E1C16 05/17/2010 16:47:56 Page 200 CHAPTER 16 CHEMICAL EQUILIBRIUM SOLUTIONS TO REVIEW QUESTIONS 1. At 25 C both tubes would appear the same and contain more molecules in the gaseous state than the tube at 0 C, and less molecules in the gaseous state than the tube at 80 C. 2. The reaction is endothermic because the increased temperature increases the concentration of product (NO2) present at equilibrium. 3. In an endothermic process heat is absorbed or used by the system so it should be placed on the reactant side of a chemical equation. In an exothermic process heat is given off by the system so it belongs on the product side of a chemical equation. 4. At equilibrium, the rate of the forward reaction equals the rate of the reverse reaction. 5. Free protons (Hþ) do not exist in water because they are hydrated forming H3Oþ. 6. The sum of the pH and the pOH is 14. A solution whose pH is 1 would have a pOH of 15. 7. Acids stronger than acetic acid are: benzoic, cyanic, formic, hydrofluoric, and nitrous acids (all equilibrium constants are greater than the equilibrium constant for acetic acid). Acids weaker than acetic acid are: carbolic, hydrocyanic, and hypochlorous acids (all have equilibrium constants smaller than the equilibrium constant for acetic acid). All have one ionizable hydrogen atom. 8. The order of solubility will correspond to the order of the values of the solubility product constants of the salts being compared. This occurs because each salt in the comparison produces the same number of ions (two in this case) for each formula unit of salt that dissolves. This type of comparison would not necessarily be valid if the salts being compared gave different numbers of ions per formula unit of salt dissolving. The order is: AgC2H3O2, PbSO4, BaSO4, AgCl, BaCrO4, AgBr, AgI, PbS. 9. (a) (b) Ksp MnðOHÞ2 ¼ 2:0 1013 ; Ksp Ag2 CrO4 ¼ 1:9 1012 : Each salt gives 3 ions per formula unit of salt dissolving. Therefore, the salt with the largest Ksp (in this case Ag2CrO4) is more soluble. Ksp BaCrO4 ¼ 8:5 1011 ; Ksp Ag2 CrO4 ¼ 1:9 1012 . Ag2CrO4 has a greater molar solubility than BaCrO4, even though its Ksp is smaller, because the Ag2CrO4 produces more ions per formula unit of salt dissolving than BaCrO4. - 200 - E1C16 05/27/2010 17:26:0 Page 201 - Chapter 16 BaCrO4 ðsÞ fi Ksp ¼ ½Ba2þ CrO42 Ba2þ þ CrO42 Let y ¼ molar solubility of BaCrO4 Ksp ¼ ½y½y ¼ 8:5 1011 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi y ¼ 8:5 1011 ¼ 9:2 106 mol BaCrO4 =L Ag2 CrO4 ðsÞ fi 2 Ksp ¼ ½Agþ CrO42 2 Agþ þ CrO42 Let y ¼ molar solubility of Ag2 CrO4 Ksp ¼ ½2y2 ½y ¼ 1:9 1012 rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 12 3 1:9 10 ¼ 7:8 105 mol Ag2 CrO4 =L y¼ 4 Ag2CrO4 has the greater solubility. 