.02
1325.93
1304.86
1284.79
1265.96
1247.72
1231.80
1215.96
1200.12
1185.15
1170.93
1156.80
1142.96
1129.49
1116.31
1103.42
1090.82
1078.22
1065.76
1053.51
1041.33
1029.15
1016.97
1004.93
993.16
981.40
969.70
74
CSS1
0.01
0.04
0.09
1.13
1.96
2.67
3.31
3.96
4.65
5.42
6.18
7.33
8.33
9.20
10.15
11.18
12.12
13.03
13.94
14.83
15.72
16.60
17.41
18.18
18.95
19.68
20.36
20.98
21.60
22.24
22.84
23.42
CSS2
130.05
119.46
109.53
104.57
99.95
95.62
91.53
87.83
84.50
81.62
78.95
77.08
75.23
73.35
71.74
70.36
68.98
67.68
66.48
65.35
64.29
63.29
62.29
61.31
60.37
59.45
58.51
57.56
56.64
55.78
54.91
54.05
R2
15.40
22.26
28.69
31.24
33.70
36.06
38.30
40.29
42.01
43.38
44.62
45.09
45.65
46.30
46.73
46.96
47.24
47.50
47.69
47.84
47.96
48.03
48.16
48.29
48.40
48.53
48.70
48.90
49.10
49.25
49.42
49.61
(tonnsha-1)
6.28
6.15
6.00
5.88
4.94
4.85
4.77
4.7
4.59
4.48
4.34
4.27
3.99
3.98
3.98
3.87
3.77
3.76
3.72
3.67
3.63
3.59
3.55
3.55
3.53
3.50
3.49
3.49
3.49
3.47
3.43
3.43
3.42
Appendices
Appendix 1 continued
Total samples
181.00
Parameters
8.00
TSS
153.73
Yield
I
TX1
CSS1
TX2
CSS2
CSS1
CSS2
R2
(tonnsha-1)
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
140.97
144.36
147.74
151.09
154.42
157.73
161.03
164.32
167.60
170.85
174.10
177.33
180.55
183.77
186.95
190.13
193.30
196.46
199.61
202.76
205.91
209.04
212.16
215.28
218.38
221.48
224.57
227.65
230.73
233.80
236.87
239.94
243.00
246.05
249.09
252.12
255.12
608.46
619.92
631.35
642.57
653.66
664.61
675.50
686.33
697.09
707.65
718.21
728.64
739.01
749.38
759.49
769.61
779.65
789.64
799.56
809.48
819.41
829.20
838.94
848.67
858.28
867.89
877.44
886.97
896.46
905.89
915.31
924.73
934.10
943.37
952.61
961.82
970.82
364.72
361.33
357.95
354.60
351.27
347.96
344.66
341.37
338.09
334.84
331.59
328.36
325.14
321.92
318.74
315.56
312.39
309.23
306.08
302.93
299.78
296.65
293.53
290.41
287.31
284.21
281.12
278.03
274.95
271.88
268.81
265.74
262.68
259.64
256.60
253.56
250.56
958.07
946.61
935.19
923.97
912.88
901.92
891.03
880.21
869.45
858.89
848.32
837.89
827.52
817.15
807.04
796.93
786.88
776.90
766.97
757.05
747.13
737.33
727.60
717.86
708.25
698.64
689.09
679.56
670.08
660.65
651.23
641.80
632.44
623.16
613.92
604.71
595.71
23.98
24.54
25.08
25.63
26.18
26.74
27.28
27.81
28.32
28.86
29.37
29.88
30.39
30.88
31.40
31.90
32.40
32.88
33.37
33.83
34.28
34.74
35.19
35.63
36.08
36.52
36.95
37.37
37.79
38.21
38.61
39.01
39.40
39.80
40.19
40.58
41.00
53.19
52.37
51.54
50.76
50.00
49.27
48.54
47.82
47.11
46.43
45.75
45.09
44.44
43.77
43.16
42.54
41.93
41.33
40.73
40.12
39.50
38.90
38.31
37.71
37.13
36.54
35.96
35.37
34.78
34.20
33.61
33.01
32.41
31.83
31.24
30.65
30.11
49.80
49.97
50.16
50.31
50.44
50.56
50.68
50.81
50.93
51.02
51.13
51.23
51.32
51.44
51.50
51.57
51.65
51.73
51.80
51.89
52.01
52.10
52.18
52.29
52.37
52.47
52.57
52.68
52.79
52.90
53.02
53.15
53.29
53.41
53.53
53.66
53.74
3.41
3.39
3.38
3.35
3.33
3.31
3.30
3.29
75
3.28
3.25
3.25
3.23
3.22
3.22
3.18
3.18
3.17
3.16
3.15
3.15
3.15
3.13
3.12
3.12
3.1
3.10
3.09
3.09
3.08
3.07
3.07
3.07
3.06
3.05
3.04
3.04
3.00
Appendices
Appendix 1
Continued
Total samples
181.00
Parameters
8.00
TSS
153.73
Yield
I
TX1
CSS1
TX2
CSS2
CSS1
CSS2
R2
(tonnsha-1)
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
258.12
261.09
264.06
267.03
269.99
272.94
275.89
278.82
281.74
284.63
287.51
290.39
293.27
296.14
299.01
301.87
304.69
307.49
310.28
313.06
315.85
318.63
321.40
324.16
326.91
329.64
332.35
335.04
337.73
340.36
342.98
345.59
348.19
350.76
353.32
355.88
358.42
979.82
988.64
997.47
1006.29
1015.05
1023.75
1032.45
1041.04
1049.53
1057.89
1066.18
1074.48
1082.77
1091.01
1099.24
1107.42
1115.38
1123.22
1131.00
1138.76
1146.51
1154.23
1161.91
1169.52
1177.09
1184.54
1191.88
1199.12
1206.36
1213.27
1220.14
1226.95
1233.71
1240.31
1246.87
1253.42
1259.87
247.56
244.59
241.62
238.65
235.69
232.74
229.79
226.86
223.95
221.06
218.18
215.30
212.42
209.55
206.68
203.82
201.00
198.20
195.41
192.62
189.84
187.06
184.29
181.53
178.78
176.05
173.34
170.65
167.96
165.33
162.71
160.10
157.50
154.93
152.37
149.81
147.27
586.71
577.89
569.07
560.25
551.49
542.79
534.08
525.50
517.00
508.65
500.35
492.06
483.77
475.53
467.29
459.11
451.16
443.32
435.54
427.78
420.03
412.30
404.63
397.01
389.45
382.00
374.65
367.42
360.18
353.26
346.40
339.59
332.83
326.22
319.67
313.11
306.66
41.41
41.85
42.27
42.69
43.10
43.52
43.92
44.35
44.78
45.23
45.68
46.12
46.56
46.99
47.41
47.84
48.31
48.80
49.29
49.78
50.25
50.73
51.20
51.68
52.16
52.66
53.18
53.72
54.24
54.85
55.46
56.07
56.68
57.33
57.99
58.63
59.29
29.55
29.03
28.50
27.95
27.42
26.88
26.34
25.82
25.30
24.82
24.33
23.84
23.34
22.84
22.33
21.83
21.37
20.92
20.49
20.04
19.59
19.14
18.69
18.24
17.79
17.37
16.95
16.55
16.15
15.81
15.47
15.13
14.80
14.49
14.19
13.87
13.58
53.84
53.89
53.96
54.05
54.13
54.20
54.29
54.36
54.41
54.44
54.45
54.49
54.53
54.57
54.63
54.68
54.67
54.64
54.61
54.58
54.56
54.55
54.54
54.52
54.49
54.45
54.38
54.29
54.21
54.04
53.86
53.68
53.50
53.28
53.05
52.84
52.60
3.00
2.97
2.97
2.97
2.96
2.95
2.95
2.93
2.92
2.89
2.88
2.88
2.88
2.87
2.87
2.86
2.82
2.8
2.79
2.79
2.78
2.78
2.77
2.76
2.75
2.73
76
2.71
2.69
2.69
2.63
2.62
2.61
2.60
2.57
2.56
2.56
2.54
Appendices
Appendix 1
Continued
Total samples
181.00
Parameters
8.00
TSS
153.73
Yield
I
TX1
CSS1
TX2
CSS2
CSS1
CSS2
R2
(tonnsha-1)
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
360.93
363.44
365.93
368.41
370.89
373.37
375.84
378.30
380.75
383.20
385.62
388.04
390.45
392.86
395.25
397.64
400.02
402.40
404.78
407.15
409.51
411.86
414.17
416.44
418.70
420.94
423.18
425.41
427.63
429.85
432.05
434.24
436.42
438.59
440.73
442.86
444.97
1266.17
1272.47
1278.67
1284.82
1290.97
1297.12
1303.23
1309.28
1315.28
1321.28
1327.14
1333.00
1338.80
1344.61
1350.32
1356.04
1361.70
1367.36
1373.03
1378.65
1384.22
1389.74
1395.07
1400.23
1405.33
1410.37
1415.39
1420.36
1425.29
1430.22
1435.06
1439.86
1444.61
1449.32
1453.90
1458.44
1462.89
144.76
142.25
139.76
137.28
134.80
132.32
129.85
127.39
124.94
122.49
120.07
117.65
115.24
112.83
110.44
108.05
105.67
103.29
100.91
98.54
96.18
93.83
91.52
89.25
86.99
84.75
82.51
80.28
78.05
75.83
73.63
71.44
69.26
67.09
64.95
62.82
60.71
300.36
294.06
287.86
281.71
275.56
269.41
263.31
257.26
251.26
245.25
239.40
233.54
227.73
221.92
216.21
210.50
204.84
199.17
193.51
187.89
182.32
176.80
171.46
166.31
161.20
156.16
151.14
146.17
141.24
136.31
131.47
126.68
121.93
117.22
112.64
108.10
103.65
59.99
60.68
61.38
62.09
62.79
63.48
64.17
64.86
65.56
66.24
66.97
67.68
68.40
69.11
69.83
70.55
71.27
71.98
72.68
73.39
74.10
74.81
75.58
76.42
77.25
78.11
78.96
79.81
80.67
81.52
82.39
83.27
84.16
85.05
85.98
86.92
87.89
13.30
13.02
12.75
12.49
12.21
11.93
11.65
11.38
11.10
10.82
10.56
10.29
10.02
9.75
9.48
9.21
8.94
8.66
8.36
8.07
7.78
7.49
7.23
7.00
6.77
6.54
6.31
6.08
5.85
5.61
5.38
5.14
4.91
4.67
4.45
4.23
4.02
52.32
52.06
51.78
51.49
51.21
50.95
50.68
50.41
50.13
49.87
49.57
49.28
48.98
48.70
48.40
48.11
47.82
47.54
47.28
47.01
46.74
46.46
46.13
45.74
45.34
44.93
44.53
44.13
43.72
43.32
42.90
42.48
42.06
41.64
41.17
40.70
40.21
2.51
2.51
2.49
2.48
2.48
2.48
2.47
2.46
2.45
2.45
2.42
2.42
2.41
2.41
2.39
2.39
2.38
2.38
2.38
2.37
2.36
2.35
2.31
2.27
2.26
2.25
2.24
2.23
2.22
2.22
2.20
2.19
77
2.18
2.17
2.14
2.13
2.11
Appendices
Appendix 1
Total samples
Continued
181.00
Parameters
8.00
TSS
153.73
Yield
I
TX1
CSS1
TX2
CSS2
CSS1
CSS2
R2
(tonnsha-1)
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
447.04
449.10
451.10
453.10
455.07
457.04
459.00
460.93
462.84
464.74
466.63
468.49
470.33
472.15
473.96
475.76
477.55
479.33
481.08
482.83
484.54
486.23
487.92
489.51
491.03
492.43
493.83
495.21
496.56
497.89
499.14
500.37
501.57
502.76
503.89
505.00
505.69
1467.17
1471.42
1475.42
1479.42
1483.30
1487.18
1491.02
1494.74
1498.39
1502.00
1505.57
1509.03
1512.42
1515.73
1519.01
1522.25
1525.45
1528.62
1531.68
1534.73
1537.65
1540.51
1543.36
1545.89
1548.20
1550.16
1552.12
1554.03
1555.85
1557.62
1559.18
1560.69
1562.13
1563.55
1564.83
1566.06
1566.54
58.64
56.58
54.58
52.58
50.61
48.64
46.68
44.75
42.84
40.94
39.05
37.19
35.35
33.53
31.72
29.92
28.13
26.35
24.60
22.86
21.15
19.46
17.77
16.18
14.66
13.26
11.86
10.48
9.13
7.80
6.55
5.32
4.12
2.93
1.80
0.69
0.00
99.36
95.12
91.12
87.12
83.24
79.36
75.52
71.79
68.14
64.53
60.96
57.50
54.12
50.80
47.53
44.29
41.08
37.91
34.85
31.81
28.88
26.03
23.17
20.64
18.33
16.37
14.41
12.51
10.69
8.92
7.35
5.84
4.40
2.99
1.71
0.48
0.00
88.93
89.96
91.11
92.25
93.43
94.60
95.77
97.00
98.25
99.51
100.77
102.09
103.43
104.80
106.18
107.57
108.96
110.36
111.81
113.26
114.77
116.32
117.84
119.60
121.54
123.79
126.02
128.28
130.60
132.96
135.54
138.16
140.84
143.53
146.38
149.27
153.73
3.83
3.64
3.49
3.33
3.18
3.02
2.87
2.72
2.58
2.44
2.30
2.16
2.03
1.91
1.78
1.64
1.50
1.36
1.22
1.07
0.93
0.78
0.62
0.50
0.42
0.39
0.35
0.30
0.27
0.23
0.20
0.18
0.16
0.12
0.09
0.00
-
39.66
39.11
38.46
37.83
37.15
36.49
35.83
35.13
34.41
33.68
32.95
32.19
31.40
30.58
29.77
28.96
28.14
27.33
26.47
25.63
24.74
23.83
22.94
21.87
20.66
19.22
17.80
16.36
14.87
13.36
11.70
10.01
8.28
6.55
4.72
2.90
-
2.07
2.06
2
2
1.97
1.97
1.96
1.93
1.91
1.90
1.89
1.86
1.84
1.82
1.81
1.80
1.79
1.78
1.75
1.75
1.71
1.69
1.69
1.59
1.52
78
1.4
1.40
1.38
1.35
1.33
1.25
1.23
1.20
1.19
1.13
1.11
0.69
7.56
6.62
22.09
7.10
10.38
11.24
6.66
11.20
10.92
10.54
7.01
9.30
30
154
40
31
62
48
6
26
25
170
145
11.01
103
146
9.83
114
4.52
4.63
12
111
6.33
13
11.30
7.96
118
150
6.05
102
8.12
3.52
151
11.18
9.22
128
142
3.54
127
100
N/P
No
0.54
0.57
0.62
0.56
0.61
0.50
0.59
0.51
0.58
0.56
0.56
0.55
0.50
0.55
0.54
0.51
0.51
0.82
0.42
0.44
0.76
0.43
0.22
0.77
0.25
N/K
113.72
93.97
83.15
77.87
89.01
122.10
87.76
86.24
109.40
55.01
107.14
128.29
82.28
110.09
78.66
138.86
126.64
137.70
101.74
128.13
98.64
74.65
165.62
94.30
156.96
Fe/N
15.36
5.68
12.61
13.12
15.16
16.56
17.31
14.90
8.56
19.03
15.61
15.50
15.76
19.29
16.45
18.37
18.65
14.07
15.22
17.66
10.27
25.77
32.43
16.29
24.04
Mn/N
0.16
0.17
0.11
0.10
0.15
0.11
0.14
0.09
0.13
0.13
0.09
0.15
0.12
0.11
0.13
0.18
0.13
0.14
0.11
0.10
0.13
0.22
0.04
0.15
0.04
N/
Zn
N/
Cu
0.24
0.33
0.38
0.30
0.39
0.23
0.30
0.27
0.23
0.25
0.26
0.24
0.22
0.21
0.22
0.23
0.23
0.38
0.34
0.26
0.34
0.19
0.11
0.38
0.10
Appendix 2
0.31
0.31
0.51
0.33
0.21
0.36
0.41
0.25
0.48
0.30
0.17
0.36
0.41
0.29
0.21
0.43
0.37
0.40
0.18
0.74
0.52
0.21
0.20
0.21
0.60
N/B
17.19
12.36
17.06
19.35
18.40
13.44
19.10
20.35
12.16
39.61
11.91
13.68
9.12
20.50
20.76
15.86
21.44
11.98
11.15
14.33
10.50
14.18
16.20
11.95
13.98
K/P
1058.01
659.18
876.30
850.56
996.96
812.79
986.43
895.51
776.92
1215.08
709.55
969.92
372.12
1244.05
879.09
1127.80
1393.92
1353.53
471.07
810.43
785.67
451.66
582.31
869.43
556.02
Fe/P
142.89
39.85
132.90
143.30
169.82
110.20
194.59
154.67
60.79
420.42
103.38
117.21
71.30
217.98
183.84
149.21
205.29
138.30
70.45
111.73
81.76
155.90
114.03
150.19
85.15
Mn/P
56.87
42.03
93.39
106.71
74.02
62.48
82.86
110.37
55.25
171.44
70.43
48.85
37.97
104.37
87.44
45.52
81.95
68.51
40.47
64.11
63.48
27.90
88.09
62.90
87.19
Zn/P
38.17
21.25
27.70
36.59
28.46
28.59
37.92
37.89
30.42
88.97
25.18
30.88
20.79
52.82
50.13
34.56
48.63
26.20
13.46
23.88
23.65
31.47
32.94
24.05
33.99
Cu/P
29.66
22.60
20.62
33.30
53.59
18.35
27.24
41.48
14.82
73.23
38.12
21.14
10.99
38.95
52.50
18.82
29.58
24.84
25.46
8.50
15.18
28.52
17.19
44.45
5.93
B/P
79
61.55
53.33
51.37
43.96
54.19
60.46
51.64
44.01
63.91
30.68
59.57
70.90
40.79
60.67
42.35
71.12
65.03
113.01
42.23
56.56
74.80
31.86
35.94
72.77
39.77
Fe/K
8.31
3.22
7.79
7.41
9.23
8.20
10.19
7.60
5.00
10.61
8.68
8.57
7.82
10.63
8.86
9.41
9.58
11.55
6.32
7.80
7.78
11.00
7.04
12.57
6.09
Mn/
K
0.30
0.29
0.18
0.18
0.25
0.22
0.23
0.18
0.22
0.23
0.17
0.28
0.24
0.20
0.24
0.35
0.26
0.17
0.28
0.22
0.17
0.51
0.18
0.19
0.16
K/
Zn
0.45
0.58
0.62
0.53
0.65
0.47
0.50
0.54
0.40
0.45
0.47
0.44
0.44
0.39
0.41
0.46
0.44
0.46
0.83
0.60
0.44
0.45
0.49
0.50
0.41
K/
Cu
0.58
0.55
0.83
0.58
0.34
0.73
0.70
0.49
0.82
0.54
0.31
0.65
0.83
0.53
0.40
0.84
0.72
0.48
0.44
1.68
0.69
0.50
0.94
0.27
2.36
K/B
7.40
16.54
6.59
5.94
5.87
7.38
5.07
5.79
12.78
2.89
6.86
8.28
5.22
5.71
4.78
7.56
6.79
9.79
6.69
7.25
9.61
2.90
5.11
5.79
6.53
Fe/
Mn
18.61
15.68
9.38
7.97
13.47
13.01
11.90
8.11
14.06
7.09
10.07
19.86
9.80
11.92
10.05
24.77
17.01
19.76
11.64
12.64
12.38
16.19
6.61
13.82
6.38
Fe/
Zn
27.72
31.03
31.64
23.25
35.03
28.43
26.01
23.63
25.54
13.66
28.18
31.41
17.90
23.55
17.54
32.63
28.66
51.66
34.99
33.93
33.22
14.35
17.68
36.15
16.36
Fe/
Cu
35.67
29.17
42.49
25.54
18.61
44.29
36.21
21.59
52.41
16.59
18.61
45.89
33.87
31.94
16.74
59.93
47.13
54.50
18.51
95.30
51.76
15.84
33.88
19.56
93.82
Fe/B
2.51
0.95
1.42
1.34
2.29
1.76
2.35
1.40
1.10
2.45
1.47
2.40
1.88
2.09
2.10
3.28
2.51
2.02
1.74
1.74
1.29
5.59
1.29
2.39
0.98
Mn/
Zn
3.74
1.88
4.80
3.92
5.97
3.86
5.13
4.08
2.00
4.73
4.11
3.80
3.43
4.13
3.67
4.32
4.22
5.28
5.23
4.68
3.46
4.95
3.46
6.25
2.51
Mn/
Cu
Ratio of the nutrients in shoot material (GS-29) for the high-yielding population in irrigated wheat
Appendices
4.82
1.76
6.44
4.30
3.17
6.00
7.14
3.73
4.10
5.74
2.71
5.55
6.49
5.60
3.50
7.93
6.94
5.57
2.77
13.14
5.39
5.47
6.63
3.38
14.37
Mn/B
1.49
1.98
3.37
2.92
2.60
2.19
2.19
2.91
1.82
1.93
2.80
1.58
1.83
1.98
1.74
1.32
1.68
2.61
3.01
2.68
2.68
0.89
2.67
2.62
2.57
Zn/C
u
1.92
1.86
4.53
3.20
1.38
3.40
3.04
2.66
3.73
2.34
1.85
2.31
3.46
2.68
1.67
2.42
2.77
2.76
1.59
7.54
4.18
0.98
5.12
1.42
14.71
Zn/B
1.29
0.94
1.34
1.10
0.53
1.56
1.39
0.91
2.05
1.21
0.66
1.46
1.89
1.36
0.95
1.84
1.64
1.05
0.53
2.81
1.56
1.10
1.92
0.54
5.73
Cu/
B
0.69
0.80
0.76
0.85
8.74
13.37
12.44
11.34
11.47
9.01
13.81
7.61
5.86
10.22
34.52
11.46
4.16
6.89
18.48
10.45
8.89
17.73
17.06
12.99
28.95
9.93
10.32
10.40
14.67
10.56
7.96
105
97
78
76
68
74
73
117
166
23
90
79
39
86
107
171
58
63
52
168
65
165
174
104
72
143
64
0.86
0.83
0.89
0.60
0.83
0.63
0.75
0.89
0.79
0.81
0.77
0.69
0.17
0.70
0.65
0.49
0.49
0.52
0.67
0.63
0.90
0.94
0.55
0.89
13.17
22
57.70
50.77
75.54
41.12
71.25
97.09
68.99
78.96
58.87
69.93
86.31
74.71
41.23
35.06
246.25
83.55
94.63
70.73
118.85
90.59
71.91
93.26
94.87
98.07
92.44
63.30
66.67
86.81
Fe/N
10.97
8.91
12.54
12.46
8.25
8.54
11.96
5.08
13.03
10.25
12.57
6.33
11.03
17.95
63.03
14.51
7.69
11.86
10.94
15.21
14.79
13.20
16.55
11.47
10.76
5.58
15.13
10.80
Mn/N
0.23
0.15
0.17
0.15
0.19
0.15
0.15
0.22
0.17
0.16
0.14
0.21
0.10
0.15
0.05
0.18
0.15
0.14
0.12
0.22
0.18
0.11
0.16
0.08
0.16
0.20
0.17
0.13
N/
Zn
0.43
0.37
0.51
0.36
0.36
0.35
0.49
0.44
0.47
0.44
0.38
0.35
0.38
0.36
0.06
0.34
0.38
0.22
0.22
0.25
0.35
0.32
0.28
0.21
0.42
0.41
0.27
0.38
N/
Cu
Appendix 2 continued
N/K
N/P
No
0.57
0.31
0.31
0.77
0.24
0.59
0.56
0.22
0.45
1.16
0.30
0.46
0.12
0.56
0.07
0.24
0.50
0.36
0.21
0.33
0.47
0.43
0.73
0.29
0.60
0.16
0.48
0.70
N/B
9.26
12.68
16.56
17.41
12.50
15.71
38.52
14.57
20.15
23.35
11.19
12.97
24.15
10.03
24.03
16.38
53.04
20.89
12.00
14.53
17.37
13.10
17.12
17.88
13.88
14.17
15.80
14.85
K/P
459.27
536.04
1107.96
427.61
735.35
964.32
1997.09
1025.65
1004.40
1240.00
767.42
780.59
762.03
241.47
1024.93
957.76
3266.36
722.63
696.87
689.37
993.10
840.11
1088.34
1112.27
1150.45
846.44
582.46
1143.21
Fe/P
87.31
94.07
183.89
129.58
85.16
84.82
346.11
66.02
222.27
181.76
111.78
66.13
203.82
123.66
262.34
166.33
265.34
121.20
64.14
115.71
204.25
118.92
189.85
130.10
133.85
