University of Waterloo Department of Electrical and Computer Engineering ECE 223 Introduction to Digital Systems Winter 2010 Solutions to Midterm Examination Instructor: Otman A. Basir 1) [20 points] a) List the minterms and maxterms for the expression πΉ π΄, π΅, πΆ = π΄β² π΅ + π΄ + π΅β² πΆ + π΄ + πΆ β² π΅ π΄ + πΆ β² = π΄β² πΆ β² πΉ π΄, π΅, πΆ = π΄β² π΅ + π΄πΆ + π΅β² πΆ + π΄β²π΅πΆβ² π΄, π΅, πΆ = π΄β² π΅πΆ + π΄π΅πΆ + π΄π΅β² πΆ + π΄β² π΅β² πΆ + π΄β²π΅πΆβ² πΉ π΄, π΅, πΆ = (1,2,3,5, ,7) πΉ π΄, π΅, πΆ = (0,4,6) b) Express the complement of the expression πΉ π΄, π΅, πΆ = π΄β² π΅ + π΄ + π΅β² πΆ + π΄ + πΆ β² π΅ in the simplest form you can using Boolean algebra. Show your work. πΉ π΄, π΅, πΆ = π΄β² π΅ + π΄ + π΅β² πΆ + π΄ + πΆ β² π΅ πΉ π΄, π΅, πΆ = π΄β² π΅ + π΄πΆ + π΅β²πΆ + π΄β²πΆ β² π΅ πΉ π΄, π΅, πΆ = π΄β² π΅ (1 + πΆ β² ) + π΄πΆ + π΅β²πΆ πΉ π΄, π΅, πΆ = π΄β² π΅ + π΄πΆ + π΅β²πΆ But based on the consensus theorem we have π΄β² π΅ + π΄πΆ = π΄β² π΅ + π΄πΆ + π΅πΆ We conclude that πΉ π΄, π΅, πΆ = π΄β² π΅ + π΄πΆ + π΅πΆ + π΅β²πΆ πΉ π΄, π΅, πΆ = π΄β² π΅ + πΆ πΉ β² (π΄, π΅, πΆ) = π΄β² π΅ β² . πΆβ² c) Use a Karnaugh map to find a simplest sum-of-products expression for πΉ(π΄, π΅, πΆ, π·) = π΄π(1,3,4,5,9,10,12), π(π΄, π΅, πΆ, π·) = π΄π(8,11,14,15). AB\CD 00 01 11 10 00 0 1 1 x 01 1 1 0 1 11 1 0 x x 10 0 0 x 1 πΉ π΄, π΅, πΆ, π· = π΄π΅β² + πΆ β² π·β² π΅ + π΄β² πΆ β² π· + π·π΅β² π) Use the QM tabulation method to simplify the function in 1.c Truth Table M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 A 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 B 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 C 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 D 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Minterms Table Number of ones 1 Minterm M1 M4 M8 Binary 0001 0100 1000 2 M3 M5 M9 M10 M12 0011 0101 1001 1010 1100 3 M11 M14 1011 1110 4 M15 1111 Size [ 2 ] Implicants M(1, 3) 00-1 F 0 1 0 1 1 1 0 0 x 1 1 x 1 0 x x M(1, 5) M(1, 9) M(4, 5) M(4, 12) M(8, 9) M(8, 10) M(8, 12) M(3, 11) M(9, 11) M(10, 11) M(10, 14) M(12, 14) M(11, 15) M(14, 15) 0-01 -001 010-100 10010-0 1-00 -011 10-1 1011-10 11-0 1-11 111Size [ 4 ] Implicants -0-1 M(1, 3, 9, 11) M(8, 9, 10, 11) M(8, 10, 12, 14) M(10, 11, 14, 15) 10-1β0 1-1Essential Prime Implicants M(1, 5) M(4, 5) M(4, 12) M(1, 3, 9, 11) M(8, 9, 10, 11) M(8, 10, 12, 14) M(10, 11, 14, 15) 0-01 010-100 -0-1 10-1β0 1-1Prime Implicants Chart M(1, 5) M(4, 5) 1 x 3 4 X 5 x x 9 10 12 0-01 010- M(4, 12) M(1, 3, 9, 11) M(8, 9, 10, 11) M(8, 10, 12, 14) M(10, 11, 14, 15) x x x x x X x x x x x x x x -100 -0-1 10-1--0 1-1- πΉ π΄, π΅, πΆ, π· = π΄π΅β² + πΆ β² π·β² π΅ + π΄β² πΆ β² π· + π·π΅β² (FROM KM) (1,5)AβCβD+(4,12)BCβDβ+(1,3,9,11)BβD+(8,9,10,11)ABβ (FROM QM) 2) [30 points] For the circuit given by F(A,B,C,D)=βm(0,5,6,7,11) a. Derive an algebraic expression for F(A,B,C,D), F(A,B,C,D)= AβBβCβDβ+AβBCβD+AβBCDβ+AβBCD+ABβCD b. Implemented this circuit using logic gates (&,+,!) and 2-to-4 non-inverted output decoders . c. Implement this circuit using logic gates (&,+,!) and 4 to 1 multiplexers C'D' CD+C'D+C'D=D 00 01 CD 10 0 11 AB 3) 30 points] A=A3 A2 A1 A0; A=B3 B2 B1 B0 Operations: B0A0=11: A and B are odd numbers ο F1=A-B: add A to 2βs complement of B B0A0=00: A and B are even numbers ο F2=B-A: add B to 2βs Complement of A B0A0=10: A is an even number and B is an odd number ο F3=A+B: add A to B B0A0=01: A is an odd number and B is an even number ο F4=A-B-1: add A to 1βs complement of B Remember from our parallel 4-bit adder, we get 2βs complement by 1βs complement plus 1 (which we achieved by sitting Cin to 1). MA= 1βs complement of A 1 0 0 0 B0A0 00 01 10 11 2-to-4 Decoder 00 MB= 1βs Complement of B 0 1 0 1 Cin 1 0 0 1 A A 1βs complement Full Adder 01 Z 10 11 B 1βs complement Cout B B0A0 Cin
© Copyright 2026 Paperzz