10. HC2 H3 O2 fi Hþ þ C 2 H3 O 2 Initial Concentrations HC2 H3 O2 0.10 M Hþ 1:8 105 M C2 H3 O2 0.10 M Added ––––– 0.010 mol ––––– Concentration After Equilibrium Shifts 0.11 M 1:9 105 M 0.09 M The initial concentration of Hþ in the buffer solution is very low 1:8 105 M because of the large excess of acetate ions. 0.010 mol of HCl is added to one liter of the buffer solution. This will supply 0.010 M Hþ. The added Hþ creates a stress on the right side of the equation. The equilibrium shifts to the left, using up almost all the added Hþ, reducing the acetate ion by approximately 0.010 M, and increasing the acetic acid by approximately 0.010 M. The concentration of Hþ will not increase significantly and the pH is maintained relatively constant. 11. In a saturated sodium chloride solution, the equilibrium is Naþ ðaqÞ þ Cl ðaqÞ fi NaClðsÞ Bubbling in HCl gas increases the concentration of Cl , creating a stress, which will cause the equilibrium to shift to the right, precipitating solid NaCl. 12. The rate of a reaction increases when the concentration of one of the reactants increases. The increase in concentration causes the number of collisions between the reactants to increase. The rate of a reaction, being proportional to the frequency of such collisions, as a result, will increase. 13. If pure HI is placed in a vessel at 700 K, some of it will decompose. Since the reaction is reversible ðH2 þ I2 fi 2 HIÞ HI molecules will react to produce H2 and I2. 14. An increase in temperature causes the rate of reaction to increase, because it increases the velocity of the molecules. Faster moving molecules increase the number and effectiveness of the collisions between molecules resulting in an increase in the rate of the reaction. 15. A catalyst speeds up the rate of a reaction by lowering the activation energy. A catalyst is not used up in the reaction. - 201 - E1C16 05/17/2010 16:47:58 Page 202 - Chapter 16 16. A þ B fi CþD When A and B are initially mixed, the rate of the forward reaction to produce C and D is at its maximum. As the reaction proceeds, the rate of production of C and D decreases because the concentrations of A and B decrease. As C and D are produced, some of the collisions between C and D will result in the reverse reaction, forming A and B. Finally, an equilibrium is achieved in which the forward rate exactly equals the reverse rate. H3 Oþ þ C2 H3 O 17. HC2 H3 O2 þ H2 O fi 2 As water is added (diluting the solution from 1.0 M to 0.10 M), the equilibrium shifts to the right, yielding a higher percent ionization. 