74.68
132.20
142.18
Mn/P
34.63
69.28
85.32
69.51
54.98
67.40
196.81
59.09
101.70
113.05
64.03
50.54
194.03
44.81
90.51
64.50
227.51
72.56
48.32
35.13
77.90
85.30
69.64
143.75
79.99
67.66
52.61
97.90
Zn/P
18.46
28.30
29.03
28.88
28.96
28.64
59.36
29.41
36.09
39.96
23.13
29.73
48.60
19.08
67.20
34.09
90.27
46.71
26.44
30.38
39.91
27.87
40.33
53.69
29.61
32.81
31.82
34.70
Cu/P
13.86
34.49
47.52
13.43
42.67
16.78
52.04
59.96
37.88
15.34
29.70
22.58
160.61
12.22
60.25
48.67
69.19
28.02
28.04
23.30
29.30
21.01
15.73
39.15
20.73
84.34
18.07
18.72
B/P
80
49.61
42.28
66.90
24.57
58.85
61.39
51.85
70.41
49.85
53.10
68.56
60.18
31.55
24.06
42.65
58.47
61.58
34.60
58.09
47.45
57.17
64.13
63.58
62.20
82.89
59.76
36.87
77.01
Fe/K
Appendices
9.43
7.42
11.10
7.44
6.82
5.40
8.99
4.53
11.03
7.78
9.99
5.10
8.44
12.32
10.92
10.15
5.00
5.80
5.35
7.96
11.76
9.08
11.09
7.28
9.64
5.27
8.37
9.58
Mn/
K
0.27
0.18
0.19
0.25
0.23
0.23
0.20
0.25
0.20
0.21
0.17
0.26
0.12
0.22
0.27
0.25
0.23
0.29
0.25
0.41
0.22
0.15
0.25
0.12
0.17
0.21
0.30
0.15
K/
Zn
0.50
0.45
0.57
0.60
0.43
0.55
0.65
0.50
0.56
0.58
0.48
0.44
0.50
0.53
0.36
0.48
0.59
0.45
0.45
0.48
0.44
0.47
0.42
0.33
0.47
0.43
0.50
0.43
K/
Cu
0.67
0.37
0.35
1.30
0.29
0.94
0.74
0.24
0.53
1.52
0.38
0.57
0.15
0.82
0.40
0.34
0.77
0.75
0.43
0.62
0.59
0.62
1.09
0.46
0.67
0.17
0.87
0.79
K/B
5.26
5.70
6.03
3.30
8.63
11.37
5.77
15.54
4.52
6.82
6.87
11.80
3.74
1.95
3.91
5.76
12.31
5.96
10.87
5.96
4.86
7.06
5.73
8.55
8.60
11.33
4.41
8.04
Fe/
Mn
13.26
7.74
12.99
6.15
13.37
14.31
10.15
17.36
9.88
10.97
11.99
15.44
3.93
5.39
11.32
14.85
14.36
9.96
14.42
19.63
12.75
9.85
15.63
7.74
14.38
12.51
11.07
11.68
Fe/
Zn
24.87
18.94
38.17
14.81
25.39
33.67
33.64
34.88
27.83
31.03
33.18
26.26
15.68
12.66
15.25
28.09
36.19
15.47
26.35
22.69
24.89
30.15
26.99
20.72
38.86
25.80
18.31
32.94
Fe/
Cu
33.13
15.54
23.32
31.85
17.23
57.45
38.37
17.11
26.51
80.83
25.84
34.56
4.74
19.76
17.01
19.68
47.21
25.79
24.86
29.58
33.89
39.98
69.20
28.41
55.48
10.04
32.24
61.06
Fe/B
2.52
1.36
2.16
1.86
1.55
1.26
1.76
1.12
2.19
1.61
1.75
1.31
1.05
2.76
2.90
2.58
1.17
1.67
1.33
3.29
2.62
1.39
2.73
0.91
1.67
1.10
2.51
1.45
Mn/
Zn
4.73
3.32
6.33
4.49
2.94
2.96
5.83
2.24
6.16
4.55
4.83
2.22
4.19
6.48
3.90
4.88
2.94
2.59
2.43
3.81
5.12
4.27
4.71
2.42
4.52
2.28
4.15
4.10
Mn/
Cu
6.30
2.73
3.87
9.65
2.00
5.05
6.65
1.10
5.87
11.85
3.76
2.93
1.27
10.12
4.35
3.42
3.83
4.33
2.29
4.97
6.97
5.66
12.07
3.32
6.46
0.89
7.32
7.59
Mn/B
1.88
2.45
2.94
2.41
1.90
2.35
3.32
2.01
2.82
2.83
2.77
1.70
3.99
2.35
1.35
1.89
2.52
1.55
1.83
1.16
1.95
3.06
1.73
2.68
2.70
2.06
1.65
2.82
Zn/C
u
2.50
2.01
1.80
5.18
1.29
4.02
3.78
0.99
2.68
7.37
2.16
2.24
1.21
3.67
1.50
1.33
3.29
2.59
1.72
1.51
2.66
4.06
4.43
3.67
3.86
0.80
2.91
5.23
Zn/B
1.33
0.82
0.61
2.15
0.68
1.71
1.14
0.49
0.95
2.60
0.78
1.32
0.30
1.56
1.12
0.70
1.30
1.67
0.94
1.30
1.36
1.33
2.56
1.37
1.43
0.39
1.76
1.85
Cu/
B
0.88
0.88
10.99
12.24
15.23
24.75
9.56
10.62
81
135
132
136
148
0.71
0.88
0.83
0.65
1.03
0.75
0.85
0.71
0.75
0.90
0.56
0.78
147
11.27
130
0.64
17.18
13.04
160
0.90
0.91
91
9.93
175
9.50
11.63
179
0.81
10.50
8.13
162
0.62
101
7.22
180
0.83
0.82
131
24.76
161
10.54
17.93
140
0.79
134
13.62
139
0.80
15.03
8.81
177
0.83
0.59
149
9.22
164
9.51
8.38
163
0.64
6.78
22.29
133
0.80
84
11.14
56
78.94
93.35
73.74
52.69
35.26
94.28
45.46
62.02
67.61
73.68
69.45
68.60
88.15
69.43
91.39
63.76
81.38
86.53
71.13
90.62
47.88
83.91
76.50
35.18
93.98
70.56
67.62
Fe/N
9.29
9.95
10.03
10.09
14.33
9.43
13.18
11.52
10.39
15.22
9.75
13.53
15.91
12.08
11.06
8.37
8.43
10.83
13.46
10.89
9.00
5.66
13.32
6.26
16.41
13.71
12.03
Mn/N
0.16
0.19
0.15
0.17
0.17
0.21
0.18
0.27
0.27
0.15
0.20
0.24
0.10
0.26
0.13
0.20
0.18
0.17
0.17
0.16
0.18
0.18
0.17
0.19
0.14
0.16
0.19
N/
Zn
Appendix 2 continued
N/K
138
N/P
No
0.38
0.42
0.32
0.31
0.34
0.40
0.39
0.39
0.39
0.29
0.35
0.40
0.25
0.39
0.33
0.36
0.38
0.38
0.36
0.38
0.38
0.36
0.37
0.44
0.37
0.35
0.38
N/
Cu
0.45
0.21
0.21
0.21
0.78
0.46
0.14
0.62
0.32
0.20
0.43
0.19
0.18
0.32
0.33
0.23
0.39
0.51
0.65
0.70
0.33
0.26
0.31
0.38
1.52
0.19
0.35
N/B
15.03
10.85
29.91
23.46
13.95
12.53
16.76
12.66
12.34
14.93
19.91
7.51
16.97
14.49
20.25
11.06
12.83
10.01
11.65
29.87
21.91
17.20
10.95
11.16
14.29
34.74
13.94
K/P
838.04
892.07
1824.83
802.49
431.52
1036.17
781.04
589.42
709.88
776.25
1044.01
465.20
838.03
782.66
1191.73
633.23
946.63
703.36
513.79
2243.33
858.63
1142.90
673.71
324.55
787.96
1573.07
753.24
Fe/P
98.59
95.10
248.12
153.75
175.32
103.59
226.41
109.44
109.10
160.37
146.50
91.78
151.27
136.16
144.17
83.12
98.09
88.05
97.23
269.48
161.34
77.03
117.29
57.79
137.57
305.71
133.96
Mn/P
64.59
51.61
160.05
88.85
71.88
53.36
94.57
34.77
38.27
70.93
75.47
28.29
95.65
44.09
97.67
48.64
63.97
47.54
43.47
153.25
99.82
77.20
52.17
49.26
59.47
137.31
58.33
Zn/P
28.25
22.56
76.80
49.18
35.92
27.42
43.75
24.68
27.17
35.90
42.51
17.04
38.41
29.18
39.08
27.32
30.35
21.34
20.17
64.35
47.36
37.42
24.12
21.03
22.54
63.48
29.70
Cu/P
23.38
44.70
116.89
72.21
15.75
23.88
125.75
15.27
32.31
53.86
34.96
35.42
53.95
35.46
39.23
43.78
29.71
15.88
11.09
35.27
54.24
51.76
28.34
24.13
5.52
118.74
31.97
B/P
81
55.76
82.20
61.01
34.21
30.93
82.67
46.61
46.54
57.54
51.99
52.42
61.95
49.38
54.01
58.84
57.25
73.81
70.26
44.10
75.10
39.18
66.43
61.52
29.09
55.13
45.28
54.03
Fe/K
Appendices
6.56
8.76
8.30
6.55
12.57
8.27
13.51
8.64
8.84
10.74
7.36
12.22
8.91
9.40
7.12
7.51
7.65
8.80
8.35
9.02
7.36
4.48
10.71
5.18
9.62
8.80
9.61
Mn/
K
0.23
0.21
0.19
0.26
0.19
0.23
0.18
0.36
0.32
0.21
0.26
0.27
0.18
0.33
0.21
0.23
0.20
0.21
0.27
0.19
0.22
0.22
0.21
0.23
0.24
0.25
0.24
K/
Zn
0.53
0.48
0.39
0.48
0.39
0.46
0.38
0.51
0.45
0.42
0.47
0.44
0.44
0.50
0.52
0.40
0.42
0.47
0.58
0.46
0.46
0.46
0.45
0.53
0.63
0.55
0.47
K/
Cu
0.64
0.24
0.26
0.32
0.89
0.52
0.13
0.83
0.38
0.28
0.57
0.21
0.31
0.41
0.52
0.25
0.43
0.63
1.05
0.85
0.40
0.33
0.39
0.46
2.59
0.29
0.44
K/B
8.50
9.38
7.35
5.22
2.46
10.00
3.45
5.39
6.51
4.84
7.13
5.07
5.54
5.75
8.27
7.62
9.65
7.99
5.28
8.32
5.32
14.84
5.74
5.62
5.73
5.15
5.62
Fe/
Mn
12.97
17.29
11.40
9.03
6.00
19.42
8.26
16.95
18.55
10.94
13.83
16.44
8.76
17.75
12.20
13.02
14.80
14.80
11.82
14.64
8.60
14.80
12.91
6.59
13.25
11.46
12.91
Fe/
Zn
29.67
39.54
23.76
16.32
12.01
37.79
17.85
23.88
26.13
21.62
24.56
27.30
21.82
26.82
30.50
23.18
31.19
32.96
25.48
34.86
18.13
30.54
27.93
15.43
34.96
24.78
25.36
Fe/
Cu
35.84
19.96
15.61
11.11
27.40
43.39
6.21
38.59
21.97
14.41
29.86
13.14
15.53
22.07
30.37
14.46
31.87
44.29
46.32
63.60
15.83
22.08
23.77
1.53
1.84
1.55
1.73
2.44
1.94
2.39
3.15
2.85
2.26
1.94
3.24
1.58
3.09
1.48
1.71
1.53
1.85
2.24
1.76
1.62
1.00
2.25
1.17
2.31
13.45
2.23
13.25
2.30
Mn/
Zn
142.7
3
23.56
Fe/B
3.49
4.21
3.23
3.13
4.88
3.78
5.18
4.43
4.02
4.47
3.45
5.39
3.94
4.67
3.69
3.04
3.23
4.13
4.82
4.19
3.41
2.06
4.86
2.75
6.10
4.82
4.51
Mn/
Cu
4.22
2.13
2.12
2.13
11.13
4.34
1.80
7.17
3.38
2.98
4.19
2.59
2.80
3.84
3.67
1.90
3.30
5.54
8.77
7.64
2.97
1.49
4.14
2.40
24.92
2.57
4.19
Mn/B
2.29
2.29
2.08
1.81
2.00
1.95
2.16
1.41
1.41
1.98
1.78
1.66
2.49
1.51
2.50
1.78
2.11
2.23
2.16
2.38
2.11
2.06
2.16
2.34
2.64
2.16
1.96
Zn/C
u
2.76
1.15
1.37
1.23
4.56
2.23
0.75
2.28
1.18
1.32
2.16
0.80
1.77
1.24
2.49
1.11
2.15
2.99
3.92
4.34
1.84
1.49
1.84
2.04
10.77
1.16
1.82
Zn/B
1.21
0.50
0.66
0.68
2.28
1.15
0.35
1.62
0.84
0.67
1.22
0.48
0.71
0.82
1.00
0.62
1.02
1.34
1.82
1.82
0.87
0.72
0.85
0.87
4.08
0.53
0.93
Cu/
B
9.24
13.24
17.84
17.20
10.80
144
96
89
99
8.08
137
176
N/P
No
0.84
0.95
1.35
0.70
1.09
0.90
54.02
43.23
61.84
66.02
58.40
46.45
Fe/N
6.68
14.15
8.75
9.56
6.86
10.72
Mn/N
0.28
0.25
0.19
0.15
0.33
0.18
N/
Zn
Appendix 2 continued
N/K
0.43
0.38
0.39
0.37
0.53
0.37
N/
Cu
0.76
0.55
0.20
0.26
0.32
0.34
N/B
12.84
18.15
13.23
18.99
8.46
8.97
K/P
583.21
743.62
1103.11
874.17
539.64
375.24
Fe/P
72.12
243.45
156.14
126.62
63.43
86.60
Mn/P
38.43
67.56
95.79
89.19
28.01
45.54
Zn/P
24.94
45.60
45.31
36.24
17.45
21.67
Cu/P
14.15
31.52
88.78
51.03
29.30
23.74
B/P
82
45.42
40.96
83.37
46.04
63.82
41.82
Fe/K
Appendices
5.62
13.41
11.80
6.67
7.50
9.65
Mn/
K
0.33
0.27
0.14
0.21
0.30
0.20
K/
Zn
0.51
0.40
0.29
0.52
0.48
0.41
K/
Cu
0.91
0.58
0.15
0.37
0.29
0.38
K/B
8.09
3.05
7.07
6.90
8.51
4.33
Fe/
Mn
15.17
11.01
11.52
9.80
19.26
8.24
Fe/
Zn
23.38
16.31
24.35
24.12
30.92
17.31
Fe/
Cu
41.21
23.59
12.42
17.13
18.42
15.81
Fe/B
1.88
3.60
1.63
1.42
2.26
1.90
Mn/
Zn
2.89
5.34
3.45
3.49
3.63
4.00
Mn/
Cu
5.10
7.72
1.76
2.48
2.17
3.65
Mn/B
1.54
1.48
2.11
2.46
1.61
2.10
Zn/C
u
2.72
2.14
1.08
1.75
0.96
1.92
Zn/B
1.76
1.45
0.51
0.71
0.60
0.91
Cu/
B
14.91
11.95
26.67
13.49
12.86
22.99
27.95
10.55
16.02
9.18
9.26
6.25
8.67
9.61
7.61
8.77
9.59
19.84
14.13
110
169
113
172
82
41
98
19
50
173
66
38
7
29
9
36
115
112
12.19
178
16
16.36
94
8.27
7.65
67
14.76
7.04
27
55
11.84
141
106
N/P
No
0.55
0.47
0.64
0.56
0.64
0.67
0.63
0.43
0.68
0.90
0.64
0.47
0.63
1.10
0.74
0.50
0.82
0.42
0.64
0.90
0.29
0.79
1.16
0.51
0.55
0.72
N/K
68.04
76.34
189.19
95.07
86.02
90.78
100.80
107.55
90.06
62.26
118.64
94.65
95.92
36.62
108.15
61.30
95.87
104.36
94.60
95.50
134.81
74.02
81.04
98.12
93.90
89.25
Fe/N
23.04
22.61
11.27
21.32
18.04
16.05
17.67
19.37
8.41
10.96
15.98
15.26
12.07
5.95
11.73
27.37
6.25
24.87
17.56
15.02
27.97
10.30
7.58
24.83
13.20
10.74
Mn/N
0.10
0.16
0.09
0.16
0.12
0.14
0.15
0.10
0.16
0.13
0.10
0.10
0.14
0.26
0.16
0.08
0.29
0.11
0.22
0.15
0.09
0.20
0.13
0.14
0.10
0.19
N/Zn
0.30
0.21
0.29
0.37
0.33
0.42
0.31
0.22
0.25
0.53
0.30
0.22
0.31
0.44
0.21
0.20
0.36
0.19
0.36
0.36
0.15
0.39
0.34
0.24
0.27
0.38
N/Cu
Appendix 3
0.26
0.27
0.46
0.39
0.19
0.33
0.34
0.42
0.22
0.25
0.26
0.12
0.18
0.33
0.25
0.21
0.31
0.21
1.84
0.34
0.16
0.41
0.24
0.45
0.33
0.26
N/B
25.92
42.55
15.10
15.77
11.95
14.30
13.80
14.45
13.67
10.15
24.84
22.69
44.65
20.81
17.49
27.01
32.49
28.56
23.21
16.37
28.79
15.43
14.06
14.99
12.75
16.38
K/P
961.36
1514.81
1814.88
833.85
655.03
872.10
874.35
672.63
834.29
571.75
1900.15
998.98
2680.81
841.82
1391.38
827.29
2557.16
1247.48
1410.75
1409.57
1114.90
902.09
1326.02
750.26
660.96
1056.68
Fe/P
325.54
448.72
108.15
186.96
137.35
154.23
153.31
121.17
77.92
100.67
255.90
161.02
337.29
136.80
150.93
369.38
166.58
297.33
261.84
221.70
231.28
125.51
124.00
189.88
92.94
127.14
Mn/P
147.35
121.56
110.32
54.11
63.41
70.71
57.12
62.23
58.87
73.04
165.75
101.33
201.94
87.91
81.04
159.33
92.08
105.54
69.26
101.72
95.60
61.92
128.91
56.60
67.99
60.83
Zn/P
46.78
95.77
33.57
24.02
23.06
22.92
28.26
28.29
36.96
17.23
53.33
47.51
90.76
51.93
61.78
67.49
73.88
62.19
41.50
41.54
53.88
31.59
47.79
31.87
26.33
30.81
Cu/P
55.15
72.44
20.68
22.23
40.49
29.06
25.76
14.93
42.64
37.26
60.62
85.21
151.98
70.40
52.44
63.77
86.60
57.16
8.08
43.76
51.68
29.63
68.73
16.82
21.46
45.32
B/P
83
37.09
35.60
120.19
52.86
54.80
60.99
63.37
46.54
61.04
56.31
76.50
44.03
60.05
40.44
79.55
30.63
78.71
43.67
60.78
86.09
38.72
58.47
94.33
50.04
51.85
64.53
Fe/K
12.56
10.55
7.16
11.85
11.49
10.79
11.11
8.38
5.70
9.92
10.30
7.10
7.55
6.57
8.63
13.68
5.13
10.41
11.28
13.54
8.03
8.14
8.82
12.67
7.29
7.76
Mn/K
0.18
0.35
0.14
0.29
0.19
0.20
0.24
0.23
0.23
0.14
0.15
0.22
0.22
0.24
0.22
0.17
0.35
0.27
0.34
0.16
0.30
0.25
0.11
0.26
0.19
0.27
K/Zn
0.55
0.44
0.45
0.66
0.52
0.62
0.49
0.51
0.37
0.59
0.47
0.48
0.49
0.40
0.28
0.40
0.44
0.46
0.56
0.39
0.53
0.49
0.29
0.47
0.48
0.53
K/Cu
0.47
0.59
0.73
0.71
0.30
0.49
0.54
0.97
0.32
0.27
0.41
0.27
0.29
0.30
0.33
0.42
0.38
0.50
2.87
0.37
0.56
0.52
0.20
0.89
0.59
0.36
K/B
2.95
3.38
16.78
4.46
4.77
5.65
5.70
5.55
10.71
5.68
7.43
6.20
7.95
6.15
9.22
2.24
15.35
4.20
5.39
6.36
4.82
7.19
10.69
3.95
7.11
8.31
Fe/Mn
6.52
12.46
16.45
15.41
10.33
12.33
15.31
10.81
14.17
7.83
11.46
9.86
13.28
9.58
17.17
5.19
27.77
11.82
20.37
13.86
11.66
14.57
10.29
13.26
9.72
17.37
Fe/Zn
20.55
15.82
54.06
34.71
28.41
38.05
30.94
23.77
22.57
33.18
35.63
21.03
29.54
16.21
22.52
12.26
34.61
20.06
34.00
33.93
20.69
28.55
27.75
23.54
25.11
34.30
Fe/Cu
17.43
20.91
87.74
37.51
16.18
30.01
33.95
45.05
19.57
15.34
31.34
11.72
17.64
11.96
26.53
12.97
29.53
21.83
174.54
32.21
21.57
30.45
19.29
44.60
30.80
23.32
Fe/B
2.21
3.69
0.98
3.46
2.17
2.18
2.68
1.95
1.32
1.38
1.54
1.59
1.67
1.56
1.86
2.32
1.81
2.82
3.78
2.18
2.42
2.03
0.96
3.35
1.37
2.09
Mn/Zn
6.96
4.69
3.22
7.78
5.96
6.73
5.42
4.28
2.11
5.84
4.80
3.39
3.72
2.63
2.44
5.47
2.25
4.78
6.31
5.34
4.29
3.97
2.59
5.96
3.53
4.13
Mn/Cu
Ratio of the nutrients in shoot material (GS-29) for the low-yielding population in irrigated wheat
Appendices
5.90
6.19
5.23
8.41
3.39
5.31
5.95
8.12
1.83
2.70
4.22
1.89
2.22
1.94
2.88
5.79
1.92
5.20
32.40
5.07
4.47
4.24
1.80
11.29
4.33
2.81
Mn/B
3.15
1.27
3.29
2.25
2.75
3.09
2.02
2.20
1.59
4.24
3.11
2.13
2.22
1.69
1.31
2.36
1.25
1.70
1.67
2.45
1.77
1.96
2.70
1.78
2.58
1.97
Zn/Cu
2.67
1.68
5.33
2.43
1.57
2.43
2.22
4.17
1.38
1.96
2.73
1.19
1.33
1.25
1.55
2.50
1.06
1.85
8.57
2.32
1.85
2.09
1.88
3.36
3.17
1.34
Zn/B
0.85
1.32
1.62
1.08
0.57
0.79
1.10
1.89
0.87
0.46
0.88
0.56
0.60
0.74
1.18
1.06
0.85
1.09
5.13
0.95
1.04
1.07
0.70
1.89
1.23
0.68
Cu/B
1.07
0.64
0.70
0.83
0.79
0.85
41.61
7.35
29.35
12.40
12.88
16.12
25.43
13.27
21.29
12.54
22.01
13.02
18.66
14.29
20.49
15.02
17.57
16.05
15.94
20.48
8.61
16.31
13.37
14.57
10.01
25.81
35
153
83
8
20
4
167
71
59
3
57
24
11
15
87
21
92
33
156
53
158
77
93
14
116
46
1.15
0.61
1.02
0.47
0.74
0.65
0.76
1.05
0.67
0.66
0.73
1.09
0.67
1.09
0.68
0.91
0.59
0.77
0.24
1.23
0.92
20.49
88
N/K
N/P
No
111.13
86.56
97.30
82.36
61.21
111.74
61.32
73.86
54.43
78.79
65.96
87.63
80.49
84.43
89.86
71.86
126.05
37.12
107.79
71.13
142.91
64.90
87.61
52.19
150.51
39.89
51.47
Fe/N
11.80
19.40
9.71
12.21
11.81
16.57
13.16
10.80
16.31
21.07
15.08
12.71
14.95
22.04
14.07
9.28
20.66
9.87
8.52
11.87
14.62
17.77
18.25
5.93
36.30
13.57
8.99
Mn/N
0.17
0.12
0.10
0.21
0.21
0.10
0.16
0.11
0.13
0.11
0.16
0.27
0.18
0.21
0.18
0.18
0.11
0.15
0.18
0.14
0.09
0.17
0.14
0.24
0.09
0.20
0.22
N/Zn
0.54
0.25
0.24
0.54
0.52
0.23
0.45
0.28
0.49
0.26
0.42
0.38
0.42
0.35
0.36
0.50
0.36
0.52
0.36
0.49
0.28
0.41
0.38
0.47
0.14
0.73
0.40
N/Cu
Appendix 3 continued
0.17
0.25
0.27
2.30
0.63
0.24
0.26
0.29
0.21
0.32
1.56
0.19
1.83
0.22
0.72
0.46
0.29
1.35
0.24
1.85
0.23
1.36
0.27
0.43
0.16
0.46
0.29
N/B
22.35
16.33
17.09
16.98
16.03
18.46
24.59
22.72
21.62
27.02
19.83
19.59
21.42
28.37
17.76
20.13
18.76
19.55
19.49
27.91
27.17
16.63
19.28
27.38
30.37
33.84
22.25
K/P
2867.81
866.71
1417.64
1101.07
998.11
962.16
1256.06
1177.02
873.54
1384.15
990.93
1795.59
1150.47
1575.38
1169.79
1581.48
1580.77
790.39
1429.86
1808.65
2303.81
835.62
1086.14
1531.77
1106.55
1660.03
1054.45
Fe/P
304.51
194.29
141.42
163.22
192.63
142.69
269.59
172.10
261.73
370.16
226.49
260.34
213.65
411.33
183.18
204.35
259.16
210.15
112.97
301.86
235.72
228.83
226.22
174.17
266.91
564.87
184.17
Mn/P
155.77
84.04
148.86
62.79
76.74
82.09
129.00
150.71
121.57
165.01
93.63
76.89
79.89
88.64
72.04
123.15
112.37
139.86
74.77
186.25
173.04
75.58
91.62
121.30
83.21
209.73
94.92
Zn/P
47.48
39.82
60.78
24.66
31.23
37.04
45.28
57.40
32.46
66.51
35.84
54.30
34.27
52.57
36.49
44.23
34.76
40.59
37.24
51.53
57.60
31.18
32.65
62.23
54.28
56.94
50.77
Cu/P
156.28
39.59
54.45
5.82
25.93
35.52
79.12
54.17
78.24
54.79
9.64
109.19
7.82
84.97
17.97
48.20
42.77
15.83
54.52
13.71
70.18
9.48
46.39
68.18
45.66
90.56
70.93
B/P
84
128.33
53.09
82.97
64.84
62.28
52.13
51.07
51.80
40.41
51.23
49.97
91.65
53.72
55.54
65.86
78.57
84.27
40.43
73.36
64.81
84.80
50.25
56.34
55.94
36.44
49.05
47.39
Fe/K
13.63
11.90
8.28
9.61
12.02
7.73
10.96
7.57
12.11
13.70
11.42
13.29
9.98
14.50
10.31
10.15
13.81
10.75
5.80
10.82
8.68
13.76
11.73
6.36
8.79
16.69
8.28
Mn/K
Appendices
0.14
0.19
0.11
0.27
0.21
0.22
0.19
0.15
0.18
0.16
0.21
0.25
0.27
0.32
0.25
0.16
0.17
0.14
0.26
0.15
0.16
0.22
0.21
0.23
0.36
0.16
0.23
K/Zn
0.47
0.41
0.28
0.69
0.51
0.50
0.54
0.40
0.67
0.41
0.55
0.36
0.62
0.54
0.49
0.46
0.54
0.48
0.52
0.54
0.47
0.53
0.59
0.44
0.56
0.59
0.44
K/Cu
0.14
0.41
0.31
2.92
0.62
0.52
0.31
0.42
0.28
0.49
2.06
0.18
2.74
0.33
0.99
0.42
0.44
1.24
0.36
2.04
0.39
1.75
0.42
0.40
0.67
0.37
0.31
K/B
9.42
4.46
10.02
6.75
5.18
6.74
4.66
6.84
3.34
3.74
4.38
6.90
5.38
3.83
6.39
7.74
6.10
3.76
12.66
5.99
9.77
3.65
4.80
8.79
4.15
2.94
5.73
Fe/Mn
18.41
10.31
9.52
17.54
13.01
11.72
9.74
7.81
7.19
8.39
10.58
23.35
14.40
17.77
16.24
12.84
14.07
5.65
19.12
9.71
13.31
11.06
11.85
12.63
13.30
7.92
11.11
Fe/Zn
60.40
21.76
23.32
44.64
31.96
25.98
27.74
20.50
26.91
20.81
27.65
33.07
33.57
29.97
32.06
35.76
45.47
19.47
38.39
35.10
40.00
26.80
33.26
24.61
20.39
29.16
20.77
Fe/Cu
18.35
21.89
26.03
189.22
38.50
27.09
15.87
21.73
11.16
25.26
102.84
16.44
147.04
18.54
65.09
32.81
36.96
49.95
26.23
131.92
32.83
88.13
23.41
22.47
24.23
18.33
14.87
Fe/B
1.95
2.31
0.95
2.60
2.51
1.74
2.09
1.14
2.15
2.24
2.42
3.39
2.67
4.64
2.54
1.66
2.31
1.50
1.51
1.62
1.36
3.03
2.47
1.44
3.21
2.69
1.94
Mn/Zn
6.41
4.88
2.33
6.62
6.17
3.85
5.95
3.00
8.06
5.57
6.32
4.79
6.23
7.82
5.02
4.62
7.46
5.18
3.03
5.86
4.09
7.34
6.93
2.80
4.92
9.92
3.63
Mn/Cu
1.95
4.91
2.60
28.05
7.43
4.02
3.41
3.18
3.35
6.76
23.51
2.38
27.31
4.84
10.19
4.24
6.06
13.28
2.07
22.02
3.36
24.13
4.88
2.55
5.85
6.24
2.60
Mn/B
3.28
2.11
2.45
2.55
2.46
2.22
2.85
2.63
3.75
2.48
2.61
1.42
2.33
1.69
1.97
2.78
3.23
3.45
2.01
3.61
3.00
2.42
2.81
1.95
1.53
3.68
1.87
Zn/Cu
1.00
2.12
2.73
10.79
2.96
2.31
1.63
2.78
1.55
3.01
9.72
0.70
10.21
1.04
4.01
2.56
2.63
8.84
1.37
13.58
2.47
7.97
1.98
1.78
1.82
2.32
1.34
Zn/B
0.30
1.01
1.12
4.24
1.20
1.04
0.57
1.06
0.41
1.21
3.72
0.50
4.38
0.62
2.03
0.92
0.81
2.56
0.68
3.76
0.82
3.29
0.70
0.91
1.19
0.63
0.72
Cu/B
0.64
0.78
0.23
0.79
0.99
0.59
16.37
13.57
12.11
19.54
12.72
18.97
13.03
14.97
8.63
22.36
13.98
14.96
12.07
12.55
9.37
10.96
16.37
12.11
18.00
13.34
13.67
8.55
8.92
21.08
15.38
21.27
54
120
42
121
122
37
32
10
129
28
95
75
45
51
152
2
17
18
5
85
126
159
47
44
49
155
1.27
0.39
0.90
0.23
0.52
0.32
0.98
0.94
0.87
0.90
0.85
0.55
0.70
0.22
0.72
0.57
0.62
0.83
0.68
0.68
0.85
12.28
61
N/K
N/P
No
64.27
128.73
91.04
273.32
96.85
200.78
110.13
52.66
68.18
67.30
120.38
179.51
48.86
65.07
78.63
148.15
139.85
317.22
97.53
74.90
69.83
107.46
107.50
57.94
107.53
68.86
74.82
Fe/N
12.49
27.09
7.80
34.93
16.98
21.47
19.78
13.50
19.59
18.95
11.44
41.06
10.36
11.54
29.28
12.97
18.97
48.70
17.51
16.83
14.75
18.74
15.99
13.78
13.54
14.87
22.18
Mn/N
0.15
0.07
0.10
0.04
0.13
0.06
0.17
0.13
0.25
0.22
0.10
0.06
0.13
0.19
0.16
0.07
0.10
0.07
0.18
0.14
0.16
0.17
0.16
0.11
0.16
0.13
0.16
N/Zn
0.54
0.11
0.43
0.10
0.23
0.14
0.22
0.52
0.46
0.49
0.38
0.11
0.45
0.43
0.35
0.20
0.26
0.09
0.43
0.37
0.24
0.22
0.26
0.40
0.32
0.34
0.42
N/Cu
Appendix 3 continued
0.58
0.11
0.16
0.12
0.28
0.70
0.09
0.19
0.48
0.25
0.24
0.08
0.40
0.18
1.17
0.32
0.44
0.07
0.21
0.29
0.59
0.15
0.17
0.28
0.28
0.40
0.16
N/B
16.74
39.40
23.31
39.62
16.48
42.73
22.73
18.19
12.34
17.49
13.90
41.01
14.40
13.39
17.60
25.64
32.17
39.14
19.10
20.48
26.40
22.24
31.36
14.51
20.04
24.08
14.39
K/P
1366.61
1980.07
1919.41
2438.15
827.98
2744.31
1468.63
948.00
825.43
1101.36
1318.96
1682.07
612.99
785.47
1176.37
2070.67
3127.23
2736.33
1459.88
976.10
1324.88
1366.96
2100.72
701.86
1458.62
1126.87
918.82
Fe/P
265.50
416.64
164.43
311.59
145.15
293.45
263.79
243.04
237.15
310.19
125.33
384.78
129.95
139.34
438.07
181.35
424.20
420.05
262.14
219.35
279.91
238.41
312.45
166.97
183.67
243.38
272.40
Mn/P
141.25
230.98
210.95
201.26
63.92
235.57
78.45
139.28
49.12
74.26
104.74
167.99
94.92
62.91
94.89
202.92
217.95
122.49
83.94
91.14
115.83
76.99
121.46
111.11
86.28
126.94
75.21
Zn/P
39.25
139.67
49.43
88.66
36.48
98.65
60.21
34.54
26.20
33.73
29.15
87.01
27.68
28.17
43.01
70.03
86.55
93.86
34.84
35.19
78.16
57.36
74.22
30.27
42.94
47.49
29.29
Cu/P
36.68
134.89
134.80
77.16
30.54
19.49
145.23
94.82
25.26
65.34
46.02
113.32
31.32
68.65
12.82
43.72
50.93
116.52
72.58
45.33
32.28
82.31
114.89
42.61
48.41
40.82
78.35
B/P
85
81.63
50.25
82.34
61.53
50.25
64.22
64.60
52.12
66.89
62.98
94.91
41.02
42.57
58.68
66.85
80.76
97.22
69.91
76.43
47.65
50.19
61.47
66.98
48.36
72.78
46.79
63.86
Fe/K
15.86
10.57
7.05
7.86
8.81
6.87
11.60
13.36
19.22
17.74
9.02
9.38
9.02
10.41
24.89
7.07
13.19
10.73
13.72
10.71
10.60
10.72
9.96
11.51
9.16
10.11
18.93
Mn/K
Appendices
0.12
0.17
0.11
0.20
0.26
0.18
0.29
0.13
0.25
0.24
0.13
0.24
0.15
0.21
0.19
0.13
0.15
0.32
0.23
0.22
0.23
0.29
0.26
0.13
0.23
0.19
0.19
K/Zn
0.43
0.28
0.47
0.45
0.45
0.43
0.38
0.53
0.47
0.52
0.48
0.47
0.52
0.48
0.41
0.37
0.37
0.42
0.55
0.58
0.34
0.39
0.42
0.48
0.47
0.51
0.49
K/Cu
0.46
0.29
0.17
0.51
0.54
2.19
0.16
0.19
0.49
0.27
0.30
0.36
0.46
0.20
1.37
0.59
0.63
0.34
0.26
0.45
0.82
0.27
0.27
0.34
0.41
0.59
0.18
K/B
5.15
4.75
11.67
7.82
5.70
9.35
5.57
3.90
3.48
3.55
10.52
4.37
4.72
5.64
2.69
11.42
7.37
6.51
5.57
4.45
4.73
5.73
6.72
4.20
7.94
4.63
3.37
Fe/Mn
9.68
8.57
9.10
12.11
12.95
11.65
18.72
6.81
16.80
14.83
12.59
10.01
6.46
12.49
12.40
10.20
14.35
22.34
17.39
10.71
11.44
17.76
17.30
6.32
16.91
8.88
12.22
Fe/Zn
34.82
14.18
38.83
27.50
22.70
27.82
24.39
27.44
31.50
32.65
45.24
19.33
22.14
27.88
27.35
29.57
36.13
29.15
41.90
27.74
16.95
23.83
28.30
23.19
33.97
23.73
31.36
Fe/Cu
37.26
14.68
14.24
31.60
27.12
140.80
10.11
10.00
32.68
16.85
28.66
14.84
19.57
11.44
91.73
47.36
61.41
23.48
20.12
21.53
41.04
16.61
18.28
16.47
30.13
27.60
11.73
Fe/B
1.88
1.80
0.78
1.55
2.27
1.25
3.36
1.75
4.83
4.18
1.20
2.29
1.37
2.21
4.62
0.89
1.95
3.43
3.12
2.41
2.42
3.10
2.57
1.50
2.13
1.92
3.62
Mn/Zn
6.76
2.98
3.33
3.51
3.98
2.97
4.38
7.04
9.05
9.20
4.30
4.42
4.69
4.95
10.19
2.59
4.90
4.48
7.52
6.23
3.58
4.16
4.21
5.52
4.28
5.12
9.30
Mn/Cu
7.24
3.09
1.22
4.04
4.75
15.06
1.82
2.56
9.39
4.75
2.72
3.40
4.15
2.03
34.16
4.15
8.33
3.61
3.61
4.84
8.67
2.90
2.72
3.92
3.79
5.96
3.48
Mn/B
3.60
1.65
4.27
2.27
1.75
2.39
1.30
4.03
1.87
2.20
3.59
1.93
3.43
2.23
2.21
2.90
2.52
1.31
2.41
2.59
1.48
1.34
1.64
3.67
2.01
2.67
2.57
Zn/Cu
3.85
1.71
1.56
2.61
2.09
12.09
0.54
1.47
1.94
1.14
2.28
1.48
3.03
0.92
7.40
4.64
4.28
1.05
1.16
2.01
3.59
0.94
1.06
2.61
1.78
3.11
0.96
Zn/B
1.07
1.04
0.37
1.15
1.19
5.06
0.41
0.36
1.04
0.52
0.63
0.77
0.88
0.41
3.35
1.60
1.70
0.81
0.48
0.78
2.42
0.70
0.65
0.71
0.89
1.16
0.37
Cu/B
0.76
0.92
0.80
10.88
4.03
15.30
23.38
11.53
14.31
5.36
8.72
12.87
14.61
6.35
4.69
6.50
5.82
2.27
70
109
43
119
1
69
108
125
80
60
124
34
157
123
32
0.10
0.41
0.34
0.30
0.35
1.71
1.02
0.39
0.27
1.22
0.96
0.21
N/K
N/P
No
731.47
302.84
209.13
303.95
231.17
49.71
71.83
198.23
105.86
67.50
97.24
70.10
44.28
166.01
124.53
Fe/N
131.34
29.72
26.87
28.22
22.82
13.24
17.92
18.95
29.84
13.16
11.26
19.90
11.01
42.50
17.29
Mn/N
0.02
0.05
0.05
0.07
0.07
0.24
0.13
0.08
0.04
0.13
0.12
0.13
0.10
0.04
0.17
N/Zn
0.06
0.17
0.12
0.15
0.15
0.67
0.45
0.17
0.13
0.43
0.30
0.69
0.48
0.10
0.21
N/Cu
Appendix 3 continued
0.03
0.07
0.13
0.05
0.13
0.86
0.34
0.11
0.05
0.29
0.16
0.36
0.25
0.11
0.26
N/B
21.77
14.33
19.32
15.77
18.10
8.53
12.67
22.48
20.09
11.73
14.34
25.33
16.01
19.05
14.23
K/P
1663.77
1761.46
1359.89
1425.20
1468.80
726.21
924.61
1728.65
567.08
965.80
1121.43
1639.16
677.68
668.90
1354.41
Fe/P
298.75
172.84
174.71
132.31
145.01
193.43
230.66
165.21
159.85
188.30
129.82
465.24
168.43
171.26
188.03
Mn/P
95.67
118.97
130.27
71.42
86.00
62.07
97.52
108.06
121.13
114.11
98.94
173.56
146.93
112.24
64.12
Zn/P
39.71
34.87
54.00
30.28
41.36
21.78
28.39
51.98
41.20
32.97
38.48
34.05
31.61
41.19
51.32
Cu/P
82.71
85.80
51.90
88.60
50.22
17.05
38.14
80.73
103.94
49.57
72.56
64.55
61.85
35.69
42.09
B/P
86
76.43
122.88
70.39
90.40
81.16
85.15
72.99
76.91
28.22
82.36
78.18
64.71
42.34
35.11
95.15
Fe/K
13.72
12.06
9.04
8.39
8.01
22.68
18.21
7.35
7.96
16.06
9.05
18.37
10.52
8.99
13.21
Mn/K
Appendices
0.23
0.12
0.15
0.22
0.21
0.14
0.13
0.21
0.17
0.10
0.14
0.15
0.11
0.17
0.22
K/Zn
0.55
0.41
0.36
0.52
0.44
0.39
0.45
0.43
0.49
0.36
0.37
0.74
0.51
0.46
0.28
K/Cu
0.26
0.17
0.37
0.18
0.36
0.50
0.33
0.28
0.19
0.24
0.20
0.39
0.26
0.53
0.34
K/B
5.57
10.19
7.78
10.77
10.13
3.75
4.01
10.46
3.55
5.13
8.64
3.52
4.02
3.91
7.20
Fe/Mn
17.39
14.81
10.44
19.95
17.08
11.70
9.48
16.00
4.68
8.46
11.33
9.44
4.61
5.96
21.12
Fe/Zn
41.90
50.51
25.18
47.06
35.51
33.34
32.57
33.25
13.76
29.29
29.15
48.14
21.44
16.24
26.39
Fe/Cu
20.12
20.53
26.20
16.09
29.25
42.59
24.24
21.41
5.46
19.48
15.46
25.39
10.96
18.74
32.18
Fe/B
3.12
1.45
1.34
1.85
1.69
3.12
2.37
1.53
1.32
1.65
1.31
2.68
1.15
1.53
2.93
Mn/Zn
7.52
4.96
3.24
4.37
3.51
8.88
8.12
3.18
3.88
5.71
3.37
13.66
5.33
4.16
3.66
Mn/Cu
3.61
2.01
3.37
1.49
2.89
11.34
6.05
2.05
1.54
3.80
1.79
7.21
2.72
4.80
4.47
Mn/B
2.41
3.41
2.41
2.36
2.08
2.85
3.44
2.08
2.94
3.46
2.57
5.10
4.65
2.72
1.25
Zn/Cu
1.16
1.39
2.51
0.81
1.71
3.64
2.56
1.34
1.17
2.30
1.36
2.69
2.38
3.15
1.52
Zn/B
0.48
0.41
1.04
0.34
0.82
1.28
0.74
0.64
0.40
0.67
0.53
0.53
0.51
1.15
1.22
Cu/B
1.17
1.02
16.66
11.69
12.65
14.34
12.75
21.52
10.34
23.13
12.18
11.40
35.56
12.23
18.83
10.99
8.21
13.00
11.92
7.10
6.08
6.69
8.26
11.08
11.02
22.74
12.33
74
17
44
23
16
46
13
8
69
2
26
65
70
76
61
37
20
58
66
55
15
72
77
60
56
0.65
0.61
0.53
1.26
0.69
0.53
0.67
0.44
1.00
0.95
1.02
1.46
0.89
0.77
1.18
0.75
0.97
0.90
0.93
0.98
0.77
0.82
0.80
1.00
15.34
45
N/K
N/P
No
153.62
95.42
125.22
104.09
141.70
182.11
201.05
207.93
107.80
120.79
94.85
119.98
143.09
180.53
113.07
141.99
143.94
112.71
123.92
109.07
118.22
118.92
152.93
145.32
135.71
108.84
Fe/N
16.58
19.06
16.02
11.24
12.24
18.11
19.93
21.31
8.80
15.88
10.59
7.84
22.68
18.63
15.54
15.91
14.52
12.40
10.33
19.94
11.83
8.22
26.77
14.71
11.57
12.77
Mn/N
0.14
0.17
0.21
0.36
0.13
0.12
0.11
0.09
0.19
0.22
0.22
0.20
0.27
0.12
0.19
0.14
0.23
0.16
0.21
0.26
0.15
0.18
0.13
0.13
0.18
0.20
N/Zn
0.26
0.26
0.33
0.62
0.25
0.24
0.22
0.22
0.35
0.37
0.49
0.45
0.47
0.31
0.34
0.27
0.38
0.33
0.37
0.33
0.38
0.37
1.53
0.32
0.62
0.37
N/Cu
Appendix 4
0.24
0.31
0.22
0.55
0.32
0.22
0.21
0.25
0.28
0.76
0.49
0.40
0.37
0.19
0.30
0.25
0.35
0.21
0.60
0.30
0.36
0.39
0.32
0.34
0.35
0.38
N/B
18.92
37.13
20.85
8.82
11.99
12.53
9.12
16.12
11.91
13.69
8.03
7.54
21.22
15.83
30.02
15.18
12.52
22.77
8.82
24.00
13.66
14.70
16.51
14.32
20.76
15.36
K/P
1894.40
2169.90
1380.14
1153.64
1170.00
1218.07
1223.34
1476.28
1284.95
1569.84
779.19
1318.91
2694.23
2207.33
4020.93
1619.23
1753.91
2607.13
1281.59
2346.70
1506.67
1705.58
1934.66
1698.84
2261.18
1669.29
Fe/P
204.49
433.37
176.55
124.62
101.11
121.16
121.28
151.28
104.84
206.38
87.00
86.13
426.99
227.84
552.74
181.39
176.96
286.90
106.80
429.08
150.73
117.94
338.63
172.00
192.81
195.91
Mn/P
88.02
133.95
51.57
30.38
63.79
56.77
55.46
75.04
61.86
59.42
37.08
55.19
69.97
99.91
183.48
82.85
53.10
140.63
49.67
82.02
87.69
78.42
99.80
87.38
94.38
76.45
Zn/P
46.81
88.36
33.22
17.82
33.60
27.31
27.53
32.83
34.33
34.71
16.67
24.48
40.30
39.46
105.93
42.82
32.37
69.41
27.97
64.49
33.23
38.78
8.25
36.41
26.98
41.96
Cu/P
51.27
73.30
50.73
20.10
25.67
30.67
29.54
28.76
42.52
17.14
16.67
27.73
50.77
63.67
118.69
44.76
35.01
108.77
17.35
71.28
35.37
37.05
39.66
34.48
47.36
40.19
B/P
87
100.14
58.44
66.21
130.86
97.55
97.23
134.07
91.57
107.85
114.67
97.00
174.81
126.94
139.42
133.94
106.67
140.10
114.50
145.23
97.79
110.31
116.00
117.15
118.61
108.95
108.64
Fe/K
10.81
11.67
8.47
14.14
8.43
9.67
13.29
9.38
8.80
15.07
10.83
11.42
20.12
14.39
18.41
11.95
14.14
12.60
12.10
17.88
11.04
8.02
20.50
12.01
9.29
12.75
Mn/K
0.21
0.28
0.40
0.29
0.19
0.22
0.16
0.21
0.19
0.23
0.22
0.14
0.30
0.16
0.16
0.18
0.24
0.16
0.18
0.29
0.16
0.19
0.17
0.16
0.22
0.20
K/Zn
0.40
0.42
0.63
0.49
0.36
0.46
0.33
0.49
0.35
0.39
0.48
0.31
0.53
0.40
0.28
0.35
0.39
0.33
0.32
0.37
0.41
0.38
2.00
0.39
0.77
0.37
K/Cu
0.37
0.51
0.41
0.44
0.47
0.41
0.31
0.56
0.28
0.80
0.48
0.27
0.42
0.25
0.25
0.34
0.36
0.21
0.51
0.34
0.39
0.40
0.42
0.42
0.44
0.38
K/B
9.26
5.01
7.82
9.26
11.57
10.05
10.09
9.76
12.26
7.61
8.96
15.31
6.31
9.69
7.27
8.93
9.91
9.09
12.00
5.47
10.00
14.46
5.71
9.88
11.73
8.52
Fe/Mn
21.52
16.20
26.76
37.97
18.34
21.46
22.06
19.67
20.77
26.42
21.01
23.90
38.51
22.09
21.91
19.54
33.03
18.54
25.80
28.61
17.18
21.75
19.38
19.44
23.96
21.83
Fe/Zn
40.47
24.56
41.55
64.75
34.82
44.60
44.44
44.97
37.43
45.23
46.74
53.89
66.86
55.94
37.96
37.82
54.18
37.56
45.82
36.39
45.34
43.99
234.41
46.66
83.80
39.78
Fe/Cu
36.95
29.60
27.21
57.40
45.57
39.71
41.41
51.33
30.22
91.57
46.74
47.57
53.07
34.67
33.88
36.17
50.10
23.97
73.89
32.92
42.60
46.04
48.78
49.27
47.75
41.54
Fe/B
2.32
3.24
3.42
4.10
1.59
2.13
2.19
2.02
1.69
3.47
2.35
1.56
6.10
2.28
3.01
2.19
3.33
2.04
2.15
5.23
1.72
1.50
3.39
1.97
2.04
2.56
Mn/Zn
Ratio of the nutrients in leaf tissue (GS-39) for the high-yielding population in irrigated wheat
Appendices
4.37
4.90
5.32
6.99
3.01
4.44
4.41
4.61
3.05
5.95
5.22
3.52
10.60
5.77
5.22
4.24
5.47
4.13
3.82
6.65
4.54
3.04
41.03
4.72
7.15
4.67
Mn/Cu
3.99
5.91
3.48
6.20
3.94
3.95
4.11
5.26
2.47
12.04
5.22
3.11
8.41
3.58
4.66
4.05
5.05
2.64
6.16
6.02
4.26
3.18
8.54
4.99
4.07
4.87
Mn/B
1.88
1.52
1.55
1.71
1.90
2.08
2.01
2.29
1.80
1.71
2.22
2.25
1.74
2.53
1.73
1.93
1.64
2.03
1.78
1.27
2.64
2.02
12.09
2.40
3.50
1.82
Zn/Cu
1.72
1.83
1.02
1.51
2.48
1.85
1.88
2.61
1.45
3.47
2.22
1.99
1.38
1.57
1.55
1.85
1.52
1.29
2.86
1.15
2.48
2.12
2.52
2.53
1.99
1.90
Zn/B
0.91
1.21
0.65
0.89
1.31
0.89
0.93
1.14
0.81
2.02
1.00
0.88
0.79
0.62
0.89
0.96
0.92
0.64
1.61
0.90
0.94
1.05
0.21
1.06
0.57
1.04
Cu/B
0.69
0.88
8.72
15.22
12.67
39
102
0.86
11.62
16.18
82
21.01
62
107
0.81
8.11
38
0.74
0.77
1.07
0.67
1.18
30.97
14.37
51
179
0.51
0.67
0.53
0.86
29
30.63
21
0.57
9.28
9.71
63
1.00
0.94
25
11.97
24
7.33
14.57
30
0.88
10.10
17.00
1
0.94
22
10.85
36
0.50
0.92
0.79
0.73
1.05
0.96
0.91
1.20
0.95
N/K
49
9.67
11.99
6.13
52
27
9.05
50
73
5.06
10.16
34
15.89
14.14
12
7
14.23
9
10
N/P
No
103.14
99.88
100.01
115.89
117.06
135.59
96.38
85.21
139.41
121.21
126.09
127.86
95.81
148.43
96.24
98.42
98.74
97.21
108.66
97.69
100.38
164.09
128.09
118.13
115.71
115.08
103.69
Fe/N
12.52
16.51
10.20
20.44
17.22
16.95
10.89
21.79
19.74
19.81
13.44
21.71
9.22
23.21
15.02
7.85
17.04
8.86
15.95
10.73
26.28
19.30
11.03
8.53
12.92
10.18
8.83
Mn/N
0.25
0.41
0.11
0.17
0.15
0.23
0.26
0.34
0.19
0.14
0.16
0.10
0.16
0.12
0.31
0.20
0.13
0.13
0.14
0.11
0.35
0.14
0.16
0.25
0.19
0.24
0.19
N/Zn
0.28
0.35
0.40
0.39
0.38
0.25
0.37
0.49
0.23
0.19
0.27
0.20
0.32
0.36
0.48
0.32
0.39
0.35
0.17
0.58
0.43
0.39
0.37
0.45
0.39
0.45
0.37
N/Cu
Appendix 4 continued
0.37
0.81
0.20
0.21
0.56
0.57
0.23
0.30
0.12
0.20
0.34
0.17
0.27
0.30
0.37
0.17
0.21
0.70
0.28
0.18
0.28
0.33
1.06
2.56
0.28
0.31
0.42
N/B
17.12
19.84
15.14
13.47
25.88
12.10
12.14
35.02
12.60
18.11
15.15
13.92
35.50
17.01
11.96
15.57
19.24
11.49
24.21
10.53
7.77
12.39
15.17
5.24
11.12
11.77
14.99
K/P
Fe/P
1307.09
1519.99
1617.91
1346.79
2459.21
1100.01
1385.15
2639.12
1215.10
1124.97
1273.66
937.11
2934.58
1441.67
1152.04
1433.74
1678.98
1054.71