18. The statement does not contradict Le Chatelier’s Principle. The previous question deals with the case of dilution. If pure acetic acid is added to a dilute solution, the reaction will shift to the right, producing more ions in accordance with Le Chatelier’s Principle. But, the concentration of the un-ionized acetic acid will increase faster than the concentration of the ions, thus yielding a smaller percent ionization. 19. At different temperatures, the degree of ionization of water varies, being higher at higher temperatures. Consequently, the pH of water can be different at different temperatures. 20. In pure water, Hþ and OH are produced in equal quantities by the ionization of the water molecules, Hþ þ OH . Since pH ¼ log½Hþ , and pOH ¼ log½OH , they will always be identical H2 O fi for pure water. At 25 C, they each have the value of 7, but at higher temperatures, the degree of ionization is greater, so the pH and pOH would both be less than 7, but still equal. 21. In water the silver acetate dissociates until the equilibrium concentration of ions is reached. In nitric acid solution, the acetate ions will react with hydrogen ions to form acetic acid molecules. The HNO3 removes acetate ions from the silver acetate equilibrium allowing more silver acetate to dissolve. If HC1 is used, a precipitate of silver chloride would be formed, since silver chloride is less soluble than silver acetate. Thus, more silver acetate would dissolve in HCl than in pure water. Agþ ðaqÞ þ C2 H3 O2 ðaqÞ AgC2 H3 O2 ðsÞ fi 22. When the salt, sodium acetate, is dissolved in water, the solution becomes basic. The dissolving reaction is H2 O NaC2 H3 O2 ðsÞ ! Naþ ðaqÞ þ C2 H3 O2 ðaqÞ The acetate ion reacts with water. The reaction does not go to completion, but some OH ions are produced and at equilibrium the solution is basic. C2 H3 O2 ðaqÞ þ H2 Oðl Þ fi OH ðaqÞ þ HC2 H3 O2 ðaqÞ 23. A buffer solution contains a weak acid or base plus a salt of that weak acid or base, such as dilute acetic acid and sodium acetate. HC2 H3 O2 ðaqÞ fi Hþ ðaqÞ þ C2 H3 O2 ðaqÞ NaC2 H3 O2 ðaqÞ ! Naþ ðaqÞ þ C2 H3 O2 ðaqÞ When a small amount of a strong acid (Hþ) is added to this buffer solution, the Hþ reacts with the acetate ions to form un-ionized acetic acid, thus neutralizing the added acid. When a strong base, OH , is added it reacts with un-ionized acetic acid to neutralize the added base. As a result, in both cases, the approximate pH of the solution is maintained. - 202 - E1C16 05/17/2010 16:47:58 Page 203 - Chapter 16 24. All four K expressions are equilibrium constants. They describe the ratio between the concentrations