1303.24
944.60
615.68
1484.79
2035.67
597.16
1175.19
1627.75
1475.37
Mn/P
158.67
251.32
165.09
237.58
361.73
137.50
156.52
674.76
172.07
183.88
135.76
159.14
282.30
225.41
179.75
114.42
289.73
96.08
191.32
103.79
161.21
174.65
175.32
43.12
131.17
143.98
125.58
50.60
37.35
148.85
68.36
137.87
35.75
54.53
91.03
46.84
68.37
63.83
73.93
192.40
83.49
38.32
71.90
127.68
81.31
83.10
85.85
17.31
64.42
96.77
20.50
53.61
60.04
75.39
Zn/P
45.88
43.74
40.35
29.61
55.10
33.00
38.77
63.43
38.36
49.74
37.55
36.41
94.34
26.78
24.83
45.21
43.96
30.85
69.94
16.69
14.31
23.17
43.31
11.29
26.21
31.74
38.66
Cu/P
34.70
18.76
81.38
55.38
37.28
14.13
62.89
101.96
74.70
46.88
30.02
42.11
111.82
32.69
32.44
87.19
81.05
15.60
43.32
53.81
21.84
27.12
15.01
1.98
36.39
46.24
34.11
B/P
88
76.33
76.60
106.90
99.98
95.01
90.91
114.14
75.36
96.46
62.13
84.06
67.34
82.67
84.77
96.33
92.08
87.29
91.76
53.84
89.67
79.27
119.81
134.23
113.98
105.64
138.24
98.45
Fe/K
9.27
12.67
10.91
17.64
13.98
11.36
12.90
19.27
13.66
10.16
8.96
11.44
7.95
13.25
15.03
7.35
15.06
8.36
7.90
9.85
20.76
14.09
11.56
8.23
11.79
12.23
8.38
Mn/K
Appendices
0.34
0.53
0.10
0.20
0.19
0.34
0.22
0.38
0.27
0.26
0.24
0.19
0.18
0.20
0.31
0.22
0.15
0.14
0.29
0.12
0.45
0.19
0.16
0.26
0.21
0.20
0.20
K/Zn
0.37
0.45
0.38
0.45
0.47
0.37
0.31
0.55
0.33
0.36
0.40
0.38
0.38
0.63
0.48
0.34
0.44
0.37
0.35
0.63
0.54
0.53
0.35
0.46
0.42
0.37
0.39
K/Cu
K/B
0.49
1.06
0.19
0.24
0.69
0.86
0.19
0.34
0.17
0.39
0.50
0.33
0.32
0.52
0.37
0.18
0.24
0.74
0.56
0.20
0.36
0.46
1.01
2.65
0.31
0.25
0.44
8.24
6.05
9.80
5.67
6.80
8.00
8.85
3.91
7.06
6.12
9.38
5.89
10.40
6.40
6.41
12.53
5.79
10.98
6.81
9.10
3.82
8.50
11.61
13.85
8.96
11.31
11.75
Fe/Mn
25.83
40.69
10.87
19.70
17.84
30.77
25.40
28.99
25.94
16.45
19.95
12.68
15.25
17.27
30.07
19.94
13.15
12.97
15.68
11.00
35.56
23.05
21.04
29.13
21.92
27.11
19.57
Fe/Zn
28.49
34.75
40.10
45.49
44.63
33.33
35.73
41.60
31.68
22.62
33.92
25.74
31.11
53.83
46.40
31.71
38.19
34.19
18.63
56.60
43.04
64.09
47.01
52.90
44.83
51.28
38.17
Fe/Cu
37.67
81.04
19.88
24.32
65.97
77.85
22.02
25.88
16.27
24.00
42.42
22.26
26.24
44.10
35.52
16.44
20.72
67.62
30.08
17.55
28.20
54.76
135.63
301.87
32.29
35.20
43.25
Fe/B
3.14
6.73
1.11
3.48
2.62
3.85
2.87
7.41
3.67
2.69
2.13
2.15
1.47
2.70
4.69
1.59
2.27
1.18
2.30
1.21
9.31
2.71
1.81
2.10
2.45
2.40
1.67
Mn/Zn
3.46
5.75
4.09
8.02
6.57
4.17
4.04
10.64
4.49
3.70
3.62
4.37
2.99
8.42
7.24
2.53
6.59
3.11
2.74
6.22
11.27
7.54
4.05
3.82
5.00
4.54
3.25
Mn/Cu
4.57
13.40
2.03
4.29
9.70
9.73
2.49
6.62
2.30
3.92
4.52
3.78
2.52
6.90
5.54
1.31
3.57
6.16
4.42
1.93
7.38
6.44
11.68
21.80
3.60
3.11
3.68
Mn/B
1.10
0.85
3.69
2.31
2.50
1.08
1.41
1.44
1.22
1.37
1.70
2.03
2.04
3.12
1.54
1.59
2.90
2.64
1.19
5.14
1.21
2.78
2.23
1.82
2.05
1.89
1.95
Zn/Cu
1.46
1.99
1.83
1.23
3.70
2.53
0.87
0.89
0.63
1.46
2.13
1.76
1.72
2.55
1.18
0.82
1.58
5.21
1.92
1.60
0.79
2.38
6.45
10.36
1.47
1.30
2.21
Zn/B
1.32
2.33
0.50
0.53
1.48
2.34
0.62
0.62
0.51
1.06
1.25
0.86
0.84
0.82
0.77
0.52
0.54
1.98
1.61
0.31
0.66
0.85
2.89
5.71
0.72
0.69
1.13
Cu/B
17.06
14.71
18.24
15.97
15.10
10.88
29.49
18.01
24.26
10.07
16.51
12.90
17.06
11.95
10.27
28.68
8.65
11.73
128
149
153
139
91
116
146
178
75
129
165
180
64
89
80
47
94
11.12
110
11
0.72
16.09
155
11.97
17.47
31
14.90
11.05
140
57
15.96
28
112
0.90
12.66
118
1.25
0.63
0.92
0.65
0.91
1.10
0.97
0.76
1.10
1.09
1.09
1.07
1.32
1.13
1.10
0.86
0.95
1.14
0.81
0.81
0.97
1.13
0.73
0.84
1.05
12.49
134
N/K
N/P
No
83.52
118.45
87.86
109.92
84.25
83.96
75.70
87.85
88.45
97.14
90.97
101.26
82.82
84.48
83.35
81.99
100.88
80.76
103.21
90.82
114.85
88.83
82.66
79.18
106.23
135.17
81.39
Fe/N
6.46
19.79
12.50
25.29
21.73
6.40
11.43
20.01
6.89
11.87
14.43
9.65
12.58
12.19
11.33
13.98
6.81
15.79
18.75
21.09
12.75
9.39
15.26
10.24
16.56
11.51
14.91
Mn/N
0.23
0.17
0.35
0.11
0.29
0.22
0.26
0.38
0.20
0.25
0.20
0.24
0.18
0.17
0.20
0.22
0.25
0.22
0.11
0.09
0.18
0.24
0.15
0.17
0.22
0.19
0.21
N/Zn
0.50
0.31
0.55
0.35
0.41
0.35
0.39
0.51
0.40
0.32
0.35
0.42
0.35
0.37
0.37
0.37
0.42
0.35
0.39
0.29
0.38
0.36
0.45
0.41
0.33
0.27
0.36
N/Cu
Appendix 4 continued
1.43
0.14
0.43
0.43
0.58
0.18
0.52
0.50
0.80
0.39
0.53
0.33
0.27
0.47
0.49
0.35
0.43
2.27
0.33
0.23
0.35
0.45
0.89
0.57
1.51
0.17
0.25
N/B
9.39
13.69
31.11
15.87
13.07
15.51
13.27
21.63
9.16
22.34
16.52
27.65
8.23
13.41
14.55
21.31
15.43
14.90
18.46
16.54
12.32
19.80
18.08
9.74
21.83
15.09
11.89
K/P
Fe/P
979.84
1024.78
2519.74
1129.42
1007.10
1432.77
976.54
1450.58
891.05
2356.75
1638.08
2985.98
901.29
1275.83
1330.74
1495.42
1483.93
1377.79
1537.47
1087.36
1277.33
1428.91
1444.13
874.68
1695.39
1710.71
1016.22
Mn/P
75.78
171.21
358.36
259.82
259.79
109.16
147.41
330.38
69.40
287.91
259.86
284.59
136.86
184.05
180.83
255.05
100.23
269.42
279.32
252.54
141.78
151.02
266.53
113.09
264.24
145.69
186.16
51.44
50.39
80.85
93.22
40.77
78.77
50.50
43.19
50.96
97.07
89.63
121.95
59.53
88.46
80.15
81.50
57.94
76.92
130.06
126.42
62.67
68.17
114.29
65.94
73.28
66.52
58.72
Zn/P
23.28
27.82
52.09
29.73
29.23
48.59
33.07
32.59
25.07
75.85
50.79
69.58
31.52
41.17
42.64
49.28
35.32
48.47
38.02
40.78
29.28
44.50
38.44
27.02
48.16
46.42
35.07
Cu/P
8.23
59.99
66.98
23.98
20.77
93.68
24.58
33.23
12.56
62.57
34.03
90.44
40.37
32.03
32.42
51.57
33.86
7.50
44.99
52.99
31.48
35.53
19.72
19.48
10.56
73.08
49.72
B/P
89
104.39
74.84
81.00
71.16
77.03
92.40
73.59
67.06
97.28
105.48
99.15
108.00
109.55
95.13
91.44
70.16
96.20
92.45
83.29
65.75
103.71
72.18
79.88
89.77
77.65
113.40
85.43
Fe/K
8.07
12.50
11.52
16.37
19.87
7.04
11.11
15.27
7.58
12.89
15.73
10.29
16.64
13.72
12.43
11.97
6.50
18.08
15.13
15.27
11.51
7.63
14.74
11.61
12.10
9.66
15.65
Mn/K
Appendices
0.18
0.27
0.38
0.17
0.32
0.20
0.26
0.50
0.18
0.23
0.18
0.23
0.14
0.15
0.18
0.26
0.27
0.19
0.14
0.13
0.20
0.29
0.16
0.15
0.30
0.23
0.20
K/Zn
0.40
0.49
0.60
0.53
0.45
0.32
0.40
0.66
0.37
0.29
0.33
0.40
0.26
0.33
0.34
0.43
0.44
0.31
0.49
0.41
0.42
0.44
0.47
0.36
0.45
0.32
0.34
K/Cu
K/B
1.14
0.23
0.46
0.66
0.63
0.17
0.54
0.65
0.73
0.36
0.49
0.31
0.20
0.42
0.45
0.41
0.46
1.99
0.41
0.31
0.39
0.56
0.92
0.50
2.07
0.21
0.24
12.93
5.99
7.03
4.35
3.88
13.12
6.62
4.39
12.84
8.19
6.30
10.49
6.59
6.93
7.36
5.86
14.81
5.11
5.50
4.31
9.01
9.46
5.42
7.73
6.42
11.74
5.46
Fe/Mn
19.05
20.34
31.16
12.12
24.70
18.19
19.34
33.58
17.49
24.28
18.28
24.49
15.14
14.42
16.60
18.35
25.61
17.91
11.82
8.60
20.38
20.96
12.64
13.26
23.14
25.72
17.30
Fe/Zn
42.09
36.84
48.37
37.98
34.45
29.49
29.53
44.51
35.54
31.07
32.25
42.92
28.59
30.99
31.21
30.34
42.01
28.42
40.44
26.66
43.63
32.11
37.57
32.37
35.21
36.85
28.98
Fe/Cu
119.10
17.08
37.62
47.11
48.49
15.29
39.72
43.65
70.96
37.66
48.13
33.02
22.32
39.83
41.05
29.00
43.82
183.63
34.18
20.52
40.58
40.22
73.24
44.90
160.59
23.41
20.44
Fe/B
1.47
3.40
4.43
2.79
6.37
1.39
2.92
7.65
1.36
2.97
2.90
2.33
2.30
2.08
2.26
3.13
1.73
3.50
2.15
2.00
2.26
2.22
2.33
1.72
3.61
2.19
3.17
Mn/Zn
3.26
6.15
6.88
8.74
8.89
2.25
4.46
10.14
2.77
3.80
5.12
4.09
4.34
4.47
4.24
5.18
2.84
5.56
7.35
6.19
4.84
3.39
6.93
4.18
5.49
3.14
5.31
Mn/Cu
9.21
2.85
5.35
10.84
12.51
1.17
6.00
9.94
5.53
4.60
7.64
3.15
3.39
5.75
5.58
4.95
2.96
35.91
6.21
4.77
4.50
4.25
13.52
5.81
25.03
1.99
3.74
Mn/B
2.21
1.81
1.55
3.14
1.39
1.62
1.53
1.33
2.03
1.28
1.76
1.75
1.89
2.15
1.88
1.65
1.64
1.59
3.42
3.10
2.14
1.53
2.97
2.44
1.52
1.43
1.67
Zn/Cu
6.25
0.84
1.21
3.89
1.96
0.84
2.05
1.30
4.06
1.55
2.63
1.35
1.47
2.76
2.47
1.58
1.71
10.25
2.89
2.39
1.99
1.92
5.80
3.39
6.94
0.91
1.18
Zn/B
2.83
0.46
0.78
1.24
1.41
0.52
1.35
0.98
2.00
1.21
1.49
0.77
0.78
1.29
1.32
0.96
1.04
6.46
0.85
0.77
0.93
1.25
1.95
1.39
4.56
0.64
0.71
Cu/B
N/P
18.67
14.12
42.22
15.98
20.83
17.36
No
95
114
172
141
167
117
1.25
1.17
0.95
1.27
1.16
1.12
N/K
92.69
90.95
91.03
81.77
94.07
94.62
Fe/N
10.46
7.29
13.95
8.10
10.76
8.74
Mn/N
0.19
0.23
0.17
0.22
0.18
0.17
N/Zn
0.35
0.44
0.39
0.34
0.32
0.34
N/Cu
Appendix 4 continued
0.24
0.33
0.91
0.29
0.26
0.30
N/B
13.87
17.87
16.84
33.12
12.13
16.62
K/P
Fe/P
1608.65
1894.05
1454.35
3452.09
1328.51
1766.34
Mn/P
181.50
151.74
222.87
341.88
151.99
163.11
Zn/P
93.07
88.67
91.45
188.52
77.26
112.03
49.86
47.43
40.64
122.78
43.74
55.08
Cu/P
71.42
62.53
17.58
143.60
54.23
62.77
B/P
90
115.96
106.02
86.37
104.23
109.50
106.29
Fe/K
13.08
8.49
13.24
10.32
12.53
9.82
Mn/K
Appendices
0.15
0.20
0.18
0.18
0.16
0.15
K/Zn
0.28
0.38
0.41
0.27
0.28
0.30
K/Cu
K/B
0.19
0.29
0.96
0.23
0.22
0.26
8.86
12.48
6.53
10.10
8.74
10.83
Fe/Mn
17.29
21.36
15.90
18.31
17.19
15.77
Fe/Zn
32.26
39.93
35.78
28.12
30.37
32.07
Fe/Cu
22.52
30.29
82.71
24.04
24.50
28.14
Fe/B
1.95
1.71
2.44
1.81
1.97
1.46
Mn/Zn
3.64
3.20
5.48
2.78
3.47
2.96
Mn/Cu
2.54
2.43
12.67
2.38
2.80
2.60
Mn/B
1.87
1.87
2.25
1.54
1.77
2.03
Zn/Cu
1.30
1.42
5.20
1.31
1.42
1.78
Zn/B
0.70
0.76
2.31
0.86
0.81
0.88
Cu/B
13.18
10.06
23.49
16.17
18.64
29.71
23.81
12.99
28.12
15.69
17.78
24.92
27.40
175
92
121
106
48
6
171
113
147
160
120
108
143
13.48
15.16
33
148
14.42
119
26.44
20.96
138
14
0.79
19.90
152
7.90
15.44
19
15.81
43.92
93
32
16.31
150
181
0.75
16.58
151
1.18
1.09
1.19
1.28
1.13
0.83
1.46
1.18
1.02
0.72
1.49
1.36
0.97
0.69
1.06
1.30
1.66
1.05
1.01
0.71
1.23
1.08
0.75
2.24
12.21
123
N/K
N/P
No
68.15
72.01
80.78
76.69
72.31
91.12
66.98
74.79
85.74
99.30
75.16
73.68
82.35
112.83
70.29
68.27
104.07
96.45
89.67
72.94
87.11
92.10
75.94
78.33
103.56
74.95
Fe/N
5.93
12.24
13.28
5.82
10.10
23.08
11.65
4.62
15.06
14.17
7.88
12.07
7.58
16.16
8.70
9.80
13.31
9.70
6.63
10.19
11.74
14.26
7.39
11.37
14.18
8.74
Mn/N
0.28
0.18
0.26
0.28
0.21
0.16
0.37
0.26
0.20
0.27
0.27
0.20
0.18
0.23
0.20
0.30
0.26
0.18
0.16
0.17
0.18
0.33
0.19
0.20
0.20
0.26
N/Zn
0.43
0.44
0.35
0.46
0.35
0.38
0.49
0.47
0.52
0.41
0.41
0.35
0.37
0.30
0.40
0.36
0.39
0.37
0.38
0.41
0.35
0.41
0.39
0.39
0.42
0.52
N/Cu
Appendix 5
1.11
1.12
0.24
0.72
1.56
0.47
0.35
0.51
0.27
0.21
0.34
1.17
0.39
0.48
1.50
0.43
1.47
0.37
0.22
1.00
0.57
0.35
0.71
0.88
1.12
0.67
N/B
23.23
22.84
14.91
12.23
24.85
15.58
16.26
25.15
18.20
22.31
15.74
7.41
13.64
19.43
24.84
12.12
10.01
20.19
8.69
20.01
19.66
21.82
35.77
15.09
22.06
5.46
K/P
1867.27
1794.50
1436.56
1203.00
2033.63
1183.22
1594.53
2222.19
1598.51
1605.57
1765.48
741.10
1085.30
1520.59
1858.71
1079.18
821.71
1462.18
1292.69
1529.18
1733.76
1422.38
3335.17
1277.90
1716.55
915.21
Fe/P
162.39
305.13
236.10
91.28
283.96
299.70
277.42
137.24
280.74
229.08
185.21
121.40
99.90
217.83
230.11
154.87
105.10
147.08
95.53
213.63
233.57
220.28
324.68
185.51
235.02
106.67
Mn/P
99.40
136.48
69.65
57.04
136.84
79.72
64.77
115.77
91.43
59.72
87.56
50.19
72.40
59.02
132.42
53.26
30.51
84.70
89.58
126.47
110.86
46.17
229.33
83.46
83.16
46.59
Zn/P
63.93
56.56
51.31
34.46
79.81
33.89
48.64
63.65
35.97
39.28
57.40
28.69
35.85
45.20
66.41
43.80
20.28
41.41
37.46
51.40
57.42
37.58
112.74
41.95
39.47
23.39
Cu/P
24.72
22.28
72.99
21.81
18.01
27.88
67.92
58.02
68.47
76.28
69.76
8.58
34.18
27.96
17.60
36.37
5.37
41.32
66.13
20.92
35.00
43.85
61.97
18.51
14.79
18.13
B/P
91
80.40
78.58
96.35
98.40
81.85
75.95
98.08
88.34
87.85
71.96
112.14
100.06
79.58
78.26
74.83
89.04
82.07
72.41
148.84
76.40
88.19
65.18
93.23
84.66
77.83
167.61
Fe/K
6.99
13.36
15.84
7.47
11.43
19.24
17.06
5.46
15.43
10.27
11.76
16.39
7.33
11.21
9.26
12.78
10.50
7.28
11.00
10.67
11.88
10.09
9.08
12.29
10.66
19.53
Mn/K
0.23
0.17
0.21
0.21
0.18
0.20
0.25
0.22
0.20
0.37
0.18
0.15
0.19
0.33
0.19
0.23
0.33
0.24
0.10
0.16
0.18
0.47
0.16
0.18
0.27
0.12
K/Zn
0.36
0.40
0.29
0.35
0.31
0.46
0.33
0.40
0.51
0.57
0.27
0.26
0.38
0.43
0.37
0.28
0.49
0.49
0.23
0.39
0.34
0.58
0.32
0.36
0.56
0.23
K/Cu
0.94
1.03
0.20
0.56
1.38
0.56
0.24
0.43
0.27
0.29
0.23
0.86
0.40
0.69
1.41
0.33
1.86
0.49
0.13
0.96
0.56
0.50
0.58
0.82
1.49
0.30
K/B
11.50
5.88
6.08
13.18
7.16
3.95
5.75
16.19
5.69
7.01
9.53
6.10
10.86
6.98
8.08
6.97
7.82
9.94
13.53
7.16
7.42
6.46
10.27
6.89
7.30
8.58
Fe/Mn
18.78
13.15
20.62
21.09
14.86
14.84
24.62
19.20
17.48
26.88
20.16
14.77
14.99
25.76
14.04
20.26
26.93
17.26
14.43
12.09
15.64
30.81
14.54
15.31
20.64
19.64
Fe/Zn
29.21
31.73
28.00
34.91
25.48
34.91
32.78
34.91
44.44
40.88
30.76
25.83
30.27
33.64
27.99
24.64
40.52
35.31
34.51
29.75
30.19
37.85
29.58
30.46
43.49
39.13
Fe/Cu
75.55
80.56
19.68
55.15
112.89
42.44
23.48
38.30
23.35
21.05
25.31
86.40
31.76
54.38
105.61
29.67
152.91
35.39
19.55
73.08
49.53
32.44
53.82
69.06
116.10
50.49
Fe/B
1.63
2.24
3.39
1.60
2.08
3.76
4.28
1.19
3.07
3.84
2.12
2.42
1.38
3.69
1.74
2.91
3.44
1.74
1.07
1.69
2.11
4.77
1.42
2.22
2.83
2.29
Mn/Zn
Ratio of the nutrients in leaf tissue (GS-39) for the low-yielding population in irrigated wheat
Appendices
2.54
5.40
4.60
2.65
3.56
8.84
5.70
2.16
7.81
5.83
3.23
4.23
2.79
4.82
3.46
3.54
5.18
3.55
2.55
4.16
4.07
5.86
2.88
4.42
5.95
4.56
Mn/Cu
6.57
13.70
3.23
4.18
15.76
10.75
4.08
2.37
4.10
3.00
2.65
14.15
2.92
7.79
13.07
4.26
19.56
3.56
1.44
10.21
6.67
5.02
5.24
10.02
15.90
5.89
Mn/B
1.55
2.41
1.36
1.66
1.71
2.35
1.33
1.82
2.54
1.52
1.53
1.75
2.02
1.31
1.99
1.22
1.50
2.05
2.39
2.46
1.93
1.23
2.03
1.99
2.11
1.99
Zn/Cu
4.02
6.13
0.95
2.61
7.60
2.86
0.95
2.00
1.34
0.78
1.26
5.85
2.12
2.11
7.52
1.46
5.68
2.05
1.35
6.04
3.17
1.05
3.70
4.51
5.62
2.57
Zn/B
2.59
2.54
0.70
1.58
4.43
1.22
0.72
1.10
0.53
0.51
0.82
3.34
1.05
1.62
3.77
1.20
3.77
1.00
0.57
2.46
1.64
0.86
1.82
2.27
2.67
1.29
Cu/B
18.91
10.05
7.34
8.70
10.82
8.85
132
86
97
105
142
15.74
109
78
14.50
169
22.72
16.43
126
18.41
12.82
103
156
23.56
135
174
27.46
84
21.04
22.94
144
13.26
88
164
10.56
31.41
90
85
18.31
35
22.30
14.50
98
17.83
15.69
43
68
1.10
19.14
122
157
1.10
18.12
83
1.11
0.72
0.96
0.70
0.97
0.92
1.08
0.94
0.94
0.67
1.07
1.00
0.89
1.27
1.01
0.63
1.09
0.79
0.93
0.69
0.72
1.01
1.34
1.14
0.98
168
N/K
N/P
10.25
No
60.79
78.88
84.25
92.33
73.21
89.17
79.05
77.73
76.49
103.14
72.85
82.39
94.61
77.69
80.92
116.35
66.14
88.86
82.68
77.66
71.17
105.34
70.66
80.04
75.45
85.36
91.66
Fe/N
12.35
13.56
10.98
26.23
9.46
13.08
8.37
7.51
16.20
25.79
11.57
6.13
10.19
7.57
5.43
23.28
13.19
18.34
15.41
6.20
10.20
16.54
16.40
9.80
10.78
10.16
12.87
Mn/N
0.19
0.22
0.17
0.17
0.16
0.15
0.25
0.18
0.18
0.11
0.23
0.23
0.09
0.21
0.27
0.34
0.22
0.11
0.18
0.21
0.16
0.15
0.13
0.19
0.27
0.22
0.14
N/Zn
0.42
0.43
0.35
0.36
0.38
0.55
0.43
0.35
0.38
0.34
0.72
0.36
0.42
0.44
0.42
0.39
0.39
0.38
0.37
0.36
0.36
0.41
1.04
0.43
0.43
0.44
0.41
N/Cu
Appendix 5 continued
N/B
1.45
0.25
0.39
0.48
0.46
0.26
1.03
0.46
0.29
0.24
1.35
0.72
0.24
0.21
0.54
0.41
0.25
0.30
0.90
1.05
0.36
0.45
0.32
0.62
0.34
0.23
0.27
K/P
7.99
15.01
9.02
10.56
10.35
20.64
21.08
19.58
22.38
15.65
16.62
22.34
17.65
11.38
16.20
20.24
21.66
34.86
24.56
12.03
28.45
26.43
20.26
15.53
14.32
15.88
10.44
Fe/P
537.71
853.58
733.34
678.00
735.37
1686.29
1795.66
1430.74
1609.80
1089.53
1298.68
1837.45
1489.33
1126.41
1329.43
1491.04
1558.06
2440.39
1896.71
1030.06
2235.24
1928.84
1024.49
1255.86
1444.20
1547.05
939.33
Mn/P
109.27
146.73
95.58
192.61
95.04
247.29
190.02
138.27
340.89
272.42
206.19
136.80
160.41
109.77
89.21
298.38
310.77
503.60
353.62
82.30
320.33
302.77
237.73
153.72
206.28
184.14
131.93
Zn/P
45.50
49.90
51.40
44.01
62.16
122.11
92.38
99.73
120.08
93.32
76.24
95.09
174.26
70.33
61.55
37.97
106.28
258.52
124.93
64.64
190.47
122.41
109.99
83.30
71.05
82.70
75.72
Cu/P
20.99
25.10
24.71
20.30
26.78
34.08
52.96
52.67
55.02
30.74
24.66
61.57
37.69
32.63
39.58
32.82
60.56
71.76
62.00
37.01
88.24
44.16
13.99
36.63