of products and reactants for different types of reactions when at equilibrium. Ka is the equilibrium constant expression for the ionization of a weak acid, Kb is the equilibrium constant expression for the ionization of a weak base, Kw is the equilibrium constant expression for the ionization of water and Ksp is the equilibrium constant expression for a slightly soluble salt. - 203 - E1C16 05/17/2010 16:47:58 Page 204 - Chapter 16 - SOLUTIONS TO EXERCISES 1. Reversible systems. (a) KMnO4 ðsÞ Ð Kþ ðaqÞ þ MnO 4 ðaqÞ (b) CO2 ðsÞ Ð CO2 ðgÞ 2. Reversible systems. (a) I2 ðsÞ Ð I2 ðgÞ (b) NaNO3 ðsÞ Ð Naþ ðaqÞ þ NO 3 ðaqÞ 3. Equilibrium system. SiF4 ðgÞ þ 2 H2 OðgÞ þ 103:8 kJ Ð SiO2 ðsÞ þ 4 HFðgÞ (a) The reaction is endothermic with heat being absorbed. (b) The addition of HF will shift the reaction to the left until equilibrium is reestablished. The concentrations of SiF4, H2O, and HF will be increased. The concentration of SiO2 will be decreased. (c) The addition of heat will shift the reaction to the right. 4. Equilibrium system. 4 HClðgÞ þ O2 ðgÞ Ð 2 H2 OðgÞ þ 2 Cl2 ðgÞ þ 114:4 kJ (a) The reaction is exothermic with heat being released. (b) The addition of O2 will shift the reaction to the right until equilibrium is reestablished. The concentrations of O2, H2O, and O2 will be increased. The concentration of HCl will be decreased. (c) The addition of heat will cause the reaction to shift to the left. 5. N2 ðgÞ þ 3 H2 ðgÞ fi 2 NH3 ðgÞ þ 92:5 kJ Change or stress imposed on the system at equilibrium Changes in number of moles Direction of reaction, left or right, to reestablish equilibrium N2 H2 NH3 (a) Add N2 right I D I (b) Remove H2 left I D D (c) Decrease volume of reaction vessel right D D I (d) Increase temperature left I I D I ¼ Increase; D ¼ Decrease; N ¼ No Change; ? ¼ insufficient information to determine - 204 - E1C16 05/17/2010 16:47:59 Page 205 - Chapter 16 6. N2 ðgÞ þ 3 H2 ðgÞ Ð 2 NH3 ðgÞ þ 92:5 kJ Change or stress imposed on the system at equilibrium (a) Add NH3 (b) Increase volume of reaction vessel (c) Add a catalyst (d) Add H2 and NH3 Direction of reaction, left or right, to reestablish equilibrium Changes in number of moles H2 NH3 N2 left left no change ? I I N ? I ¼ Increase; D ¼ Decrease; N ¼ No Change; ? ¼ insufficient information to determine 7. Direction of shift in equilibrium: Reaction Increased Temperature (a) (b) (c) right left left Increased Pressure (Volume Decreases) right no change right Add Catalyst no change no change no change 8. Direction of shift in equilibrium: Reaction Increased Temperature Increased Pressure (Volume Decreases) Add Catalyst (a) (b) (c) right left left left left left no change no change no change 9. Equilibrium shifts CH4 ðgÞ þ 2 O2 ðgÞ Ð CO2 ðgÞ þ 2 H2 OðgÞ þ 802:3 kJ (a) (b) (c) (d) left none right none 10. Equilibrium shifts 2 CO2 ðgÞ þ N2 ðgÞ þ 1095:9 kJ Ð C2 N2 ðgÞ þ 2 O2 ðgÞ (a) (b) (c) (d) none left right right - 205 - I I N I I D N I E1C16 05/17/2010 16:48:0 Page 206 - Chapter 16 - Keq ¼ ½NH3 2 ½H2 O4 ½CO2 ½CF4 (c) Keq ¼ (c) Keq ¼ Ksp ¼ ½Agþ ½Cl (c) Ksp ¼ ½Zn2þ ½OH 2 Ksp ¼ Pb2þ CrO42 (d) 2 3 Ksp ¼ ½Ca2þ PO3 4 14. (a) Ksp ¼ ½Mg2þ CO32 (c) Ksp ¼ Tl3þ ½OH 3 (b) Ksp ¼ ½Ca2þ C2 O42 (d) 3 2 Ksp ¼ Pb2þ AsO3 4 11. (a) 2 7 ½NO2 ½H2 (b) ½Hþ HCO 3 Keq ¼ ½H2 CO3 12. (a) ½Hþ H2 PO 4 Keq ¼ ½H3 PO4 (b) 13. (a) (b) Keq ¼ ½COF2 2 ½N2 O5 2 ½NO2 4 ½O2 ½CH4 ½H2 S2 ½CS2 ½H2 4 15. If the Hþ ion concentration is decreased: (a) pH is increased (b) pOH is decreased (c) ½OH is increased (d) Kw remains the same. Kw is a constant at a given temperature. 16. If the Hþ ion concentration is increased: (a) pH is decreased (pH of 1 is more acidic than that of 4) (b) pOH is increased (c) ½OH is decreased (d) Kw remains unchanged. Kw is a constant at a given temperature. 17. The basis for deciding if a salt dissolved in water produces an acidic, a basic, or a neutral solution, is whether or not the salt reacts with water. Salts that contain an ion derived from a weak acid or base will produce an acidic or a basic solution. (c) NaCN basic (a) CaBr2 neutral (d) K3PO4 basic (b) NH4NO3 acidic 18. The basis for deciding if a salt dissolved in water produces an acidic, a basic, or a neutral solution, is whether or not the salt reacts with water. Salts that contain an ion derived from a weak acid or base will - 206 - E1C16 05/17/2010 16:48:0 Page 207 - Chapter 16 produce an acidic or a basic solution. (a) NH4Cl acidic (b) NaC2H3O2 basic 19. (a) (b) (c) (d) CuSO4 acidic KI neutral NO 2 ðaqÞ þ H2 Oðl Þ Ð OH ðaqÞ þ HNO2 ðaqÞ þ NHþ 4 ðaqÞ þ H2 Oðl Þ Ð H3 O ðaqÞ þ NH3 ðaqÞ 20. (a) 2 PO3 4 ðaqÞ þ H2 Oðl Þ Ð HPO4 ðaqÞ þ OH ðaqÞ (b) CO2 3 ðaqÞ þ H2 Oðl Þ Ð HCO3 ðaqÞ þ OH ðaqÞ 21. (a) (b) 22. (a) (b) C2 H3 O 2 ðaqÞ þ H2 Oðl Þ Ð HC2 H3 O2 ðaqÞ þ OH ðaqÞ PO3 3 ðaqÞ þ 3 H2 Oðl Þ Ð H3 PO3 ðaqÞ þ 3 OH ðaqÞ IO 2 ðaqÞ þ H2 Oðl Þ Ð HIO2 ðaqÞ þ OH ðaqÞ C2 O2 4 ðaqÞ þ H2 Oðl Þ Ð HC2 O4 ðaqÞ þ OH ðaqÞ 23. When excess acid (Hþ) gets into the blood stream it reacts with HCO 3 to form un-ionized H2CO3, thus neutralizing the acid and maintaining the approximate pH of the blood. 24. When excess base gets into the blood stream it reacts with Hþ to form water. Then H2CO3 ionizes to replace Hþ, thus maintaining the approximate pH of the blood. 