44.90
41.18
25.08
B/P
6.10
42.64
22.55
15.23
21.65
73.58
22.11
40.10
73.55
43.23
13.20
30.96
65.05
69.49
30.30
31.59
95.18
92.91
25.53
12.69
86.24
40.37
45.67
25.20
55.59
78.02
38.01
92
67.31
56.86
81.26
64.21
71.02
81.70
85.20
73.05
71.94
69.62
78.16
82.24
84.36
99.01
82.09
73.66
71.93
70.01
77.22
85.65
78.55
72.98
50.58
80.84
100.86
97.41
90.01
Fe/K
13.68
9.77
10.59
18.24
9.18
11.98
9.02
7.06
15.23
17.41
12.41
6.12
9.09
9.65
5.51
14.74
14.35
14.45
14.40
6.84
11.26
11.46
11.74
9.89
14.41
11.59
12.64
Mn/K
Appendices
0.18
0.30
0.18
0.24
0.17
0.17
0.23
0.20
0.19
0.17
0.22
0.23
0.10
0.16
0.26
0.53
0.20
0.13
0.20
0.19
0.15
0.22
0.18
0.19
0.20
0.19
0.14
K/Zn
0.38
0.60
0.37
0.52
0.39
0.61
0.40
0.37
0.41
0.51
0.67
0.36
0.47
0.35
0.41
0.62
0.36
0.49
0.40
0.32
0.32
0.60
1.45
0.42
0.32
0.39
0.42
K/Cu
K/B
1.31
0.35
0.40
0.69
0.48
0.28
0.95
0.49
0.30
0.36
1.26
0.72
0.27
0.16
0.53
0.64
0.23
0.38
0.96
0.95
0.33
0.65
0.44
0.62
0.26
0.20
0.27
4.92
5.82
7.67
3.52
7.74
6.82
9.45
10.35
4.72
4.00
6.30
13.43
9.28
10.26
14.90
5.00
5.01
4.85
5.36
12.52
6.98
6.37
4.31
8.17
7.00
8.40
7.12
Fe/Mn
11.82
17.11
14.27
15.41
11.83
13.81
19.44
14.35
13.41
11.68
17.03
19.32
8.55
16.02
21.60
39.27
14.66
9.44
15.18
15.93
11.74
15.76
9.31
15.08
20.33
18.71
12.40
Fe/Zn
25.62
34.01
29.67
33.40
27.46
49.48
33.90
27.16
29.26
35.44
52.67
29.84
39.52
34.52
33.59
45.43
25.73
34.01
30.59
27.83
25.33
43.68
73.25
34.29
32.16
37.57
37.45
Fe/Cu
Fe/B
88.21
20.02
32.52
44.52
33.96
22.92
81.22
35.68
21.89
25.20
98.38
59.36
22.89
16.21
43.87
47.20
16.37
26.27
74.28
81.20
25.92
47.78
22.43
49.83
25.98
19.83
24.72
2.40
2.94
1.86
4.38
1.53
2.03
2.06
1.39
2.84
2.92
2.70
1.44
0.92
1.56
1.45
7.86
2.92
1.95
2.83
1.27
1.68
2.47
2.16
1.85
2.90
2.23
1.74
Mn/Zn
5.21
5.85
3.87
9.49
3.55
7.26
3.59
2.63
6.20
8.86
8.36
2.22
4.26
3.36
2.25
9.09
5.13
7.02
5.70
2.22
3.63
6.86
17.00
4.20
4.59
4.47
5.26
Mn/Cu
17.92
3.44
4.24
12.65
4.39
3.36
8.59
3.45
4.63
6.30
15.62
4.42
2.47
1.58
2.94
9.45
3.26
5.42
13.85
6.49
3.71
7.50
5.20
6.10
3.71
2.36
3.47
Mn/B
2.17
1.99
2.08
2.17
2.32
3.58
1.74
1.89
2.18
3.04
3.09
1.54
4.62
2.16
1.56
1.16
1.76
3.60
2.01
1.75
2.16
2.77
7.86
2.27
1.58
2.01
3.02
Zn/Cu
7.46
1.17
2.28
2.89
2.87
1.66
4.18
2.49
1.63
2.16
5.78
3.07
2.68
1.01
2.03
1.20
1.12
2.78
4.89
5.10
2.21
3.03
2.41
3.31
1.28
1.06
1.99
Zn/B
3.44
0.59
1.10
1.33
1.24
0.46
2.40
1.31
0.75
0.71
1.87
1.99
0.58
0.47
1.31
1.04
0.64
0.77
2.43
2.92
1.02
1.09
0.31
1.45
0.81
0.53
0.66
Cu/B
8.33
12.28
7.99
20.48
9.01
18.93
8.41
12.82
9.45
20.11
13.79
10.78
10.67
11.72
14.32
14.54
6.22
9.16
14.71
13.43
16.54
19.85
25.27
161
40
130
176
42
162
159
87
67
145
154
170
131
163
177
127
3
136
133
158
173
104
124
15.84
10.28
115
5
10.46
137
125
N/P
15.57
No
1.04
1.09
1.41
0.88
1.10
0.63
0.84
0.90
1.05
1.32
0.92
0.99
0.93
0.80
0.74
0.89
0.73
1.14
0.88
1.23
0.86
0.85
1.23
0.81
1.56
1.20
1.06
N/K
59.00
65.49
53.60
71.24
52.20
70.66
68.22
67.16
65.27
55.53
75.24
58.40
60.56
73.84
87.24
82.07
83.92
68.48
76.18
62.40
76.65
90.14
55.28
91.18
94.18
81.24
66.99
Fe/N
8.29
7.00
14.94
10.56
12.91
11.42
8.61
9.76
5.93
9.20
6.63
16.38
11.58
15.06
15.42
11.63
16.04
4.73
10.19
9.90
13.09
8.00
7.99
10.36
9.00
10.49
13.49
Mn/N
0.23
0.24
0.26
0.16
0.22
0.12
0.15
0.17
0.24
0.42
0.26
0.25
0.16
0.18
0.22
0.22
0.18
0.30
0.23
0.35
0.17
0.18
0.20
0.16
0.22
0.21
0.22
N/Zn
0.43
0.36
0.50
0.33
0.41
0.36
0.33
0.34
0.48
0.55
0.41
0.52
0.37
0.51
0.39
0.40
1.38
0.45
0.31
0.49
0.42
0.29
0.63
0.32
0.45
0.45
0.40
N/Cu
Appendix 5 continued
N/B
0.52
0.29
0.70
0.51
0.34
0.34
0.22
0.44
0.58
0.86
0.55
3.62
1.72
1.10
0.62
2.28
0.39
0.69
0.50
0.64
2.32
0.77
0.24
0.19
0.18
1.06
1.40
K/P
24.37
18.28
11.74
15.23
13.37
14.50
7.38
16.14
13.61
8.90
11.63
10.92
14.84
25.10
12.84
14.34
11.59
16.54
10.28
16.70
9.24
14.39
12.85
10.30
6.59
8.73
14.66
Fe/P
1491.05
1300.18
886.28
956.57
767.67
647.19
424.16
976.53
934.47
650.80
802.94
629.63
834.90
1484.86
824.68
1052.29
705.63
1296.71
686.25
1277.89
612.52
1107.29
875.92
759.82
967.81
850.06
1043.27
Mn/P
209.44
139.01
246.98
141.86
189.83
104.61
53.50
141.84
84.91
107.87
70.74
176.56
159.70
302.79
145.79
149.13
134.84
89.54
91.79
202.74
104.59
98.25
126.57
86.33
92.49
109.76
210.04
Zn/P
109.68
82.10
64.22
85.28
68.16
74.28
42.67
83.41
60.01
27.79
41.50
42.67
84.60
111.72
42.80
59.22
47.56
63.30
39.81
59.01
48.13
67.38
79.85
51.68
47.37
50.34
72.40
Cu/P
58.30
54.63
33.20
41.03
35.93
25.66
18.93
42.24
30.11
21.20
26.05
20.85
37.67
39.40
23.99
32.11
6.07
42.19
29.31
41.79
18.93
42.60
25.12
25.86
22.91
23.48
38.59
B/P
49.03
69.57
23.55
26.48
43.20
26.87
28.79
32.84
24.54
13.58
19.24
2.98
8.00
18.26
15.36
5.61
21.43
27.55
17.86
31.87
3.44
15.96
65.22
44.00
57.25
9.90
11.16
93
61.18
71.11
75.52
62.81
57.41
44.63
57.44
60.51
68.68
73.09
69.05
57.68
56.25
59.16
64.21
73.39
60.91
78.39
66.73
76.51
66.29
76.92
68.17
73.77
146.95
97.35
71.19
Fe/K
8.59
7.60
21.05
9.31
14.20
7.21
7.25
8.79
6.24
12.11
6.08
16.17
10.76
12.06
11.35
10.40
11.64
5.41
8.92
12.14
11.32
6.83
9.85
8.38
14.04
12.57
14.33
Mn/K
Appendices
0.22
0.22
0.18
0.18
0.20
0.20
0.17
0.19
0.23
0.32
0.28
0.26
0.18
0.22
0.30
0.24
0.24
0.26
0.26
0.28
0.19
0.21
0.16
0.20
0.14
0.17
0.20
K/Zn
0.42
0.33
0.35
0.37
0.37
0.57
0.39
0.38
0.45
0.42
0.45
0.52
0.39
0.64
0.54
0.45
1.91
0.39
0.35
0.40
0.49
0.34
0.51
0.40
0.29
0.37
0.38
K/Cu
K/B
0.50
0.26
0.50
0.58
0.31
0.54
0.26
0.49
0.55
0.66
0.60
3.67
1.86
1.37
0.84
2.55
0.54
0.60
0.58
0.52
2.69
0.90
0.20
0.23
0.12
0.88
1.31
7.12
9.35
3.59
6.74
4.04
6.19
7.93
6.88
11.01
6.03
11.35
3.57
5.23
4.90
5.66
7.06
5.23
14.48
7.48
6.30
5.86
11.27
6.92
8.80
10.46
7.74
4.97
Fe/Mn
13.59
15.84
13.80
11.22
11.26
8.71
9.94
11.71
15.57
23.42
19.35
14.76
9.87
13.29
19.27
17.77
14.84
20.48
17.24
21.66
12.73
16.43
10.97
14.70
20.43
16.89
14.41
Fe/Zn
25.58
23.80
26.69
23.31
21.36
25.22
22.41
23.12
31.03
30.70
30.82
30.20
22.17
37.68
34.37
32.77
116.22
30.73
23.41
30.58
32.35
26.00
34.87
29.38
42.25
36.20
27.04
Fe/Cu
Fe/B
30.41
18.69
37.64
36.12
17.77
24.09
14.73
29.73
38.07
47.92
41.73
211.44
104.39
81.32
53.68
187.44
32.93
47.07
38.42
40.09
178.02
69.37
13.43
17.27
16.91
85.84
93.49
1.91
1.69
3.85
1.66
2.79
1.41
1.25
1.70
1.41
3.88
1.70
4.14
1.89
2.71
3.41
2.52
2.84
1.41
2.31
3.44
2.17
1.46
1.59
1.67
1.95
2.18
2.90
Mn/Zn
3.59
2.54
7.44
3.46
5.28
4.08
2.83
3.36
2.82
5.09
2.72
8.47
4.24
7.68
6.08
4.64
22.21
2.12
3.13
4.85
5.52
2.31
5.04
3.34
4.04
4.67
5.44
Mn/Cu
4.27
2.00
10.49
5.36
4.39
3.89
1.86
4.32
3.46
7.94
3.68
59.29
19.97
16.58
9.49
26.56
6.29
3.25
5.14
6.36
30.40
6.16
1.94
1.96
1.62
11.08
18.82
Mn/B
1.88
1.50
1.93
2.08
1.90
2.89
2.25
1.97
1.99
1.31
1.59
2.05
2.25
2.84
1.78
1.84
7.83
1.50
1.36
1.41
2.54
1.58
3.18
2.00
2.07
2.14
1.88
Zn/Cu
2.24
1.18
2.73
3.22
1.58
2.76
1.48
2.54
2.45
2.05
2.16
14.33
10.58
6.12
2.79
10.55
2.22
2.30
2.23
1.85
13.99
4.22
1.22
1.17
0.83
5.08
6.49
Zn/B
1.19
0.79
1.41
1.55
0.83
0.96
0.66
1.29
1.23
1.56
1.35
7.00
4.71
2.16
1.56
5.72
0.28
1.53
1.64
1.31
5.50
2.67
0.39
0.59
0.40
2.37
3.46
Cu/B
6.12
9.23
18.09
54
59
4
96
6.50
18.03
53
100
13.19
99
12.39
5.74
79
101
10.15
18
8.57
13.30
81
20.49
8.62
41
71
21.76
111
166
N/P
25.90
No
0.86
0.85
1.12
1.09
1.15
1.23
0.49
1.15
0.87
0.69
0.88
0.92
0.83
0.76
0.90
N/K
57.43
45.55
40.26
42.66
46.90
44.34
80.29
56.80
41.79
73.49
40.85
52.68
73.23
83.16
69.57
Fe/N
10.95
11.31
7.33
8.00
8.44
12.81
18.35
18.13
9.37
11.27
12.93
16.30
12.30
12.19
12.34
Mn/N
0.31
0.28
0.33
0.23
0.25
0.25
0.10
0.28
0.21
0.27
0.16
0.25
0.18
0.27
0.33
N/Zn
0.41
0.41
0.89
0.51
0.52
0.62
0.31
0.66
0.62
0.41
0.42
0.53
0.38
0.39
0.41
N/Cu
Appendix 5 continued
N/B
1.81
0.92
0.25
0.34
0.42
0.22
0.55
0.20
0.87
1.59
0.23
0.39
0.36
0.65
0.33
K/P
7.57
14.56
18.34
7.87
15.76
7.48
12.56
15.67
15.14
8.37
11.47
14.47
10.41
28.63
28.62
Fe/P
373.38
564.56
824.89
365.75
848.58
409.47
491.45
1024.00
551.12
421.98
414.52
700.52
631.31
1809.64
1801.79
Mn/P
71.20
140.15
150.24
68.61
152.75
118.25
112.32
326.79
123.60
64.69
131.17
216.79
106.07
265.36
319.54
Zn/P
21.13
43.66
61.44
37.72
71.51
37.01
63.53
65.18
64.25
21.61
61.83
53.60
48.55
79.18
78.81
Cu/P
15.95
29.97
22.98
16.95
34.95
14.88
19.44
27.31
21.20
13.93
24.25
24.92
22.84
56.39
63.31
B/P
3.58
13.42
81.25
25.52
42.95
41.05
11.09
89.76
15.17
3.62
44.30
34.45
23.99
33.42
77.72
94
49.29
38.77
44.99
46.50
53.86
54.76
39.13
65.34
36.41
50.41
36.13
48.42
60.65
63.20
62.96
Fe/K
9.40
9.62
8.19
8.72
9.69
15.81
8.94
20.85
8.16
7.73
11.43
14.98
10.19
9.27
11.17
Mn/K
Appendices
0.36
0.33
0.30
0.21
0.22
0.20
0.20
0.24
0.24
0.39
0.19
0.27
0.21
0.36
0.36
K/Zn
0.47
0.49
0.80
0.46
0.45
0.50
0.65
0.57
0.71
0.60
0.47
0.58
0.46
0.51
0.45
K/Cu
K/B
2.11
1.09
0.23
0.31
0.37
0.18
1.13
0.17
1.00
2.31
0.26
0.42
0.43
0.86
0.37
5.24
4.03
5.49
5.33
5.56
3.46
4.38
3.13
4.46
6.52
3.16
3.23
5.95
6.82
5.64
Fe/Mn
17.67
12.93
13.43
9.70
11.87
11.06
7.74
15.71
8.58
19.53
6.70
13.07
13.00
22.86
22.86
Fe/Zn
23.41
18.83
35.90
21.57
24.28
27.52
25.28
37.50
26.00
30.30
17.09
28.11
27.64
32.09
28.46
Fe/Cu
Fe/B
104.19
42.06
10.15
14.33
19.76
9.98
44.30
11.41
36.33
116.56
9.36
20.33
26.32
54.14
23.18
3.37
3.21
2.45
1.82
2.14
3.20
1.77
5.01
1.92
2.99
2.12
4.04
2.19
3.35
4.05
Mn/Zn
4.46
4.68
6.54
4.05
4.37
7.95
5.78
11.97
5.83
4.65
5.41
8.70
4.64
4.71
5.05
Mn/Cu
19.87
10.44
1.85
2.69
3.56
2.88
10.12
3.64
8.15
17.87
2.96
6.29
4.42
7.94
4.11
Mn/B
1.32
1.46
2.67
2.22
2.05
2.49
3.27
2.39
3.03
1.55
2.55
2.15
2.13
1.40
1.24
Zn/Cu
5.90
3.25
0.76
1.48
1.66
0.90
5.73
0.73
4.24
5.97
1.40
1.56
2.02
2.37
1.01
Zn/B
4.45
2.23
0.28
0.66
0.81
0.36
1.75
0.30
1.40
3.85
0.55
0.72
0.95
1.69
0.81
Cu/B
-4.42
2.94
2.54
44.45
1.22
7.99
9.60
-0.35
0.79
18.98
1.77
17.92
-1.92
-2.46
10.12
13.43
2.32
6.08
22.88
13.91
-2.83
20.47
1.59
4.77
123
151
150
93
19
152
138
119
33
181
14
148
175
121
106
48
6
171
113
147
160
120
92
32
N/P
Sample
No
12.95
17.08
10.16
-3.82
25.38
12.41
5.25
26.65
10.66
20.51
2.58
7.08
13.00
18.05
-6.41
-8.84
34.34
6.29
4.69
14.55
11.91
7.82
-8.79
60.73
N/K
-15.32
-18.27
-21.80
-9.04
-26.72
-19.75
-12.12
-5.00
-19.46
-20.65
-14.26
0.40
-23.58
-25.46
-2.94
-6.33
-9.84
-21.26
-11.30
-8.52
-18.85
-17.05
-3.15
-19.63
Fe/N
-2.16
17.61
11.84
41.54
-6.44
1.56
59.76
-0.23
-5.23
23.17
3.77
25.25
-2.08
13.07
18.32
-6.20
11.47
33.00
13.48
-0.03
-7.31
26.62
-0.20
Mn/N
18.14
8.13
11.03
0.81
-6.70
24.64
8.33
0.57
10.40
10.04
0.06
-2.90
4.17
-0.04
14.24
8.65
-3.45
-7.14
-6.07
-3.35
19.78
-1.30
-0.68
-0.10
9.13
N/Zn
Appendix 6
-2.41
4.95
-1.96
0.21
7.20
5.71
9.10
2.08
1.92
-2.10
-0.84
-6.86
1.20
-1.32
0.61
-0.95
0.32
1.83
-2.41
2.04
0.63
0.59
2.63
9.35
N/Cu
-9.73
6.87
28.38
0.40
-3.26
1.58
-7.50
-3.87
12.91
18.46
-1.92
0.82
26.89
-0.41
26.04
-2.60
14.10
12.23
3.03
-3.19
6.61
11.02
17.14
5.71
N/B
-2.45
-8.47
12.95
-1.27
-0.17
13.42
2.79
9.07
-1.00
-5.01
30.25
4.67
12.93
-8.77
5.84
15.87
5.57
22.12
5.02
8.33
29.63
-2.11
8.68
K/P
49.95
-2.31
-7.73
7.66
-8.29
0.47
10.75
0.54
0.65
3.27
-0.76
11.35
28.53
4.80
-1.82
23.22
11.56
-5.42
-0.61
2.75
-2.59
28.97
-5.78
2.47
Fe/P
18.23
3.13
7.67
23.55
9.16
7.05
-9.22
7.36
2.47
-1.85
1.40
19.85
12.93
2.56
-5.98
-7.32
17.92
1.00
21.64
2.89
1.63
11.52
-1.82
3.03
Mn/P
17.37
-3.12
-8.95
17.03
0.21
-5.11
10.82
3.66
-7.51
2.52
-2.12
13.35
-7.87
15.72
1.68
36.96
11.24
3.11
13.97
9.38
44.25
16.53
1.31
1.22
Zn/P
16.18
5.41
-4.18
20.50
-4.61
4.00
11.95
-3.09
-1.00
8.64
-9.39
-3.17
2.18
13.41
1.44
-22.30
0.18
-2.10
5.46
8.65
-2.02
37.92
0.46
-0.88
-16.44
Cu/P
10.14
-17.49
-24.64
-10.12
8.30
4.70
8.50
11.34
8.97
-69.78
-5.24
-10.04
-25.61
-3.93
-1.50
121.16
7.65
-18.93
-4.72
-0.46
6.14
-23.55
-33.60
-24.39
B/P
95
-1.03
-0.06
-9.27
-0.21
13.51
-5.24
-5.53
6.28
16.78
0.71
-4.84
14.39
11.77
10.82
-9.12
23.21
16.40
-5.33
13.16
-2.59
23.26
-7.45
31.87
12.09
Fe/K
10.57
-2.89
24.08
20.79
14.26
9.34
46.60
-7.41
-1.75
12.24
-3.66
25.25
1.38
12.22
-6.43
-4.44
25.61
-5.71
-1.37
-8.17
-0.09
13.24
-5.79
21.69
Mn/K
-0.75
-0.71
-5.72
-3.40
3.81
-0.34
-2.85
18.87
-6.04
-4.54
13.26
13.41
-4.67
0.93
13.29
2.26
-6.50
10.54
34.30
31.04
-5.85
11.09
5.56
K/Zn
23.70
-4.61
10.43
-8.29
1.50
-6.23
-1.92
3.84
6.98
-2.83
14.47
12.35
-0.01
-3.25
3.22
12.04
2.91
-2.27
18.58
-5.56
7.62
-7.72
-4.24
6.51
K/Cu
18.30
1.78
17.27
22.40
1.73
-1.61
12.93
-8.34
10.42
9.41
14.46
-2.81
5.16
23.21
-5.81
34.60
-0.03
11.75
33.71
1.81
0.19
2.20
8.20
25.24
-7.73
K/B
-12.66
16.92
-6.06
-36.43
-15.24
27.93
-15.67
-6.87
3.59
-12.52
8.46
-7.03
-1.83
-7.09
-2.92
5.09
18.21
-6.08
-4.74
-10.13
6.29
-7.54
-5.33
0.11
Fe/Mn
-0.98
-0.22
5.32
14.34
14.28
-3.53
-7.14
8.88
-1.76
7.12
13.87
14.59
-1.59
17.08
8.95
-7.66
15.03
11.92
25.19
15.70
-0.95
12.88
15.33
-2.69
Fe/Zn
-8.90
-3.61
-11.55
-3.61
-5.00
-3.61
1.06
-0.47
-6.51
-11.15
-6.89
-4.41
-8.91
-12.55
-0.64
-3.36
-3.86
-7.33
-6.96
-1.94
-7.47
-6.74
0.65
-1.29
Fe/Cu
1.88
16.91
16.30
-1.46
-2.90
12.25
9.69
10.51
15.04
12.39
-5.95
1.69
14.49
-7.21
26.31
-4.12
6.36
17.11
0.47
-5.58
1.54
5.35
17.11
0.71
Fe/B
Function values for the low-yielding population in leaf tissue (GS-39) of irrigated wheat
Appendices
4.06
-13.65
-6.29
6.53
10.01
-24.91
1.93
7.03
-5.82
-2.76
-18.79
6.07
-11.11
0.85
4.43
-11.13
-29.75
-11.96
-5.92
13.26
-17.84
-4.64
0.31
-3.97
Mn/Zn
-2.39
-13.48
-6.80
7.80
0.54
-19.46
5.40
0.84
-8.80
-3.71
-12.19
-1.71
-7.33
-6.92
-0.70
-6.84
-14.49
-4.00
-4.36
0.91
-11.38
-3.00
1.12
-2.53
Mn/Cu
-10.24
-5.24
18.89
9.14
-5.66
-18.33
-5.59
-11.94
-15.05
15.76
-12.58
3.38
13.66
-4.95
26.26
-8.23
-37.50
8.09
1.21
-2.40
-1.82
7.73
19.15
-0.33
Mn/B
-8.97
-4.41
-3.69
1.97
-9.46
-2.54
3.45
-6.25
-6.18
-3.29
-0.65
-9.97
-0.87
-11.92
-6.49
-0.44
2.27
2.81
-1.44
-11.63
-0.53
-0.91
0.05
-0.89
Zn/Cu
1.61
18.97
29.74
2.99
-2.21
18.99
-9.80
19.89
11.27
26.00
-1.31
-1.37
29.33
-7.78
18.90
-1.80
-9.47
20.97
4.73
7.74
15.96
12.31
18.60
1.36
Zn/B
-9.08
3.64
32.49
-0.04
-8.69
-1.38
-5.96
16.90
16.33
21.50
-2.01
4.01
25.84
-0.16
25.84
-2.68
12.51
14.24
4.25
-5.23
6.06
10.59
14.67
0.71
Cu/B
15.60
19.37
-9.52
5.29
6.83
1.59
-0.22
5.57
25.45
-2.31
12.60
19.46
13.54
-3.16
2.71
-0.22
1.67
11.63
4.84
-8.57
9.72
5.72
12.26
6.48
10.16
108
143
168
83
122
43
98
35
90
88
164
84
135
103
126
169
109
157
68
85
144
174
156
78
132
N/P
Sample
No
2.76
0.28
7.68
1.37
1.39
7.46
14.51
4.04
-0.86
16.68
4.78
8.13
18.22
-6.46
1.10
8.83
8.87
4.58
11.31
13.06
19.54
10.58
3.29
12.35
8.30
N/K
-21.04
-10.12
-16.53
-17.49
-18.42
-3.33
-21.34
-14.24
-7.23
-17.52
-15.22
1.66
-27.57
-10.29
-14.05
-17.54
-22.79
-2.42
-23.24
-15.83
-19.23
-12.35
-8.75
-25.57
-22.06
Fe/N
-2.63
14.55
3.84
25.74
20.20
23.03
-6.70
18.01
46.56
25.32
11.47
37.95
-2.36
8.12
2.27
4.51
11.43
37.18
4.24
-9.29
13.07
-3.12
11.59
-4.75
40.27
Mn/N
-6.99
-8.57
6.75
-2.46
-4.15
4.97
22.55
5.08
0.91
35.71
9.84
20.22
3.18
-2.62
25.96
0.76
-6.26
-9.91
-1.82
15.21
10.21
2.82
11.12
14.05
-2.81
N/Zn
Appendix 6 continued
-0.33
11.51
3.22
-2.18
0.17
-2.65
22.56
-1.23
2.48
4.23
2.31
0.69
0.59
0.18
-0.67
-1.51
-1.69
2.28
43.20
3.18
3.04
3.96
1.88
3.20
3.99
N/Cu
0.35
-8.63
14.75
0.23
-6.58
-9.67
23.00
6.91
-9.88
2.35
13.30
-1.26
-9.41
-6.01
11.46
15.21
-2.71
0.09
-4.80
4.41
-3.53
-7.69
10.77
16.82
17.08
N/B
6.52
14.53
7.19
4.91
9.17
-1.15
0.37
9.12
1.96
-0.27
10.97
5.91
8.08
28.24
12.51
-9.03
18.46
15.36
5.94
-1.34
-3.58
-0.77
10.47
14.21
9.88
K/P
1.97
28.96
3.76
-2.42
0.72
-5.27
11.21
4.45
-1.32
-4.56
10.00
-1.29
-0.13
14.32
5.42
10.96
13.34
5.94
-6.33
13.55
-2.16
-0.31
4.94
17.10
3.74
Fe/P
4.19
21.85
-1.32
-9.01
13.06
6.57
0.30
-9.31