25. (a) H2 CO3 ðaqÞ Ð Hþ ðaqÞ þ HCO 3 ðaqÞ Let x ¼ molarity of Hþ ½Hþ ¼ HCO 3 ¼x ½H2 CO3 ¼ 1:25 M x ¼ 1:25 ðsince x is smallÞ ½Hþ HCO x2 3 Ka ¼ ¼ ¼ 4:4 107 ½H2 CO3 1:25 x2 ¼ ð1:25Þ 4:4 107 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi x ¼ ð1:25Þ 4:4 107 ¼ 7:4 104 M ¼ ½Hþ (b) (c) pH ¼ log½Hþ ¼ log 7:4 104 M ¼ 3:13 Percent ionization ½Hþ 7:4 104 ð100Þ ¼ ð100Þ ¼ 0:059% ½H2 CO3 1:25 - 207 - E1C16 05/17/2010 16:48:1 Page 208 - Chapter 16 26. (a) HC3 H5 O2 ðaqÞ Ð Hþ ðaqÞ þ C3 H5 O 2 ðaqÞ Let x ¼ molarity of Hþ ½Hþ ¼ C3 H5 O 2 ¼ x ½H2 CO3 ¼ 0:025 M x ¼ 0:025 ðsince x is smallÞ ½Hþ C3 H5 O x2 2 ¼ ¼ 8:4 104 Ka ¼ ½HC3 H5 O2 0:025 x2 ¼ ð0:025Þ 8:4 104 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi x ¼ ð0:025Þ 8:4 104 ¼ 4:6 103 M ¼ ½Hþ (b) (c) pH ¼ log½Hþ ¼ log 4:6 103 M ¼ 2:34 Percent ionization ½Hþ 4:6 103 ð100Þ ¼ ð100Þ ¼ 18% ½HC3 H5 O2 0:025 27. HA Ð Hþ þ A ½Hþ ¼ ½A ¼ ð0:025 M Þð0:0045Þ ¼ 1:1 104 M ½HA ¼ 0:025 M 0:00011 M ¼ 0:025 M 2 ½Hþ HCO 1:1 104 3 Ka ¼ Keq ¼ ¼ 4:8 107 ¼ ½H2 CO3 0:025 28. HA Ð Hþ þ A ½Hþ ¼ ½A ¼ ð0:500 M Þð0:0068Þ ¼ 3:4 103 M ½HA ¼ 0:500 M 0:0034 M ¼ 0:497 M 2 3:4 103 ½Hþ ½A Ka ¼ ¼ ¼ 2:3 105 ½HA 0:497 29. HC6 H5 OðaqÞ Ð Hþ ðaqÞ þ C6 H5 O ðaqÞ ½Hþ ½C6 H5 O ¼ 1:3 1010 ½HC6 H5 O Let x ¼ molarity of Hþ ½HC6 H5 O ¼ initial concentration x ¼ initial concentration Since Ka is small, the degree of ionization is small. Therefore, the approximation, initial concentration x ¼ initial concentration is valid. Ka ¼ (a) ½Hþ ¼ ½C6 H5 O ¼ x ½HC6 H5 O ¼ 1:0 M ðxÞðxÞ ¼ 1:3 1010 1:0 x2 ¼ 1:3 1010 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi x ¼ ð1:0Þ 1:3 1010 ¼ 1:1 105 M - 208 - E1C16 05/17/2010 16:48:2 Page 209 - Chapter 16 1:1 105 M ð100Þ ¼ 0:0011% ionized 1:0 M pH ¼ log 1:1 105 ¼ 4:96 (b) ½HC6 H5 O ¼ 0:10 M ðxÞðxÞ ¼ 1:3 1010 0:10 x2 ¼ ð0:10Þ 1:3 1010 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi x ¼ ð0:10Þ 1:3 1010 ¼ 3:6 106 M 3:6 106 M ð100Þ ¼ 0:0036% ionized 1:0 M pH ¼ log 3:6 106 ¼ 5:44 (c) ½HC6 H5 O ¼ 0:010 M ðxÞðxÞ ¼ 1:3 1010 0:010 x2 ¼ ð0:010Þ 1:3 1010 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi x ¼ ð0:010Þ 1:3 1010 ¼ 1:1 106 M 1:1 106 M ð100Þ ¼ 0:011% ionized 0:010 M pH ¼ log 1:1 106 ¼ 5:96 30. HC7 H5 O2 ðaqÞ Ð Hþ ðaqÞ þ C7 H5 O 2 ðaqÞ (a) ½Hþ ¼ C7 H5 O 2 ¼ x ½HC7 H5 O2 ¼ 1:0 M ðxÞðxÞ ¼ 6:3 105 1:0 x2 ¼ ð1:0Þ 6:3 105 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi x ¼ ð1:0Þ 6:3 105 ¼ 7:9 103 M 7:9 103 M ð100Þ ¼ 0:79% ionized 1:0 M pH ¼ log 7:9 103 ¼ 2:10 (b) ½HC7 H5 O2 ¼ 0:10 M ðxÞðxÞ ¼ 6:3 105 0:10 x2 ¼ ð0:10Þ 6:3 105 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi x ¼ ð0:10Þ 6:3 105 ¼ 7:9 103 M - 209 - E1C16 05/17/2010 16:48:3 Page 210 - Chapter 16 7:9 103 M ð100Þ ¼ 7:9% ionized 0:10 M pH ¼ log 