-5.11
9.03
24.53
16.34
10.21
28.47
14.26
11.11
28.21
9.45
3.29
-6.17
0.31
-1.97
-4.81
10.36
9.67
Mn/P
-6.30
12.69
3.94
6.10
12.09
4.22
-0.84
4.74
28.04
-2.87
-6.59
8.03
25.13
52.85
13.52
-5.17
32.81
12.78
9.12
1.27
-2.60
1.09
-1.01
6.01
16.92
Zn/P
-11.61
-4.47
6.29
6.13
7.37
-7.31
-14.48
10.84
-1.96
-5.63
-0.83
-5.47
10.31
16.24
11.07
-2.39
24.96
1.63
-42.11
-2.64
2.02
0.05
-13.87
12.09
8.19
Cu/P
-17.74
10.36
-17.04
-2.04
10.35
-0.70
-39.60
-7.48
7.26
8.87
-8.00
-7.01
18.21
17.39
-12.56
-41.87
14.96
-1.92
0.21
-12.94
3.82
11.97
-3.06
-13.51
-16.79
B/P
96
-9.37
17.60
-7.11
-9.00
11.85
18.88
16.80
15.85
-7.63
0.22
-9.10
-6.84
12.55
18.52
16.81
15.35
-9.95
43.10
15.91
11.56
1.08
-0.52
-4.31
Fe/K
11.54
10.25
-1.05
12.67
8.76
27.59
13.58
15.29
0.27
7.28
45.80
10.26
13.18
37.49
6.09
6.39
6.24
-3.50
29.65
-2.79
-1.84
-9.08
6.27
-2.32
0.96
3.13
28.22
Mn/K
Appendices
-8.67
-8.15
1.00
-3.25
-4.88
-8.43
-0.26
1.84
-9.73
31.66
5.29
38.47
-2.15
-3.21
17.07
-4.93
-0.51
12.77
-5.26
-4.86
-2.48
-3.93
1.68
16.11
-8.51
K/Zn
-2.44
8.88
-1.75
-3.40
-1.24
4.00
12.33
-4.02
1.94
-5.07
-1.10
9.44
-4.39
2.82
-1.86
-7.03
-7.25
8.52
51.48
-0.30
-7.58
-2.50
-0.73
-3.99
-1.41
K/Cu
-0.31
-9.22
11.67
-0.04
-7.54
-4.36
19.37
5.84
-9.95
1.12
24.60
3.80
-3.78
14.24
11.89
11.54
-5.99
4.15
-1.29
3.19
-9.68
17.37
11.14
11.33
13.48
K/B
-3.28
-7.93
3.29
6.57
-25.33
-35.56
-11.17
17.84
2.69
6.26
23.22
-22.22
-22.04
-23.89
-18.56
14.50
-7.04
-10.69
-30.75
-1.45
-6.91
-0.55
-6.28
10.78
-14.18
Fe/Mn
-3.07
17.91
26.48
-8.21
27.28
19.45
16.00
-3.29
0.58
10.85
49.47
28.33
-1.48
13.60
42.64
11.58
26.97
11.08
13.28
41.63
14.94
-4.49
-4.34
23.71
Fe/Zn
20.49
-9.43
3.20
-4.24
-9.73
-7.75
-3.29
4.56
-7.25
-1.10
-3.85
-4.45
1.48
-11.26
-4.18
-6.64
-9.06
-11.72
0.73
13.32
-3.99
-5.44
-2.09
-2.15
-7.80
-5.76
Fe/Cu
-4.80
8.39
12.84
-3.99
12.68
10.60
14.01
2.93
-1.02
23.08
12.87
-0.11
-9.69
22.74
6.66
8.39
-9.98
0.03
0.55
13.38
-9.92
6.97
11.04
16.70
8.23
Fe/B
-15.15
-6.90
-6.51
-18.61
0.39
0.93
-0.52
-17.27
-37.41
-14.46
-17.00
33.83
0.96
-7.91
0.34
-21.92
-12.09
-2.30
-5.30
-9.38
0.82
-4.60
-11.03
-13.00
-4.51
Mn/Zn
-6.85
4.13
-6.64
-13.72
1.68
7.85
6.69
-18.51
-3.61
-7.92
-18.06
8.38
-0.83
3.58
0.54
-18.48
-6.41
3.21
26.68
-3.84
-2.41
-2.82
-0.51
-14.60
-0.18
Mn/Cu
-4.45
-9.41
4.95
-8.88
-3.59
0.49
18.61
-4.34
-17.10
-33.29
-12.41
6.60
-10.04
-1.37
15.17
0.85
-7.40
2.82
-1.91
0.10
-7.41
-18.39
-8.74
1.01
14.87
Mn/B
1.72
11.58
-3.34
-1.79
0.64
7.30
7.74
-5.90
19.70
0.43
-5.74
-13.37
-3.22
11.73
-0.69
-3.32
0.46
5.25
45.00
1.36
-5.37
-0.75
7.17
-5.75
2.44
Zn/Cu
3.05
-5.32
10.44
0.89
-5.62
-1.04
19.46
4.19
1.97
-1.94
17.13
2.55
14.30
12.35
14.47
15.62
-0.72
3.96
0.44
5.51
-2.23
15.77
10.83
9.55
21.44
Zn/B
0.17
11.90
20.17
0.94
-7.79
-8.83
6.56
7.78
0.87
19.73
13.65
-2.15
-7.16
11.33
12.23
17.18
-2.38
-1.43
2.36
36.84
-6.30
13.83
10.48
16.19
13.35
Cu/B
1.42
-8.87
-9.44
16.82
1.83
-4.26
18.49
8.86
13.89
6.52
16.47
137
115
124
5
161
130
42
8.30
-1.37
-7.95
-8.26
-5.54
-0.50
-0.15
30.11
67
145
154
170
131
163
177
127
87
-3.15
12.19
159
162
176
40
125
142
-7.84
14.56
N/P
22.08
15.15
105
97
86
Sample
No
-3.37
-0.42
6.51
18.59
0.35
3.56
0.87
-5.66
-9.85
-0.74
10.74
10.58
-1.62
14.47
-2.18
-2.77
14.79
-5.20
29.78
13.21
6.99
9.03
2.50
10.94
N/K
12.86
-25.50
-26.54
-28.47
-40.47
-19.39
-36.52
-33.80
-20.52
-11.23
-14.45
-13.25
-25.25
-18.66
-31.61
-18.30
-9.58
-40.83
-9.01
-7.45
-15.01
-26.71
-33.51
-16.65
-13.04
-8.40
Fe/N
4.19
32.98
15.75
40.22
13.25
18.84
-6.65
1.55
2.29
-6.51
3.52
-2.60
12.64
11.47
57.71
-1.68
10.33
16.76
10.81
22.50
22.44
-4.46
-1.52
-8.59
23.91
Mn/N
-4.33
10.96
5.67
32.61
8.40
7.75
-6.68
-3.27
3.07
2.42
-3.86
14.57
3.87
21.62
-6.02
-2.86
-0.24
-7.07
2.49
1.16
2.22
-0.85
2.48
-5.32
-5.84
N/Zn
-3.92
-2.60
6.28
11.36
1.95
9.02
-0.95
8.58
0.92
1.27
66.11
4.53
-5.91
7.24
2.77
-7.94
16.50
-4.48
4.51
4.31
1.55
2.73
3.36
-1.97
-1.26
N/Cu
Appendix 6 continued
-0.19
12.46
3.41
10.55
2.67
80.99
32.54
16.64
4.22
46.84
-1.69
6.06
1.39
4.92
47.83
8.16
-9.80
15.50
17.32
15.82
24.15
25.57
-8.88
-1.90
0.82
N/B
-0.36
30.42
-5.08
-2.57
12.49
10.19
20.96
13.33
-6.87
-3.54
0.26
10.32
0.51
14.79
-3.43
19.29
-6.85
-2.93
21.87
37.14
14.73
-2.26
26.23
K/P
13.76
20.35
-1.40
22.45
38.13
24.36
36.05
17.32
15.47
69.01
-5.32
31.26
12.51
23.04
-5.78
32.86
Fe/P
33.58
29.11
21.40
49.03
12.84
21.59
15.84
27.20
20.20
10.62
39.91
-8.30
53.75
-2.88
35.96
16.97
26.75
-5.22
9.45
-7.55
-6.95
-9.72
-0.03
23.31
24.37
0.66
16.34
22.98
25.99
11.62
20.51
18.10
-7.38
16.50
-1.04
21.62
Mn/P
1.30
19.80
-7.36
1.65
19.80
21.01
42.86
9.63
-7.77
19.67
-5.77
15.38
-7.88
22.90
-4.01
14.92
0.25
-2.12
13.24
15.53
12.29
Zn/P
18.49
12.49
13.56
17.12
-25.44
0.61
-7.92
-20.38
-12.54
-21.09
-1.97
-0.92
-15.48
-6.07
0.59
125.35
-8.73
0.38
-25.43
0.80
-13.81
-12.80
-17.25
-16.29
-1.41
-20.81
-13.84
-14.40
-22.25
Cu/P
-9.28
-6.11
-13.72
-38.04
-22.03
-76.03
231.83
-24.09
-31.72
-18.10
115.27
-10.44
-24.99
-6.80
-29.91
198.44
7.32
-0.41
4.42
-58.25
-49.85
-0.94
104.86
-16.39
-32.15
B/P
97
22.34
15.26
20.25
12.77
22.10
13.08
21.66
11.68
28.08
15.57
24.29
30.26
34.16
32.19
19.40
15.82
19.76
28.56
32.51
-0.55
-9.66
33.32
21.08
17.46
Fe/K
24.30
-0.63
36.08
14.88
25.94
11.59
37.97
-5.37
-0.79
-3.16
-6.83
-2.17
-0.55
14.09
47.27
-3.27
-9.29
29.81
5.18
17.40
0.75
6.05
4.08
-9.65
-6.04
17.80
Mn/K
Appendices
-7.33
-3.70
0.83
12.34
7.40
4.40
-6.87
0.57
9.84
2.71
2.90
5.08
4.71
7.75
-3.94
-0.81
-9.92
-2.81
-7.25
15.74
-2.35
-6.84
9.93
-6.84
2.45
K/Zn
-2.22
-2.73
1.10
-0.52
0.83
4.73
-1.98
10.47
5.32
0.84
74.73
-2.10
-4.90
-1.65
2.94
-5.92
4.12
-1.73
-3.40
10.77
-2.87
-2.82
8.50
-3.86
4.56
K/Cu
0.03
11.24
1.62
4.17
2.88
80.01
34.41
22.29
8.72
52.00
1.28
2.79
2.16
0.86
55.31
10.37
9.87
40.24
13.49
18.36
20.74
20.67
-4.83
-2.77
5.12
K/B
-2.45
-7.56
8.97
-13.04
10.24
-43.67
-19.86
-23.23
-15.98
-6.62
-19.81
21.68
-4.49
-11.14
-14.37
9.94
-7.36
0.92
7.00
-3.25
-22.54
-23.05
-14.68
-3.57
-44.65
Fe/Mn
3.44
12.11
27.11
37.86
-3.24
-3.39
19.91
38.38
14.62
-6.49
-1.21
14.36
-7.72
0.67
-9.73
22.27
-1.30
14.80
31.18
-8.58
-8.04
26.55
15.78
Fe/Zn
12.60
16.27
-15.58
-14.55
-6.29
-6.55
-6.45
-6.96
-15.95
-2.03
-3.94
-5.01
31.61
-6.52
-14.14
-6.65
-5.30
-10.97
-3.63
-7.64
0.12
-2.84
-9.86
-11.39
-4.18
-7.39
-4.58
Fe/Cu
-7.17
26.59
-2.99
0.07
-1.69
40.93
14.18
8.42
1.51
34.93
-5.32
-0.14
-2.86
-2.24
32.58
5.43
9.55
21.64
20.94
30.32
11.46
10.14
-5.53
16.42
-0.83
Fe/B
-22.54
-11.75
-17.87
7.34
-11.68
9.04
-8.75
-0.48
4.17
-1.93
0.37
-17.88
-3.81
4.37
-5.17
-16.79
-13.96
-12.30
-7.85
-5.09
0.81
-2.92
1.07
-9.17
10.64
Mn/Zn
-11.84
-7.96
-11.90
-0.95
-12.84
6.94
-3.67
5.12
1.40
-2.25
38.74
-19.97
-9.45
-1.61
0.13
-17.36
-1.08
-8.08
-4.49
-2.16
-0.06
-0.64
0.87
-5.24
9.30
Mn/Cu
-26.54
-4.72
-8.81
3.68
-7.59
103.53
27.07
20.48
6.69
39.89
0.47
-10.13
-2.09
0.60
47.34
0.20
-24.91
-24.51
-32.29
9.79
24.84
23.09
-8.92
-5.03
12.83
Mn/B
1.20
-1.04
-0.88
-9.88
-5.22
-0.43
1.14
5.74
-2.91
-2.27
44.75
-6.55
-8.95
-7.99
3.45
-5.37
8.42
-0.83
-0.26
0.34
-1.95
0.53
-0.92
-0.16
0.53
Zn/Cu
-7.53
1.18
0.65
-1.83
-1.06
67.76
46.58
21.39
2.57
46.41
-0.66
-0.18
-0.60
-3.40
65.83
10.68
15.55
23.90
12.94
11.88
23.48
28.99
-0.29
13.04
3.16
Zn/B
0.67
10.56
0.07
3.45
1.36
58.51
35.31
9.49
3.46
45.53
3.15
40.82
4.26
0.92
43.33
14.66
11.65
25.30
13.28
26.76
22.65
22.50
-1.40
13.24
1.14
Cu/B
-2.01
2.88
7.91
16.14
17.09
10.81
15.52
-2.24
-9.84
34.43
-2.45
5.14
30.93
13.01
5.24
15.72
8.88
-4.03
27.82
133
158
173
104
111
41
18
79
99
53
54
96
166
71
101
100
4
59
81
0.10
N/P
13.30
136
3
Sample
No
-2.51
-2.88
9.50
8.24
10.91
14.88
11.01
36.13
-1.86
-1.20
13.61
0.41
-4.12
-8.22
-0.23
5.82
8.05
22.85
-1.34
8.70
N/K
18.37
-37.82
-58.11
-71.00
-64.75
-55.28
-60.78
-15.66
-38.68
-66.93
-20.81
-69.40
-44.83
-21.02
-13.74
-24.23
-35.75
-28.24
-43.37
-22.73
-45.61
-23.24
Fe/N
-8.68
-7.51
-3.29
19.75
22.41
27.07
8.14
7.69
-7.64
14.96
-2.99
4.05
-4.59
-4.89
-4.50
1.31
29.70
20.66
-3.04
10.05
-7.15
Mn/N
15.84
12.34
19.63
4.02
7.79
7.28
11.27
31.64
0.77
9.67
-6.43
7.07
-3.71
11.00
18.92
4.47
6.15
8.45
-7.95
2.32
N/Zn
18.29
Appendix 6 continued
1.82
2.20
33.66
8.27
9.06
15.82
-5.17
18.43
15.92
2.13
2.53
10.10
-0.17
0.39
1.91
3.52
-1.14
7.77
-4.03
1.93
-1.62
N/Cu
34.85
12.09
-9.02
-3.90
-0.79
2.60
11.50
10.71
14.26
29.02
-1.91
11.08
-2.90
5.13
-4.03
1.67
-6.63
6.44
1.46
-3.70
-3.68
N/B
-3.10
29.03
3.00
-0.97
27.03
-7.59
29.73
-1.11
-2.03
-3.29
10.67
23.88
18.73
14.31
18.71
12.22
2.92
-9.87
-1.87
-5.61
-3.22
K/P
3.99
37.96
31.67
71.22
69.50
47.21
13.57
56.06
72.41
21.67
84.13
23.03
45.48
81.89
3.86
-1.29
-5.24
Fe/P
36.40
26.66
16.33
19.66
-8.63
35.60
-6.76
-6.33
37.68
11.72
15.53
13.79
1.30
10.54
41.12
12.36
5.90
17.58
11.04
0.61
-8.86
4.16
-8.29
-1.34
Mn/P
18.09
-6.65
18.83
63.70
-2.44
25.46
-5.66
26.39
-4.93
-5.34
-6.46
61.77
0.05
14.59
11.02
-0.06
9.03
0.91
-5.35
1.85
-3.70
-1.48
Zn/P
-34.25
-8.05
-17.12
-30.94
-3.81
-38.27
-24.20
-10.96
-20.38
-42.39
-15.08
-14.09
-17.36
8.10
11.77
9.11
7.17
-5.16
-0.03
-3.11
-13.06
Cu/P
-38.68
189.88
13.15
-12.57
-0.82
-1.61
-50.23
16.24
-32.34
-0.29
187.79
-5.06
-14.42
-5.72
11.86
1.43
8.90
-15.00
-11.52
-0.72
-11.12
B/P
98
Fe/K
54.90
32.55
25.85
13.85
17.52
27.75
25.68
25.41
28.39
47.05
78.51
43.40
77.56
23.09
69.00
36.33
37.70
50.86
54.09
70.07
45.41
10.50
10.03
15.27
18.65
10.38
11.51
25.64
13.98
-2.88
22.01
18.85
8.01
-7.74
-3.83
12.20
26.23
22.98
16.06
5.64
11.95
Mn/K
26.22
Appendices
17.02
13.95
9.64
-1.48
0.04
-2.40
-3.05
2.51
1.92
20.57
-5.01
6.14
-0.70
17.40
17.59
0.27
0.33
-5.51
-6.27
-3.28
-3.43
K/Zn
2.27
2.82
18.60
1.72
1.05
3.66
10.93
7.27
14.36
8.65
2.18
7.61
1.30
3.93
1.11
-0.62
-6.19
-4.71
-3.45
-3.38
6.83
K/Cu
40.91
14.99
-7.28
14.46
-4.15
16.18
20.86
12.80
22.30
45.92
-2.06
11.01
-1.59
9.24
-4.08
0.18
0.21
10.67
2.14
-7.20
1.25
K/B
-19.70
-35.08
-17.41
-18.87
-16.84
-45.91
-29.82
-54.02
-28.67
-9.71
-53.30
-51.44
-13.64
-7.93
-16.13
-6.28
2.94
-43.21
-8.37
-34.82
-11.94
Fe/Mn
-6.71
-2.90
49.17
11.71
58.14
30.63
26.30
39.64
19.37
21.39
2.55
21.08
20.81
72.22
2.56
Fe/Zn
47.89
29.50
29.76
17.94
11.35
18.72
-14.15
-21.92
-3.02
-16.87
-13.00
-9.37
-11.78
-2.13
-10.97
-6.87
-25.98
-8.80
-9.25
-5.49
-8.47
-11.44
-13.63
-10.21
-14.28
-17.21
-11.85
Fe/Cu
14.13
-1.58
-0.90
44.95
16.80
27.66
43.95
-3.70
37.81
17.22
-9.65
15.99
48.70
1.62
-6.75
12.56
-3.16
18.44
-3.80
Fe/B
11.64
20.01
3.93
2.87
-2.53
-9.78
-5.58
2.77
-10.60
14.88
-8.24
1.42
-5.75
8.42
-5.04
3.81
8.49
-8.44
-11.89
7.10
-12.43
0.03
-18.04
Mn/Zn
-2.85
-2.15
2.47
-4.45
-3.18
5.73
0.71
15.03
0.83
-2.25
-0.14
7.47
-2.25
-2.05
-1.06
-6.61
-14.55
4.56
-7.37
-0.45
-4.33
Mn/Cu
26.87
8.54
-26.72
-14.71
-8.25
-12.94
7.92
-7.79
4.08
22.98
-12.27
0.47
-4.33
3.67
-5.55
-4.90
-23.86
8.63
-1.52
-4.43
-6.52
Mn/B
-9.59
-7.24
4.48
0.97
-0.43
3.02
9.12
2.24
7.27
-5.79
3.51
0.40
0.20
-8.12
-11.26
-1.90
-6.52
-1.40
-0.17
-1.75
6.20
Zn/Cu
20.14
5.21
-7.58
27.38
-5.26
19.18
20.85
10.76
29.06
20.55
-8.81
-6.55
-1.99
0.22
-0.55
17.07
2.24
12.82
5.03
-6.27
2.45
Zn/B
32.69
10.25
-6.17
10.32
40.91
5.38
29.20
1.80
37.16
26.58
-8.47
15.17
-3.48
4.73
-6.14
-0.32
-6.83
1.92
3.33
-5.76
-3.42
Cu/B
24.55
9.07
1.33
-8.23
6.10
6.39
0.90
28.20
3.76
2.59
21.37
30.57
-1.85
8.43
-5.30
-5.07
17.74
-6.86
-4.13
10.77
-6.55
-4.16
15.53
94
106
55
16
110
169
113
172
82
41
98
19
50
173
38
7
29
9
36
115
66
-18.55
-3.77
-9.59
-3.66
-1.55
-4.20
-22.87
-1.21
10.82
-3.17
-18.69
-4.38
21.40
1.88
-14.84
6.40
-24.91
-3.31
10.66
-53.23
4.76
-9.92
178
67
27
1.22
N/K
-13.80
N/P
0.68
13.39
10.64
141
Sample
No
-2.51
33.23
3.61
0.76
2.26
5.41
7.54
2.03
-9.03
11.03
3.48
3.87
-33.77
7.72
-9.58
3.86
6.53
3.46
3.74
16.12
-3.41
-0.83
4.57
3.24
1.78
Fe/N
13.16
-3.42
11.33
6.68
3.87
6.17
8.58
-11.01
-4.06
3.77
2.74
-1.96
-23.37
-2.55
19.90
-21.37
16.36
6.00
2.41
20.75
-5.54
-14.29
16.31
-0.17
-4.53
Mn/N
0.63
-26.25
0.41
-10.39
-5.55
-1.67
-18.50
-0.53
-8.51
-20.50
-16.76
-4.87
19.83
-0.25
-27.78
25.33
-12.89
10.80
-3.21
-26.55
7.19
-8.14
-5.76
-17.04
6.76
N/Zn
Appendix 7
-24.65
-7.31
2.84
-1.14
8.96
-4.15
-20.70
-13.71
21.83
-5.08
-20.40
-4.00
11.62
-24.34
-26.94
2.38
-29.57
2.19
1.73
-46.74
5.18
0.27
-16.05
-10.45
5.01
N/Cu
-8.22
2.85
-0.25
-20.12
-3.75
-3.35
0.84
-15.02
-11.12
-9.18
-39.81
-20.98
-4.02
-11.26
-15.90
-5.33
-16.29
64.51
-3.32
-26.78
0.51
-12.15
2.43
-3.92
-9.49
N/B
36.13
-2.40
-1.30
-9.16
-3.84
-4.82
-3.55
-5.09
11.41
14.90
8.41
39.07
5.80
1.16
14.44
22.10
16.62
9.14
-0.41
16.94
-1.86
-4.31
-2.59
-7.14
-0.40
K/P
14.61
21.71
-1.64
-7.90
-0.64
-0.58
-7.13
-1.63
23.73
12.15
2.39
42.23
-1.42
11.68
-1.82
39.30
8.27
12.14
12.11
5.13
0.09
10.13
-4.20
-7.64
3.75
Fe/P
46.26
-6.53
6.86
-0.62
1.94
1.80
-3.54
-8.60
17.32
17.24
2.96
29.49
-0.71
1.44
34.32
3.80
23.48
18.13
12.09
13.53
-2.69
-2.98
7.30
-2.38
11.08
Mn/P
11.78
8.85
-8.27
-4.12
-1.63
-6.78
-4.58
-5.98
-0.95
23.34
6.50
32.80
2.99
1.19
21.66
4.08
7.60
-2.09
6.60
5.00
-4.71
13.71
-7.03
-2.50
-5.15
Zn/P
41.11
-1.10
-5.78
12.68
12.45
11.00
-5.75
1.25
12.35
24.71
8.40
37.72
11.40
18.08
21.95
26.28
18.35
4.32
4.35
12.72
-2.66
8.59
-2.43
-7.95
-3.33
Cu/P
12.87
-9.04
10.72
1.23
-3.74
-5.95
2.02
20.06
0.06
8.57
17.52
41.85
12.13
5.59
9.72
18.03
7.31
2.42
48.51
5.31
-3.41
11.52
-9.85
16.29
2.99
B/P
99
42.32
19.47
-1.45
-0.14
3.88
5.43
-6.50
3.92
0.84
13.96
-8.90
3.27
15.93
12.86
15.39
28.42
-9.27
3.75
20.18
2.25
15.02
25.53
-3.54
-2.18
6.18
Fe/K
9.09
-7.35
14.98
13.35
10.18
11.64
-0.67
6.25
19.08
8.00
-7.76
-4.96
0.45
11.46
23.21
8.47
25.52
12.41
22.60
-2.38
-1.87
1.31
18.65
-6.54
-3.79
Mn/K
20.07
10.29
26.17
-8.47
-5.29
1.93
0.37
0.36
-1.05
20.57
25.17
-1.55
1.13
-2.53
20.54
13.73
6.80
17.58
11.90
16.50
3.20
5.83
42.66
-8.71
6.55
K/Zn
-5.03
-4.20
23.00
5.00
18.74
1.07
4.01
14.22
18.63
-1.92
-0.32
1.55
-5.72
12.48
43.47
12.35
-2.81
10.33
7.08
13.62
1.09
-1.27
39.48
0.55
6.71
K/Cu
-0.58
2.94
2.44
-3.58
15.91
-2.07
8.76
-7.30
18.49
13.48
-6.57
12.37
15.87
16.07
19.27
-9.34
-3.29
55.34
-9.41
-1.42
-2.56
6.88
29.59
-0.40
K/B
10.27
-26.25
35.63
-13.79
-11.28
-5.60
-5.33
-6.17
13.68
-5.46
1.83
-2.89
3.71
-3.11
8.30
-52.24
30.46
-16.23
-7.11
-2.21
-10.89
0.97
13.63
-18.79
0.69
5.03
Fe/Mn
-0.23
10.03
7.35
-6.93
-0.57
7.09
-5.20
4.17
-3.06
19.46
-8.81
1.86
11.87
10.02
39.12
45.71
-1.99
20.10
3.36
-2.46
5.19
-7.10
1.81
-9.38
12.39
Fe/Zn
37.81
23.58
11.49
2.92
16.04
6.36
-3.73
-5.84
9.41
12.74
-8.89
4.46
-5.93
22.14
11.36
40.80
10.52
11.04
10.43
-9.61
3.12
2.02
-4.13
-1.64
10.93
Fe/Cu
-8.39
25.16
2.21
-1.32
15.22
0.58
5.66
-0.63
16.85
10.00
-3.45
25.85
12.72
26.66
-1.59
22.66
-7.42
64.81
-0.21
-7.68
-1.09
5.45
10.35
-0.91
-5.99
Fe/B
23.62
-27.29
20.38
2.69
2.90
9.80
-0.32
-13.20
-11.60
-7.46
-6.48
-4.85
-7.19
-1.56
4.78
-2.40
11.62
24.84
2.87
6.16
0.78
-28.32
19.00
-11.92
1.65
Mn/Zn
5.82
-10.13
35.08
17.83
25.13
12.80
2.01
-35.79
16.75
6.88
-7.72
-3.66
-20.97
-25.62
13.26
-30.96
6.72
21.17
11.97
2.10
-0.94
-21.86
17.84
-5.88
0.54
Mn/Cu
Function values for the low-yielding population in whole shoot material (GS-29) of irrigated wheat
Appendices
3.04
0.31
9.31
-7.38
0.53
2.36
8.48
-3.09
12.97
26.11
1.90
11.29
23.69
18.94
24.77
0.23
24.08
77.21
-0.15
-2.09
-3.02
17.46
26.63
-2.64
Mn/B
11.96
20.30
28.70
1.32
10.46
16.61
-3.15
0.36
37.77
14.74
17.03
-0.88
0.82
3.32
26.48
11.51
4.93
12.24
11.38
29.96
-9.15
-4.49
9.50
-9.10
7.38
-4.16
Zn/Cu
-8.60
12.43
-1.79
-1.79
10.16
-3.26
6.80
-5.44
13.32
-0.13
-1.40
10.48
16.14
14.36