7:9 103 ¼ 2:10 (c) ½HC7 H5 O2 ¼ 0:010 M ðxÞðxÞ ¼ 6:3 105 0:010 x2 ¼ ð0:010Þ 6:3 105 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi 5 x ¼ ð0:010Þ 6:3 10 ¼ 7:9 104 M 7:9 104 M ð100Þ ¼ 7:9% ionized 0:010 M pH ¼ log 7:9 104 ¼ 3:10 31. ½Hþ ½A ½HA þ First, find the [H ]. This is calculated from the pH expression, pH ¼ log½Hþ ¼ 3:7. ½Hþ ¼ 2 104 HA Ð Hþ þ A Ka ¼ ½Hþ ¼ ½A ¼ 2 104 ½HA ¼ 0:37 2 104 2 104 ½Hþ ½A ¼ Ka ¼ ¼ 1 107 ½HA 0:37 32. ½Hþ ½A ½HA HA Ð Hþ þ A Ka ¼ log½Hþ ¼ 2:89 ½Hþ ¼ 1:3 103 pH ¼ 2:89 ½Hþ ¼ 1:3 103 ¼ ½A ½HA ¼ 0:23 1:3 103 1:3 103 ½Hþ ½A ¼ 7:3 106 ¼ Ka ¼ 0:23 ½HA 33. 1:0 M NaOH yields ½OH ¼ 1:0 M ð100% ionizedÞ pOH ¼ log 1:0 ¼ 0:00 pH ¼ 14 pOH ¼ 14:00 ½Hþ ¼ 34. Kw 1:0 1014 ¼ 1 1014 ¼ ½OH 1:0 3:0 M HNO3 yields ½Hþ ¼ 3:0 M ð100% ionizedÞ pH ¼ log 3:0 ¼ 0:48 pOH ¼ 14 pH ¼ 14 ð0:48Þ ¼ 14:48 ½OH ¼ Kw 1 1014 ¼ ¼ 3:3 1015 ½Hþ 3:0 - 210 - E1C16 05/17/2010 16:48:4 Page 211 - Chapter 16 35. pH þ pOH ¼ 14:0 pOH ¼ 14:0 pH (a) 0:250 M HBr yields½Hþ ¼ 0:250 Mð100% ionizedÞ pH ¼ log½Hþ ¼ logð0:250Þ ¼ 0:602 pOH ¼ 14:0 0:602 ¼ 13:4 (b) 0:333 M KOH yields½OH ¼ 0:333 M ð100% ionizedÞ pOH ¼ log½OHþ ¼ logð0:333Þ ¼ 0:478 pH ¼ 14:0 0:478 ¼ 13:5 (c) HC2 H3 O2 Ð Hþ þ C2 H3 O 2 0:895 M x x ½Hþ C2 H3 C 2 Ka ¼ ¼ 1:8 105 ½HC2 H3 O2 ðxÞðxÞ ¼ 1:8 105 0:895 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi x2 ¼ ð0:895Þ 1:8 105 x ¼ 1:6 105 x ¼ 4:0 103 ¼ ½Hþ pH ¼ log 4:0 103 ¼ 2:40 pOH ¼ 14:0 2:40 ¼ 11:6 36. pH þ pOH ¼ 14:0 pOH ¼ 14:0 pH (a) 0:0010 M NaOH yields½OH ¼ 0:0010 M ð100% ionizedÞ pOH ¼ log½OH ¼ logð0:0010Þ ¼ 3:00 pH ¼ 14:0 3:00 ¼ 11:0 (b) ðbÞ 0:125 M HCl yields½Hþ ¼ 0:125 M ð100% ionizedÞ pH ¼ log½Hþ ¼ logð0:125Þ ¼ 0:903 pOH ¼ 14:0 0:903 ¼ 13:1 (c) HC6 H5 O Ð Hþ þ C6 H5 O 0:0250 M x x ½Hþ ½C6 H5 O Ka ¼ ¼ 1:3 1010 ½HC6 H5 O ðxÞðxÞ ¼ 1:3 1010 0:0250 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi x2 ¼ ð0:0250Þ 1:3 1010 x ¼ 3:3 1012 x ¼ 1:8 106 ¼ ½Hþ pH ¼ log 1:8 106 ¼ 5:74 pOH ¼ 14:0 5:74 ¼ 8:3 37. Calculate the ½OH ½OH ¼ (a) (b) (c) Kw ½Hþ 1:0 1014 ¼ 1:0 1012 M 1:0 102 1:0 1014 ½Hþ ¼ 3:2 107 ½OH ¼ ¼ 3:1 108 M 3:2 107 KOH is a strong base; 1:25 M ¼ ½OH ¼ 1:25M ½Hþ ¼ 1:0 102 ½OH ¼ - 211 - E1C16 05/17/2010 16:48:4 Page 212 - Chapter 16 (d) First find [Hþ] of 0.75 M HC2H3O2 Ka ¼ 1:8 105 ½Hþ ¼ C2 H3 O 2 ¼ x ½HC2 H3 O2 ¼ 0:75 M x2 ¼ 1:8 105 0:75 x2 ¼ ð0:75Þ 1:8 105 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi x ¼ ð0:75Þ 1:8 105 ¼ 3:7 103 M ½Hþ ¼ 3:7 103 38. Calculate the ½OH . ½OH ¼ Kw ½Hþ 1:0 1014 ¼ 2:5 106 4:0 109 1:0 1014 ½OH ¼ ¼ 8:3 1010 1:2 105 ½Hþ ¼ 4:0 109 (b) ½Hþ ¼ 1:2 105 (c) First find [Hþ] of 1.25 M HCN Ka ¼ 4:0 1010 ½Hþ ¼ ½CN ¼ x ½HCN ¼ 1:25 M x2 ¼ 4:8 1010 1:25 x2 ¼ ð1:25Þ 4:0 1010 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi x ¼ ð1:25Þ 4:0 1010 ¼ 2:2 105 M (d) 40. 