17.61
-6.60
21.28
28.06
-2.50
-6.56
-4.28
-6.29
2.92
1.97
Zn/B
14.08
0.78
4.57
-2.64
-9.49
19.25
-2.35
8.00
-7.20
-6.86
27.37
-1.10
11.24
17.62
20.00
-3.02
-7.57
-2.51
48.80
-5.19
-3.31
-2.88
7.99
12.89
-0.43
Cu/B
13.55
0.07
7.03
16.73
55.91
11.92
33.16
1.72
2.61
8.63
25.89
3.33
18.22
1.99
19.55
2.87
13.34
5.24
16.73
6.59
11.31
8.49
8.28
16.72
-7.06
8.97
3.52
88
35
153
83
8
20
4
167
71
59
3
57
24
11
15
87
21
92
33
156
53
158
77
93
4.62
16.80
-18.53
2.24
-2.84
3.05
18.30
-1.81
-2.38
1.74
20.81
-1.74
20.60
-1.06
11.17
-6.65
3.93
-3.28
19.67
-70.05
28.02
11.69
-10.53
4.93
112
N/K
N/P
Sample
No
-0.40
-9.63
8.85
-9.56
-3.47
-14.10
-1.61
-7.04
1.27
-1.02
0.26
1.97
-4.31
13.36
-32.96
7.61
-4.62
18.66
-7.59
1.26
-15.84
21.06
-28.84
-16.44
-6.02
Fe/N
-1.72
-2.41
4.60
-0.23
-4.40
4.24
10.98
2.49
-0.91
2.31
12.36
1.06
-8.20
10.40
-6.60
-10.64
-2.30
1.84
6.31
6.98
-23.48
32.56
0.36
-9.09
13.77
Mn/N
10.34
10.25
-16.42
-0.24
-16.04
-6.63
-15.72
0.09
20.79
3.69
9.86
4.05
3.66
-13.55
-1.59
3.40
-5.37
-22.42
2.02
-5.70
16.01
-25.34
7.50
10.91
-20.89
N/Zn
Appendix 7 continued
22.86
20.61
-17.79
12.71
-8.64
17.47
-11.05
8.96
4.22
8.71
1.69
1.90
17.83
2.35
20.89
1.83
17.36
-8.26
8.26
4.49
14.89
-58.08
44.22
7.19
-4.83
N/Cu
84.71
10.22
-11.61
-9.73
-6.42
-16.97
-4.42
51.75
-20.21
63.69
-14.67
14.48
2.53
-6.50
42.21
-11.50
64.93
-13.24
42.77
-8.87
1.36
-26.50
2.66
-6.87
-10.02
N/B
0.45
-0.92
2.51
11.07
8.46
6.92
14.46
4.43
4.09
6.64
16.34
1.54
4.84
2.93
4.03
3.95
15.70
14.67
-0.04
3.65
14.97
19.13
23.98
7.80
12.93
K/P
4.81
2.37
1.52
8.48
6.60
-0.60
11.51
2.20
21.26
5.98
16.04
6.43
16.19
16.17
-2.90
12.59
21.57
33.30
-1.59
4.45
15.01
4.94
18.05
3.70
1.50
Fe/P
3.29
7.72
0.20
19.30
4.63
18.12
34.44
12.81
17.91
10.88
40.63
6.29
9.48
17.73
10.35
-5.35
24.16
14.20
13.17
12.77
4.94
18.90
63.74
6.44
27.72
Mn/P
-4.37
0.07
1.46
13.73
19.41
11.79
23.15
4.48
0.11
0.89
3.18
-1.24
12.20
9.38
16.57
-0.46
28.70
25.25
-0.24
3.96
11.72
1.76
34.84
4.82
18.53
Zn/P
-2.97
10.09
1.30
6.89
15.11
-1.95
21.28
0.49
13.01
-0.59
11.83
0.93
6.18
-0.24
3.71
1.44
11.12
15.24
-3.01
-1.80
18.38
12.99
14.79
10.61
7.90
Cu/P
-5.82
72.64
-0.60
15.31
6.22
14.99
6.44
26.26
38.52
17.44
50.56
4.04
14.38
2.06
6.34
18.17
12.05
23.05
3.38
39.36
11.32
3.12
19.47
12.32
6.57
B/P
100
6.38
4.72
-1.97
-2.75
-2.22
-2.63
12.90
-3.60
23.79
-0.86
0.34
7.04
15.29
18.99
11.91
12.88
6.36
19.34
-3.38
0.86
0.60
-4.34
18.20
-5.74
Fe/K
17.26
4.88
15.73
-3.97
10.97
-4.86
16.13
23.31
13.04
21.45
6.52
26.92
8.04
7.31
23.83
10.01
10.31
18.15
0.66
23.58
14.45
1.17
13.12
36.80
-1.17
18.17
Mn/K
Appendices
6.77
-3.90
-0.89
-7.94
-3.31
15.57
11.29
20.21
4.15
6.36
15.05
2.77
5.13
24.83
14.52
15.66
-1.74
17.89
20.58
-3.58
-0.72
22.57
0.74
16.36
K/Zn
11.82
27.15
4.33
2.38
8.22
24.22
13.28
9.55
11.35
18.86
20.65
7.75
0.89
-3.42
7.77
0.21
5.64
8.02
-1.10
6.96
14.37
-5.68
10.35
14.89
-5.96
9.65
K/Cu
56.48
0.20
-2.60
-6.78
14.37
-3.54
18.03
35.43
52.04
35.82
9.26
12.35
-6.87
-5.83
15.30
34.87
10.54
-8.59
27.99
-6.98
-7.74
1.35
-9.44
-4.44
14.10
K/B
-0.65
-8.39
-0.66
-12.13
-0.30
-26.84
-21.26
-14.54
-0.08
-7.13
-20.17
-2.09
2.96
-3.36
-21.00
20.73
-3.87
10.31
-22.38
-11.03
6.77
-16.73
-33.87
-5.22
-33.58
Fe/Mn
12.82
1.17
-2.28
-9.32
-6.00
16.01
24.08
19.58
27.76
4.76
13.43
9.48
0.75
3.90
16.90
39.38
-9.43
1.96
-4.36
-1.89
0.20
1.92
-4.18
18.89
Fe/Zn
29.79
25.00
7.76
-0.39
2.01
0.89
10.02
-9.35
1.89
9.26
9.94
5.04
7.89
12.91
26.13
16.50
12.45
12.02
18.69
0.74
9.52
-2.39
3.94
10.29
-9.45
-9.92
Fe/Cu
71.52
2.66
-3.08
-7.51
15.79
-4.38
28.75
32.06
52.25
14.73
14.81
11.37
0.06
1.96
7.89
-3.67
45.34
0.07
25.34
-5.90
-6.78
-5.20
Fe/B
13.05
17.87
11.68
8.64
7.41
-3.60
1.64
-19.60
2.51
3.75
6.16
19.42
9.66
36.64
7.86
-5.06
4.61
-8.41
-8.21
-5.83
-12.06
14.51
6.85
-10.05
16.98
9.92
-0.41
3.28
Mn/Zn
24.07
19.83
-2.17
17.80
-13.75
37.74
14.14
21.26
6.84
20.45
35.47
8.98
5.20
31.99
10.47
-13.15
16.90
0.21
30.90
27.01
-17.47
8.01
55.29
-4.70
27.30
Mn/Cu
64.90
6.54
-3.98
-7.29
-8.86
-7.69
4.63
52.04
62.80
16.63
-0.84
14.36
-3.01
2.66
23.10
47.83
21.32
-7.60
53.82
-0.72
2.05
14.55
3.16
2.22
14.09
Mn/B
6.71
5.09
0.66
12.28
8.18
28.73
5.53
7.94
2.77
21.58
-4.17
11.72
11.09
19.31
23.23
-3.44
26.32
15.13
4.48
11.48
-4.74
27.59
16.88
-6.65
17.80
Zn/Cu
38.79
0.97
-2.59
-9.24
0.11
1.22
10.35
33.61
35.99
38.92
6.03
21.94
-1.07
-0.67
29.36
52.29
13.50
-1.59
25.17
-5.30
-7.35
-6.86
-2.56
-0.44
14.17
Zn/B
37.52
-0.73
-3.31
-3.00
19.08
-0.60
32.34
30.98
39.31
24.34
9.70
16.45
-5.92
-8.73
16.44
31.47
13.40
-8.50
25.55
-6.04
12.54
-0.95
-7.71
12.07
15.94
Cu/B
N/P
5.75
-3.10
26.59
1.50
9.08
3.89
1.19
14.97
2.32
13.92
2.90
6.49
-7.02
20.20
4.65
6.48
1.11
2.00
-4.77
-1.00
9.08
1.18
12.12
3.46
4.08
Sample
No
14
116
46
61
54
120
42
121
122
37
32
10
129
28
95
75
45
51
152
2
17
18
5
85
126
-44.02
-7.16
15.33
14.87
12.48
4.68
-76.43
9.06
10.67
7.95
-10.52
-0.26
-80.59
4.43
-3.71
0.99
-8.28
-4.57
7.13
-1.27
-1.11
8.12
24.06
-5.24
8.08
N/K
36.88
8.35
-15.47
-5.96
-6.38
11.57
30.18
-18.72
-7.50
-1.67
20.31
17.70
73.53
4.38
-3.06
-5.19
7.51
7.52
-11.66
7.53
-5.64
-3.09
8.66
0.93
4.31
Fe/N
11.54
9.15
0.26
8.88
7.98
-3.10
39.30
-5.40
-2.90
22.61
-0.50
8.00
50.11
5.94
4.97
2.03
7.68
3.78
0.66
0.31
2.20
12.55
-2.43
8.62
-7.03
Mn/N
-54.92
1.95
-7.44
16.89
11.79
-16.55
-58.39
-6.58
6.23
-0.46
-41.34
-17.48
-39.75
3.58
-3.71
0.74
1.02
0.18
-14.61
-0.55
-7.53
0.64
1.11
-10.72
-19.83
N/Zn
Appendix 7 continued
-55.92
-20.58
20.49
13.81
16.42
4.06
-82.97
12.80
10.01
0.89
-27.06
-12.15
10.14
103.83
3.44
-15.41
-20.51
-11.21
6.82
-2.93
0.52
8.96
23.02
-13.55
-16.09
N/Cu
13.45
-59.94
-19.77
3.54
-10.66
-12.14
-68.53
0.03
-22.77
34.22
-4.49
1.75
-78.63
-16.78
-6.99
8.38
-28.36
-24.14
-7.26
-7.63
0.04
-27.72
-25.40
-10.39
-8.84
N/B
36.40
8.48
2.13
-8.14
1.16
-4.62
33.99
-3.65
-5.69
1.31
12.54
21.65
31.38
3.41
5.34
13.60
7.78
20.52
-3.44
4.72
10.36
-3.67
7.94
-0.47
0.59
K/P
43.73
13.51
1.18
-1.88
4.81
9.97
18.57
-9.90
-3.05
6.59
27.77
52.80
43.54
13.31
1.85
10.11
11.10
28.49
-5.95
13.28
5.42
0.49
46.66
-0.77
12.30
Fe/P
22.89
18.43
15.30
14.42
25.41
-2.72
36.64
-1.87
-0.31
44.66
6.02
42.57
41.95
18.18
11.74
20.85
14.61
25.75
3.85
6.37
15.36
19.72
24.56
7.97
0.01
Mn/P
41.59
0.51
16.42
-0.60
11.15
7.39
23.92
4.82
-4.32
4.81
33.06
36.99
12.03
1.95
3.83
10.29
0.13
11.76
9.05
2.56
13.19
-0.34
20.73
1.97
18.92
Zn/P
43.07
17.01
-0.40
-8.10
-0.98
-4.87
35.18
-6.39
-5.87
5.35
23.67
34.86
39.82
-0.19
0.05
29.18
15.08
26.51
-3.82
5.30
8.39
-4.73
8.38
3.19
17.40
Cu/P
39.39
12.21
21.03
-6.34
10.29
3.25
27.76
-2.49
11.49
2.41
25.58
5.04
28.93
12.92
3.00
-2.02
16.47
28.33
2.01
4.12
1.36
15.02
43.41
0.91
6.32
B/P
101
5.98
6.23
-1.98
7.71
5.17
25.91
2.38
10.43
12.19
7.69
16.72
27.40
9.68
13.91
-5.52
-3.43
4.20
7.77
-4.91
11.54
-6.27
5.75
47.60
-1.29
18.15
Fe/K
-9.31
13.86
21.79
48.19
41.52
2.21
3.84
2.23
8.47
73.79
-7.93
21.00
9.93
23.42
9.82
9.35
9.88
6.46
13.42
2.86
7.11
46.91
22.98
15.20
-1.18
Mn/K
Appendices
10.00
10.30
3.55
29.28
0.92
2.36
28.22
-3.11
19.85
-9.24
14.97
21.48
31.55
-0.41
-0.90
-0.35
9.84
4.72
0.39
29.27
-8.17
-7.79
-7.07
23.20
K/Zn
38.61
-6.75
6.06
16.95
-1.20
5.01
-0.43
-1.15
5.22
-0.63
-9.45
18.22
19.44
10.83
8.88
13.30
-8.50
14.89
26.32
-0.07
-1.77
3.52
1.45
-1.24
K/Cu
44.23
10.67
38.72
-3.71
32.54
43.24
-4.88
10.23
15.23
19.09
18.65
31.76
-0.60
0.53
-5.22
19.67
12.18
5.08
-7.06
11.80
18.43
18.77
-0.51
-7.15
48.74
34.65
K/B
14.09
8.79
-6.07
-19.35
-24.70
-23.72
13.02
-14.57
-11.67
-5.69
-39.42
16.25
1.63
-1.56
-6.06
-13.88
-11.55
-5.17
-0.73
-16.16
3.69
-12.36
-26.29
9.02
-13.78
11.22
Fe/Mn
-2.49
15.86
10.94
27.22
5.86
0.11
-8.17
-0.17
30.43
-0.40
-7.42
4.62
25.16
12.44
-5.54
-3.14
13.38
12.20
11.20
31.83
-0.88
13.35
15.06
-7.00
Fe/Zn
10.25
2.12
-2.73
1.61
7.13
8.69
25.82
-6.64
12.80
2.21
1.48
4.50
13.43
3.94
21.27
2.01
-3.64
19.61
2.78
-4.73
10.48
-3.81
6.94
46.43
-7.38
-4.50
Fe/Cu
49.40
0.00
33.85
33.30
-2.09
14.00
-9.99
17.93
26.98
27.69
6.71
13.13
-5.84
-9.32
-7.72
3.82
-1.26
14.67
11.74
14.43
-2.74
-7.35
11.65
26.65
-3.80
Fe/B
-15.71
19.11
-3.48
39.21
30.28
-17.47
4.40
-11.86
3.36
36.31
-32.55
-0.33
20.02
15.82
5.99
6.13
15.46
8.27
-8.40
2.18
-0.74
22.66
-0.21
4.69
-29.02
Mn/Zn
-14.16
2.94
28.03
47.07
48.44
2.17
3.33
5.90
8.28
57.79
-21.99
7.86
3.83
32.64
20.45
-5.25
0.81
1.32
13.67
1.96
9.97
49.41
22.14
7.64
-28.82
Mn/Cu
28.13
12.08
14.46
26.36
-1.14
-7.36
12.75
-3.39
82.20
22.06
-3.40
9.09
-6.09
-6.05
-0.84
10.05
-4.44
12.79
11.12
-5.06
2.38
-6.85
-0.63
23.59
Mn/B
14.08
3.82
33.98
26.92
-6.52
0.39
25.93
-5.17
22.91
0.97
0.48
13.17
6.21
4.21
26.82
7.52
27.36
13.29
24.98
18.84
-3.40
9.04
7.11
20.20
-1.32
4.94
Zn/Cu
45.05
-5.59
11.72
54.80
-2.84
19.05
1.31
11.49
22.41
26.82
9.09
7.34
-4.97
18.48
21.67
4.00
-0.78
21.48
26.01
-7.31
1.69
-4.00
23.59
25.00
-0.13
Zn/B
47.89
-3.41
39.03
32.37
-6.75
10.17
15.70
22.87
26.38
32.86
4.31
5.54
-8.96
-9.89
25.79
14.62
-6.67
12.28
15.08
12.82
-1.32
-4.01
49.95
37.61
-2.04
Cu/B
-7.27
-6.08
17.83
7.26
18.17
-1.16
39.29
7.11
22.10
0.12
5.27
24.28
-6.71
2.60
5.82
17.13
30.77
16.25
20.68
86.02
159
47
44
49
155
70
109
43
119
1
69
108
125
80
60
32
123
157
34
124
N/P
Sample
No
-26.86
211.09
-39.99
-50.14
-36.81
53.60
16.73
-29.79
-60.21
27.52
5.50
11.80
13.55
-85.53
3.39
30.17
-29.38
10.82
-78.12
-12.93
N/K
203.91
69.00
39.51
69.35
46.44
-17.95
-4.31
36.08
7.00
-6.28
4.29
-5.07
-23.37
25.93
12.88
-7.92
14.20
2.34
59.71
4.17
Fe/N
167.18
23.23
19.19
21.10
13.46
-0.11
6.52
7.97
23.40
-0.23
-3.46
9.32
-3.97
41.34
5.62
-1.26
19.50
-13.36
30.61
5.18
Mn/N
-71.02
179.05
-68.92
-44.91
-36.43
14.72
-6.63
-30.71
-81.81
-8.63
-11.65
-5.86
-16.75
1.88
108.02
-1.96
-43.83
-18.78
-81.56
-6.14
N/Zn
Appendix 7 continued
-39.94
189.83
-70.13
-45.99
-46.67
37.40
12.83
-39.49
-62.12
10.63
-5.17
39.22
16.31
-95.23
-23.24
22.83
-80.28
9.79
-91.51
-17.34
N/Cu
-87.50
241.89
-39.15
-38.60
117.11
20.39
-3.31
-48.27
-6.89
120.74
-27.08
-1.86
-11.01
-45.40
-9.79
8.02
-44.78
-27.81
-43.93
-7.66
N/B
7.13
-3.77
3.71
-1.32
2.01
-7.33
22.17
8.12
4.79
-9.78
-3.75
12.10
-0.95
3.34
-3.96
0.12
31.75
9.28
32.05
-0.26
K/P
18.14
20.45
10.94
12.48
13.52
-5.04
0.63
19.67
1.60
12.42
5.29
17.55
-6.92
-7.29
10.81
11.10
25.63
24.19
36.48
-1.80
Fe/P
23.69
4.74
5.02
-1.46
0.55
7.84
13.44
3.59
2.78
7.07
-1.89
48.75
4.07
4.50
7.02
18.68
41.43
3.47
25.62
0.57
Mn/P
5.01
11.11
14.06
-1.42
2.49
-4.65
5.50
8.26
11.67
9.84
5.87
25.38
18.42
9.35
-3.86
16.93
40.40
35.16
32.62
-3.93
Zn/P
3.11
-0.17
12.80
-3.80
4.23
-5.65
14.57
11.43
4.12
-1.55
2.28
-0.75
-2.64
4.12
10.98
2.80
70.88
9.70
36.30
0.92
Cu/P
16.61
17.74
5.39
18.76
4.78
0.38
15.89
15.89
24.35
4.54
12.92
10.00
9.02
-0.54
1.82
-0.15
35.62
35.59
14.59
-2.90
B/P
102
13.91
44.06
9.98
22.97
16.98
19.57
11.67
14.22
17.76
33.90
15.04
6.30
26.06
20.24
10.69
17.28
-3.38
17.75
4.24
-3.38
Fe/K
23.42
15.91
2.31
-0.63
-2.49
63.81
43.64
-6.17
-2.78
33.94
2.35
44.35
8.99
2.08
21.10
33.04
9.21
-8.05
-3.26
1.26
Mn/K
Appendices
-0.41
-1.61
21.18
34.95
-3.58
-4.07
29.64
25.92
-1.38
13.66
42.74
22.15
22.55
47.62
14.86
-6.47
41.60
13.39
36.17
4.64
K/Zn
8.88
5.29
21.35
10.48
-6.06
-4.73
14.13
-6.88
1.00
34.37
17.97
21.85
3.43
-2.37
-7.83
45.65
-1.12
43.84
-4.63
-3.92
K/Cu
-9.53
39.57
19.67
-3.28
10.34
36.24
-8.28
31.13
23.56
32.17
17.77
12.49
-2.13
20.26
-5.02
12.00
-2.80
37.73
16.24
-1.95
K/B
-6.06
11.82
3.12
13.91
11.59
-21.08
-18.16
12.80
-23.77
-8.73
6.21
-24.10
-18.00
-19.29
1.02
-8.61
-11.40
17.17
3.27
-5.33
Fe/Mn
12.44
5.80
-6.52
19.03
11.64
-2.34
8.86
10.44
-3.46
15.58
54.22
22.04
35.67
55.52
10.61
-9.59
-1.16
12.24
14.97
1.04
Fe/Zn
21.27
32.98
-1.53
28.29
12.58
9.62
8.58
9.51
4.13
32.43
3.93
29.76
-8.03
0.18
22.04
11.64
17.09
30.44
1.69
-5.60
Fe/Cu
-9.32
-8.82
-3.68
-1.75
15.39
4.53
-5.19
-7.85
-4.28
16.62
10.10
74.45
-0.23
11.09
29.58
2.10
-0.51
19.32
18.29
-3.06
Fe/B
15.82
-9.62
-12.67
-1.71
-4.55
15.73
5.42
-7.80
-13.32
-5.24
-13.55
9.75
-19.42
-7.87
13.21
-1.30
-2.49
-41.28
-7.36
4.13
Mn/Zn
32.64
8.38
-9.92
2.83
-6.19
45.45
38.32
-10.79
-1.89
15.51
-7.93
90.66
11.89
0.83
-4.26
25.46
-14.01
-8.60
-6.08
-0.88
Mn/Cu
-6.05
-7.55
22.34
17.62
11.21
35.20
2.63
-5.04
33.76
21.77
5.91
26.98
-0.97
12.76
-2.12
6.00
-9.53
-3.88
46.34
-1.12
Mn/B
4.21
22.59
4.27
3.28
-1.94
12.28
23.03
-1.95
13.94
23.51
7.18
53.53
45.29
9.99
26.03
29.79
38.30
12.73
1.65
-9.76
Zn/Cu
-1.33
13.21
18.48
-8.16
32.32
4.25
-1.06
-2.65
18.25
14.16
-0.35
13.65
-2.16
1.86
5.27
10.82
-8.16
-0.78
10.18
-4.25
Zn/B
-3.35
33.33
25.79
-8.41
42.64
0.22
-1.45
23.26
22.04
21.84
14.20
34.58
15.19
11.00
-0.53
-2.82
-3.44
-1.53
38.67
-0.87
Cu/B
Appendices
Appendix 8
Index values in leaf tissue (GS-39) for irrigated wheat
Sample
No
IN
IP
IK
IFe
IMn
IZn
ICu
IB
123
151
150
93
19
152
138
119
33
32
181
14
148
175
92
121
106
48
6
171
113
147
160
120
108
143
168
83
122
43
98
35
90
88
164
84
135
103
126
169
109
157
118.27
17.18
45.66
110.40
16.50
27.44
58.47
57.77
4.76
14.93
70.86
94.94
-20.96
33.97
52.68
90.81
-3.53
24.07
130.42
101.02
-21.31
91.51
101.33
31.19
68.97
128.70
-14.22
35.81
64.60
40.86
30.67
-17.12
57.89
75.71
33.64
-16.61
45.96
-21.40
83.78
51.15
-23.60
78.62
146.97
16.14
28.94
-202.89
10.43
-31.96
-16.06
40.86
2.15
256.41
38.27
-41.74
12.34
49.21
174.36
-33.98
-17.35
-25.83
-65.29
-28.44
17.76
-61.62
68.79
-15.58
-47.22
-34.55
69.13
-15.35
-4.63
26.56
37.32
-48.82
-138.71
102.31
-56.83
-176.96
-68.24
27.11
42.06
37.16
-30.55
-23.98
-213.98
72.65
-4.28
14.30
90.51
-3.23
17.09
-161.81
61.84
57.20
-40.27
47.75
51.67
18.30
-82.04
-65.03
61.44
-15.70
48.98
-54.96
-4.89
23.33
-4.95
-53.39
13.55
45.61
-40.69
-32.31
-51.66
11.13
107.11
59.28
-1.37
18.21
24.54
28.79
-10.10
83.91
55.16
-57.02
-16.03
55.23
-9.15
-1.30
-52.08
-7.42
-36.98
-37.03
-67.28
-10.51
-34.61
-3.58
-70.31
-46.51
-14.77
-54.71
-77.06
-25.09
-34.64
-51.27
3.64
-53.62
-86.68
-38.99
-11.09
-58.11
-62.06
-25.27
-73.34
-37.01
-44.06
-50.61
-153.35
-33.89
-79.10
-34.98
-53.00
-93.87
-115.49
-7.50
-10.57
-58.83
-76.93
-8.56
-20.75
22.94
-1.59
-65.68
15.32
-9.00
-17.97
-159.03
-77.69
6.48
-21.61
-30.92
16.27
-122.38
15.89
-60.03
-2.36
35.68
-206.19
35.00
107.45
4.79
-138.47
15.64
32.42
-110.67
-26.52
-41.15
-4.80
-39.99
55.89
25.59
-22.69
-149.08
57.38
61.17
26.08
105.36
-187.58
-113.84
-90.56
-142.71
5.52
15.07
36.77
97.03
-123.23
40.36
91.53
82.80
19.41
-59.87
-45.36
77.08
-49.96
36.02
33.81
-11.34
-84.94
4.80
26.53
-77.33
23.08
68.55
-8.20
-41.52
77.12
14.35
68.85
-5.21
-25.87
37.79
122.98
46.30
90.65
44.30
46.08
159.71
3.45
-171.70
-12.97
14.57
203.96
16.67
-2.06
2.83
25.35
70.46
-4.25
33.64
26.92
18.00
6.18
7.54
46.03
58.42
29.15
18.23
46.83
34.59
-21.08
-42.27
32.37
8.25
-12.53
85.27
20.62
29.43
22.45
54.87
-30.01
-11.95
13.48
3.30
-258.63
-19.79
49.20
54.18
32.62
-5.05
18.10
-14.23
27.09
-13.19
-35.03
55.53
-24.82
-145.51
-78.76
-16.20
31.71
-20.23
-92.71
131.92
17.97
-279.11
22.37
-159.02
-23.74
21.36
-164.48
70.08
102.46
70.53
29.55
70.08
-22.89
-172.84
-28.03
92.34
-105.25
-73.03
46.81
107.17
52.95
-29.05
58.00
-11.55
44.13
-110.66
-84.43
42.83
100.26
-1.54
3.03
140.01
68.74
-30.78
103
Appendices
Appendix 8 continued
Sample
No
IN
IP
IK
IFe
IMn
IZn
ICu
IB
68
85
144
174
156
78
132
86
97
105
142
137
115
124
125
5
161
40
130
176
42
162
159
87
67
145
154
170
131
163
177
127
3
136
133
158
173
104
111
41
81
18
79
90.86
-77.65
15.13
45.91
81.39
13.82
21.22
-56.73
-0.22
-3.65
59.89
64.72
50.64
34.24
-29.56
86.41
22.35
44.80
101.35
13.96
125.39
43.26
67.60
-4.89
43.55
64.85
125.69
57.49
123.80
90.06
32.10
-16.47
-24.87
58.00
18.90
90.45
72.28
88.03
62.39
37.73
-0.80
54.22
46.37
54.69
18.16
-62.49
-9.40
-15.08
-37.75
111.15
143.34
129.50
67.22
249.11
67.06
156.45
113.76
110.24
43.08
71.94
334.58
10.73
141.47
38.53
226.61
155.27
116.52
-14.31
107.97
334.17
134.36
180.80
78.65
28.49
237.81
96.66
41.03
38.20
48.00
-13.72
-47.26
-74.27
-41.86
131.74
66.08
124.09
35.93
8.15
2.16
40.29
31.12
8.17
1.58
17.74
-20.62
65.24
-7.25
17.02
-36.06
-161.18
5.10
-16.26
45.57
62.57
6.63
24.55
54.23
109.41
75.15
54.31
83.37
61.64
93.69
57.93
-7.10
47.79
37.10
10.60
100.94
-1.26
29.70
-55.10
18.83
50.04
63.07
95.12
24.95
47.03
58.08
-40.60
-110.13
-101.04
-58.91
-15.52
-52.99
-111.60
-128.94
-84.58
-114.68
-154.47
-93.72
-42.27
-16.78
-93.94
-153.77
-38.29
-89.67
-69.83
-102.40
-28.46
-80.47
-25.72
-80.37
-88.93
-150.40
-131.16
-64.30
-108.42
-77.97
-126.96
-209.51
-197.86
-206.37
-121.12
-151.41
-91.48
-107.97
-80.65
-44.39
-141.00
-220.58
-419.33
29.82
89.71
49.46
-110.13
-46.59
-3.74
-72.25
118.08
-52.11
-10.84
25.71
53.16
-20.13
-86.19
-100.01
-76.00
-116.65
32.70
1.28
-59.73
-199.01
51.01
22.04
19.82
58.57
17.26
176.08
-149.27
-10.24
-150.60
-53.29
-157.01
-68.41
31.24
-43.24
95.21
-114.76
-49.79
20.72
2.18
-27.89
81.16
18.73
30.37
67.80
35.21
45.52
12.87
60.48
55.77
-9.46
24.66
-32.96
49.54
34.50
22.42
-17.29
10.92
52.09
31.48
91.78
-53.68
-29.50
-13.06
43.66
39.66
-33.70
59.85
110.05
40.96
-28.16
-110.30
15.89
48.34
52.57
94.82
18.71
63.11
3.38
-1.68
29.00
-75.95
-42.61
14.16
-17.99
77.66
-61.80
-29.35
6.08
37.90
30.95
-63.94
5.90
-29.64
2.83
-34.71
13.29
34.43
-0.89
-31.66
-3.32
-64.90
63.02
13.92
11.97
38.89
34.36
-422.11
46.88
-12.81
-19.31
54.76
24.13
10.56
-10.39
3.85
30.15
-3.65
-11.72
12.00
32.60
0.76
42.37
25.85
23.39
24.17
-10.68
-39.35
-12.34
-139.27
33.32
55.49
8.82
-79.14
75.95
-11.77
-54.39
0.53
64.39
-235.82
-177.17
-130.14
165.10
100.57
129.35
-79.42
-490.67
-8.45
-27.26
-11.99
28.64
-380.88
-58.88
-122.80
-266.12
-663.56
-18.60
-58.14
-7.67
4.07
85.65
10.44
46.66
-18.15
-31.29
88.17
12.09
61.29
-30.34
9.52
29.43
106.75
104
Appendices
Appendix 8 continued
Sample
No
IN
IP
IK
IFe
IMn
IZn
ICu
IB
99
53
54
59
4
96
166
71
101
100
21.23
104.99
62.58
-93.76
77.54
107.24
88.07
160.72
85.34
68.68
460.89
122.11
-2.54
190.20
195.22
30.80
233.53
28.54
126.79
462.17
130.28
125.31
-27.18
135.58
-38.38
32.79
23.81
80.02
112.00
90.60
-135.98
-284.22
-181.01
-241.35
-300.38
-187.60
-302.79
-231.88
-253.63
-191.54
-38.91
-20.83
121.20
6.49
34.89
-36.28
-85.43
-61.85
17.82
-8.14
-75.78
67.42
-48.70
126.06
-21.24
15.93
14.82
-36.92
-28.63
-83.24
-11.67
-46.00
-88.97
-22.64
-86.34
-3.47
-30.90
-114.22
28.49
20.94
-350.07
-68.79
164.61
-100.59
138.69
40.59
58.89
175.59
-88.19
-359.47
105
Appendices
Appendix 9
Index values in shoot material (GS-29) for irrigated wheat
Sample
No
IN
IP
IK
IFe
IMn
IZn
ICu
IB
141
27
67
94
178
106
55
16
110
169
113
172
82
41
98
19
50
173
66
38
7
29
9
36
115
112
88
35
153
83
8
20
4
167
71
59
3
57
24
11
15
87
6.94
-57.79
-64.69
28.73
27.92
-198.39
5.81
71.11
-105.66
74.49
-92.04
-36.55
127.33
-5.58
-103.73
-44.29
20.80
-26.56
-95.09
-31.81
-12.16
-53.53
-28.07
-68.46
-45.90
-49.08
65.17
166.79
-245.50
124.41
-19.87
60.86
-62.45
120.90
-0.96
139.89
-41.22
76.88
22.00
-4.78
78.24
39.48
3.83
59.55
35.86
-45.74
13.89
-50.40
-43.28
0.48
-82.52
-141.77
-104.02
-41.72
-51.55
-253.72
-44.33
-105.08
66.55
31.83
62.37
28.97
24.71
43.79
30.94
-5.64
-178.31
-80.08
-62.43
-230.79
-48.91
-109.50
-28.14
28.48
-123.33
-104.08
-21.85
-31.82
-50.02
-72.48
-2.45
-118.80
21.53
-99.36
-1.01
2.94
7.54
-167.42
-5.27
105.14
-93.37
79.55
43.01
31.31
1.71
-75.48
-18.36
29.07
23.14
-37.16
-62.25
-20.47
39.63
-16.75
-6.48
-38.08
30.49
-61.03
79.52
15.93
-16.29
-47.42
140.49
-6.32
-4.57
9.03
-26.26
10.16
11.48
-23.01
-50.74
-64.53
-2.37
1.92
80.05
-111.77
34.07
-17.82
-18.82
33.04
7.11
-24.41
47.41
107.68
-31.15
137.90
-201.23
46.14
-109.19
46.69
-50.28
59.60
-52.69
6.33
-15.54
18.95
14.06
-37.78
7.78
205.88
-65.81
-108.12
-55.19
-75.62
-22.50
-2.43
-2.73
-13.22
102.33
67.37
82.57
-113.68
77.15
43.86
45.53
3.56
63.92
68.52
-25.51
-38.92
115.34
-106.41
-14.24
48.96
54.00
166.87
83.12
-131.01
149.62
-47.43
-84.27
-8.60
-38.15
23.52
-8.78
-136.19
20.70
49.89
50.14
43.82
111.73
-90.04
127.24
126.04
-17.80
203.16
96.39
-80.51
78.37
164.67
-13.04
94.94
-97.54
59.92
94.59
2.76
48.69
171.36
119.75
48.17
-50.73
53.91
-34.09
103.13
-29.84
0.22
22.51
-59.59
-13.91
-129.75
106.03
-43.31
-28.42
28.67
21.09
91.83
96.12
-24.84
26.22
-30.33
21.71
19.28
-47.18
111.26
-69.60
95.11
-23.05
77.70
-38.11
-5.80
14.47
18.97
89.19
148.53
-34.61
143.36
47.57
38.53
-23.53
-105.47
15.18
-132.53
-35.91
1.66
18.27
45.25
-9.49
65.74
-16.29
21.15
63.92
71.61
82.56
142.81
55.51
20.95
26.61
-24.17
-152.05
82.76
20.31
-21.07
-107.65
-66.77
-87.36
-32.99
118.02
-39.81
18.11
-147.08
78.91
27.73
-81.21
-28.81
-17.92
-38.02
-19.35
-22.21
-96.52
-43.35
-4.85
-42.85
-22.00
10.58
68.32
-3.52
-59.42
109.41
9.92
53.15
23.20
-387.24
43.18
87.22
57.37
55.54
108.94
142.54
165.64
35.75
92.31
87.15
-58.59
2.15
15.67
89.28
-18.32
-58.98
34.83
40.01
91.48
53.27
39.23
52.42
43.69
-239.99
51.49
-299.79
80.26
-152.47
19.18
18.32
-83.03
95.05
-356.66
176.90
106
Appendices
Appendix 9 continued
Sample
No
IN
IP
IK
IFe
IMn
IZn
ICu
IB
21
92
33
156
53
158
77
93
14
116
46
61
54
120
42
121
122
37
32
10
129
28
95
75
45
51
152
2
17
18
5
85
126
159
47
44
49
155
70
109
43
119
1
74.98
-32.08
14.47
-14.88
36.28
-84.86
78.89
128.16
-28.21
-52.53
43.16
-17.96
4.43
-16.33
4.27
-36.06
-69.00
11.78
-9.99
-2.46
-433.46
-33.65
-98.58
28.14
15.66
41.42
-360.58
-29.43
37.51
47.37
35.95
-99.76
-185.76
-60.67
-391.51
2.88
-224.71
86.41
-47.42
-440.75
36.55
61.15
-39.11
7.52
-122.58
-57.75
-68.71
-91.50
0.68
-9.41
75.03
-61.30
-9.69
-178.27
-27.99
-63.15
-40.23
-2.90
-156.34
-67.49
-95.92
-28.70
-56.06
-190.63
-214.11
-110.12
-43.62
6.63
17.49
-171.30
-7.39
-49.17
20.00
-67.78
-100.78
-179.55
14.68
-171.58
-135.23
-252.96
-67.64
-21.65
25.82
-28.10
-135.13
-20.82
33.62
-33.83
-3.64
-24.80
-18.26
25.87
-37.54
74.96
-121.39
-34.04
-159.89
-105.45
5.48
-16.86
-60.22
-11.35
-21.84
-14.89
11.92
-49.54
85.71
-65.67
-37.31
-89.53
-62.71
-24.02
109.74
-81.29
-71.18
-80.29
-88.78
-54.64
105.42
13.56
95.30
-91.68
-18.18
-129.39
-113.54
88.86
-72.37
-46.41
-98.29
4.96
-43.72
-106.39
-36.50
-39.07
1.99
0.66
119.48
27.43
-36.64
161.79
-43.73
-38.76
56.45
-89.91
46.28
12.94
-28.99
-31.86
49.93
148.45
130.72
84.85
1.25
-39.51
-97.79
-16.91
84.31
-19.57
-6.75
-95.07
1.85
144.40
-13.97
103.72
46.98
-38.66
16.00
72.76
-89.69
-152.11
9.55
14.67
122.34
112.51
97.88
-46.54
54.34
-8.27
63.22
104.71
-91.33
57.27
34.43
170.70
48.63
4.93
34.91
33.51
42.49
54.71
66.01
96.00
121.31
86.56
-76.60
356.77
0.52
-2.72
94.72
-44.69
176.21
194.56
66.79
43.20
14.59
14.47
32.39
-131.33
55.51
89.23
39.55
59.20
6.80
232.83
-57.67
49.09
73.43
69.66
103.12
32.63
22.73
-8.82
2.57
121.45
16.75
24.58
-32.86
53.72
-21.37
119.75
-48.37
-90.56
-7.94
10.54
-43.75
-56.86
85.21
168.17
1.50
-36.48
97.77
67.07
92.60
-68.11
-93.84
106.10
-128.13
173.90
-21.61
130.05
177.17
94.20
97.25
-80.22
186.42
195.98
107.43
50.61
-18.11
32.75
-143.34
49.63
-65.21
15.31
-61.32
-78.35
104.06
24.45
-152.12
-116.21
-12.17
-5.71
-59.15
40.32
65.47
129.22
-56.56
-103.12
163.19
43.28
78.80
-18.09
-59.58
-53.34
123.78
-78.11
-102.80
-71.80
-129.60
48.88
161.84
37.55
133.63
-84.42
248.73
-78.15
113.22
111.48
-94.79
-270.32
0.39
-274.39
13.53
129.11
38.68
90.80
26.56
-25.67
-426.57
49.31
34.44
226.32
173.51
1.81
39.12
53.25
131.99
127.99
-47.97
38.63
109.00
162.29
-32.33
-9.22
-236.42
175.46
21.18
153.48
64.00
97.11
-9.26
172.39
289.39
-234.85
15.99
68.02
215.63
136.07
-13.70
37.30
58.65
108.04
40.90
150.23
107
Appendices
Appendix 9 continued
Sample
No
IN
IP
IK
IFe
IMn
IZn
ICu
IB
69
108
125
80
60
124
34
157
123
32
34.41
-379.56
-199.01
20.02
149.99
-235.55
-379.38
-293.14
-338.23
-1278.97
-16.97
-11.02
-60.25
-9.57
48.66
-10.44
7.52
-35.67
-29.41
12.32
-182.04
55.66
1.14
-126.24
-202.48
4.34
-6.09
-20.65
-121.88
169.70
-17.21
-224.18
93.29
-17.22
-12.69
111.00
150.66
51.81
175.29
254.29
54.74
-1.79
-47.77
128.12
171.40
-22.02
-28.98
-6.74
8.47
262.75
107.76
171.57
25.86
68.76
9.68
25.32
-1.25
126.30
130.28
141.94
-47.68
51.02
45.84
-94.67
-104.97
44.10
-40.14
108.11
-47.03
100.15
66.99
338.29
140.89
30.79
-59.61
83.24
297.66
69.97
222.51
337.80
108
Appendices
Appendix 10
Interpretation of the nutrients in leaf tissue (GS-39) for irrigated
wheat. H = high, A = adequate, D =deficient.
Sample
No
N
P
K
Fe
Mn
Zn
Cu
B
123
151
150
93
19
152
138
119
33
32
181
14
148
175
92
121
106
48
6
171
113
147
160
120
108
143
168
83
122
43
98
35
90
88
164
84
135
103
126
169
109
H
A
H
H
A
H
H
A
A
A
H
H
A
A
A
H
A
A
H
H
A
H
H
A
H
H
A
H
H
H
A
A
A
H
A
A
A
A
H
A
A
H
A
A
D
A
D
A
A
A
H
A
A
A
H
H
A
A
A
A
A
A
A
H
A
A
A
H
A
A
A
A
D
D
H
D
D
D
A
A
A
A
D
H
A
A
H
A
A
D
H
A
A
A
H
A
D
D
H
A
A
D
A
A
A
D
A
A
A
A
D
A
H
H
A
A
A
A
A
H
H
A
A
A
A
D
A
A
D
D
A
D
A
D
A
A
D
A
A
A
D
A
D
D
A
A
D
D
A
D
D
D
D
D
D
D
A
D
D
D
A
A
A
D
A
A
A
A
A
A
A
D
D
A
A
A
A
D
A
D
A
H
D
A
H
A
D
A
A
D
A
D
A
D
A
A
A
D
H
A
A
H
D
D
D
A
A
H
H
D
H
H
A
A
A
D
H
D
A
A
A
D
A
A
D
A
H
A
A
H
A
H
A
A
H
H
H
H
A
A
H
A
D
A
A
H
A
A
A
A
A
H
A
A
A
A
H
A
H
A
A
A
A
D
A
A
A
H
A
A
A
A
A
A
A
A
D
A
A
A
A
A
A
A
A
A
A
A
D
D
A
A
A
D
H
A
D
A
D
A
A
D
H
H
H
A
H
A
D
A
H
D
D
H
H
H
A
A
A
A
D
D
A
H
A
A
H
H
109
Appendices
Appendix 10 continued
Sample
No
N
P
K
Fe
Mn
Zn
Cu
B
157
68
85
144
174
156
78
132
86
97
105
142
137
115
124
125
5
161
40
130
176
42
162
159
87
67
145
154
170
131
163
177
127
3
136
133
158
173
104
111
41
81
18
H
H
D
A
H
H
A
A
A
A
A
A
A
A
A
A
H
A
A
H
A
H
A
A
A
A
A
A
A
H
H
A
A
A
H
A
H
H
H
H
A
A
A
A
A
A
D
A
A
A
H
H
H
H
H
A
H
H
H
A
H
H
A
H
A
H
H
H
A
H
H
H
H
H
A
H
H
A
A
A
A
A
D
D
H
A
H
A
A
A
A
A
A
A
A
A
H
A
A
A
D
A
A
A
A
A
A
A
A
A
H
H
A
A
A
A
A
A
A
H
A
A
A
A
A
H
H
A
A
A
A
D
D
D
A
D
D
D
D
D
D
D
A
A
D
D
A
A
D
D
A
A
A
D
D
D
A
A
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
A
H
H
D
D
A
D
H
D
A
A
A
A
D
D
A
D
A
A
D
D
A
A
A
A
A
A
D
A
D
D
D
A
A
A
H
D
A
A
A
A
H
A
A
H
A
H
A
H
H
A
A
A
A
A
A
A
A
A
A
A
D
A
A
A
A
A
A
H
A
A
D
A
H
A
H
A
H
A
A
A
D
D
A
A
H
D
A
A
A
A
D
A
A
A
A
A
A
A
A
A
A
H
A
A
A
A
D
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
D
A
H
A
D
H
A
A
A
H
D
D
D
H
H
H
D
D
A
A
A
A
D
D
D
D
D
A
A
A
A
A
A
A
A
A
H
A
H
A
A
A
110
Appendices
Appendix 10 continued
Sample
No
N
P
K
Fe
Mn
Zn
Cu
B
79
99
53
54
59
4
96
166
71
101
100
A
A
H
A
A
A
H
A
H
A
A
H
H
H
A
H
H
A
H
A
H
H
A
A
H
A
H
A
A
A
A
H
A
D
A
D
D
D
D
D
D
D
D
D
A
A
A
H
A
A
A
A
A
A
A
A
A
A
A
H
A
A
A
A
A
A
A
A
A
D
A
A
A
A
D
A
A
A
D
A
H
A
H
A
A
H
A
D
111
Appendices
Appendix 11
Interpretation of the nutrients in shoot material (GS-29) for
irrigated wheat. H = high, A = adequate, D =deficient.
Sample
No
N
P
K
Fe
Mn
Zn
Cu
B
141
27
67
94
178
106
55
16
110
169
113
172
82
41
98
19
50
173
66
38
7
29
9
36
115
112
88
35
153
83
8
20
4
167
71
59
3
57
24
11
15
A
D
D
A
H
D
A
A
D
A
A
A
H
A
D
A
A
A
D
D
A
D
A
A
A
A
H
H
D
H
A
A
D
H
A
H
A
H
A
A
A
A
H
A
A
A
A
D
A
D
D
D
A
A
D
A
D
A
A
H
H
A
A
A
A
D
D
D
D
A
D
A
A
D
A
A
A
A
D
A
D
A
A
A
A
D
A
H
D
A
A
A
A
D
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
H
A
A
A
A
A
A
A
A
D
A
A
A
H
A
A
A
A
A
H
A
A
H
D
A
D
A
A
H
A
A
A
A
A
A
A
H
A
D
D
A
A
A
A
A
H
A
H
D
H
A
H
A
A
A
D
H
D
A
A
H
H
H
D
H
A
D
A
A
A
A
D
A
H
H
A
H
D
H
H
A
H
H
D
H
H
A
A
D
A
H
A
H
H
H
D
H
A
H
D
A
A
A
A
D
H
A
A
A
A
H
H
A
A
D
A
A
D
H
A
H
A
A
A
A
A
A
H
H
A
H
A
A
A
D
A
D
A
A
A
A
A
A
A
H
A
A
H
A
A
A
A
D
H
A
A
D
D
D
A
H
A
A
D
A
A
D
A
A
A
A
A
D
A
A
A
A
H
A
D
H
A
A
A
D
A
A
A
A
H
H
H
A
H
H
D
A
A
H
A
A
A
A
H
A
A
H
H
D
A
D
H
D
A
A
D
H
D
112
Appendices
Appendix 11 continued
Sample
No
N
P
K
Fe
Mn
Zn
Cu
B
87
21
92
33
156
53
158
77
93
14
116
46
61
54
120
42
121
122
37
32
10
129
28
95
75
45
51
152
2
17
18
5
85
126
159
47
44
49
155
70
109
43
119
A
H
A
A
A
A
D
H
H
A
D
A
A
A
A
A
A
D
A
A
A
D
A
D
A
A
A
D
A
A
A
A
D
D
D
D
A
D
H
A
D
A
A
D
A
D
A
D
D
A
A
A
A
A
D
A
D
D
A
D
D
D
A
A
D
D
D
A
A
A
D
A
A
A
A
D
D
A
D
D
D
A
A
A
A
D
D
A
A
A
A
A
H
D
A
D
D
D
D
A
A
D
A
A
A
A
A
A
A
A
A
D
A
A
D
A
D
A
A
A
A
A
A
A
D
D
A
A
A
A
A
A
D
A
A
A
A
A
A
D
H
A
D
H
D
A
A
A
D
A
A
H
H
A
A
D
A
H
A
A
A
A
A
A
A
A
A
A
H
A
D
A
A
H
H
H
A
H
A
H
A
D
H
A
H
H
A
A
A
A
H
H
H
A
H
A
H
A
A
A
A
H
H
A
A
A
A
A
D
A
H
A
A
A
H
D
A
H
A
H
A
A
A
A
H
A
A
A
H
A
H
A
D
A
A
A
A
A
H
A
A
H
A
H
A
D
H
D
H
A
A
H
A
H
D
H
H
A
A
A
A
D
H
D
A
D
A
H
A
D
D
A
A
D
A
H
H
D
D
A
A
A
A
D
D
A
D
D
D
D
A
H
H
A
A
H
D
H
A
D
D
H
D
A
H
A
H
H
A
D
A
H
H
H
A
H
H
H
H
A
H
H
A
A
A
D
H
A
H
H
H
A
H
H
D
A
A
H
H
A
A
A
H
A
113
Appendices
Appendix 11 continued
Sample
No
N
P
K
Fe
Mn
Zn
Cu
B
1
69
108
125
80
60
124
34
157
123
32
A
A
D
D
A
H
D
D
D
D
D
A
A
A
A
A
A
A
A
A
A
A
D
D
A
A
D
D
A
A
A
A
A
A
A
D
H
A
A
H
H
A
H
A
D
A
A
A
H
H
A
A
A
A
A
A
H
H
A
H
A
A
A
H
A
A
A
A
A
A
D
D
A
A
H
A
A
H
H
H
H
A
A
H
H
A
H
H
114
Acknowledgements
This work would not have been possible without the support from numerous people and
organizations from Bonn (Germany) and Hyderabad (Pakistan). I would like to thank
the Asian Development Bank for providing me with financial support to pursue my PhD
studies in Germany. I especially wish to thank Prof. Dr. Paul Vlek for selecting me as a
student and supporting my research ambitions. On Professor Vlek’s recommendation, I
met with Prof. Dr. Heiner Goldbach who then became my first supervisor. From
proposal writing to thesis writing, his guidance was remarkable. During my field work,
whenever I called him on the telephone or sent him emails, he immediately replied me
and guided me accordingly. Prof. Goldbach not only rigorously reviewed the content
but also the context of all my writings and provided detailed comments on my drafts.
Through his critical reading and suggestions, the academic quality of this thesis is
ensured.
I am also thankful to ZEF for providing me logistical and academic support. I would
like to express my gratitude to all staff members of ZEF, especially to Dr. Günter
Manske and Mrs. Rosemarie Zabel. I especially want to thank Mrs. Zabel for her
wonderful support during my stay in Germany. It is hard to imagine how ZEF students
would be able to survive without her kindness and constant readiness to help.
Furthermore, I am very grateful to my friends at ZEF, including Fazal Akther, Abdul
Salam Lodhi and Sarah. Special thanks also go to Dr. Usman Khalid Awan for his
consistent help throughout the degree process.
My most sincere gratitude goes to Dr. Muhammad Saleem Saif. He joined me in the
field and worked with me on sampling. Many thanks to him for his help. I am also
thankful to Prof. Dr. Kazi Suleman Memon for his kind guidance.
I would like to express my gratitude to the scientific staff of the laboratory at the plant
nutrition department, University of Bonn, during my all research work. Special thanks
to Dr. Monika Wimmer for her fruitful guidance during the Boron analysis. I am also
thankful to Angelika Viets, Brigeta, Angelika Glugau and Mr.Seven.
I am particularly grateful to my brothers (Mir Javed, Mir Pervez, Mir Sohail, Mir Asif
and Mir Kashif Ali), sisters (Neelofer and Dr. Nargis) for their unconditional support,
encouragement and love, irrespective of my physical absence. My special gratitude also
goes to my field assistants Zulfiqar, Ahmed Khan and Ghulam Murtaza.
115