1:0 1014 ¼ 2:5 106 M 4:0 109 (a) ½Hþ ¼ 2:2 105 39. ½OH ¼ ½OH ¼ ½OH ¼ 1:0 1014 ¼ 4:5 1010 M 2:2 105 NaOH is a strong base; 0:333 M ¼ ½OH ¼ 0:333 M Calculate the ½Hþ ½Hþ ¼ Kw ½OH (a) ½OH ¼ 1:0 108 ½Hþ ¼ 1:0 1014 ¼ 1:0 106 8 1:0 10 (b) ½OH ¼ 2:0 104 ½Hþ ¼ 1:0 1014 ¼ 5:0 1011 2:0 104 Calculate the ½Hþ (a) ½OH ¼ 4:5 102 (b) ½OH ¼ 5:2 109 Kw ½OH 1:0 1014 ½Hþ ¼ ¼ 2:2 1013 4:5 102 ½Hþ ¼ ½Hþ ¼ 1:0 1014 ¼ 1:9 106 5:2 109 - 212 - E1C16 05/17/2010 16:48:5 Page 213 - Chapter 16 41. The molar solubilities of the salts and their ions are indicated below the formulas in the equilibrium equations. (a) BaSO4 ðsÞ fi Ba2þ þ SO2 4 5 3:9 10 3:9 105 2 Ksp ¼ ½Ba2þ SO42 3:9 105 ¼ 1:5 109 þ CrO42 2 Ag 5 þ 2 7:8 10 7:8 105 2 Ksp ¼ ½Agþ 2 CrO42 15:6 105 7:8 105 ¼ 1:9 1012 (b) Ag2 CrO4 ðsÞ fi (c) First change g=L ! mol=L 0:67 g CaSO4 1 mol ¼ 4:9 103 M CaSO4 136:1 g L CaSO4 ðsÞ fi Ca2þ þ SO42 4:9 103 4:9 103 2 2 Ksp ¼ ½Ca2þ SO42 ¼ 4:9 103 ¼ 2:4 105 (d) First change g=L ! mol=L 0:0019 g AgCl 1 mol ¼ 1:3 105 M AgCl L 143:4 g Agþ þ Cl 5 1:3 10 1:3 105 2 Ksp ¼ ½Agþ ½Cl ¼ 1:3 105 ¼ 1:7 1010 Ð AgClðsÞ 42. The molar solubilities of the salts and their ions are indicated below the formulas in the equilibrium equations. (a) Zn2þ þ S2 12 3:5 10 3:5 1012 2 Ksp ¼ ½Zn2þ S2 ¼ 3:5 1012 ¼ 1:2 1023 (b) Pb2þ þ 2 IO3 5 5 4:0 10 2 4:0 10 2þ 2 2 5 Ksp ¼ Pb ¼ 4:0 10 IO3 8:0 105 ¼ 2:6 1013 (c) First change g=L ! mol=L 6:73 103 g Ag3 PO4 1 mol ¼ 1:61 105 M Ag3 PO4 418:7 g L ZnSðsÞ Ð PbðIO3 Þ2 ðsÞ Ð þ PO43 3 Ag 5 þ 3 1:61 10 1:61 105 3 3 Ksp ¼ ½Agþ PO43 ¼ 4:83 105 1:61 105 ¼ 1:81 1018 Ag3 PO4 ðsÞ Ð - 213 - E1C16 05/17/2010 16:48:6 Page 214 - Chapter 16 (d) First change g=L ! mol=L 4 2:33 10 g ZnðOHÞ2 1 mol ¼ 2:34 106 M ZnðOHÞ2 99:41 g L Zn2þ þ 2 OH 6 6 2:34 10 2 2:34 10 2 2 Ksp ¼ ½Zn2þ ½OH ¼ 2:34 106 4:68 106 ¼ 5:13 1017 ZnðOHÞ2 ðsÞ Ð 43. The molar solubilities of the salts and their ions will be represented in terms of x below their formulas in the equilibrium equations. (a) CaF2 Ð Ca2þ x þ 2 F 2x Ksp ¼ ½Ca2þ ½F 2 ¼ ðxÞð2xÞ2 ¼ 4x2 ¼ 3:9 1011 rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 11 3 3:9 10 x¼ ¼ 2:2 104 M 4 (b) FeðOHÞ3 Ð Fe3þ x þ 3 OH 3x Ksp ¼ ½Fe3þ ½OH 3 ¼ ðxÞð3xÞ3 ¼ 27x4 ¼ 3:4 1038 rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 38 4 3:4 10 x¼ ¼ 1:9 1010 M 27 44. The molar solubilities of the salts and their ions will be represented in terms of x below their formulas in the equilibrium equations. (a) Pb2þ þ SO42 x x 2þ 2 SO4 ¼ ðxÞðxÞ ¼ x2 ¼ 1:3 108 Ksp ¼ Pb pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi x ¼ 1:3 108 ¼ 1:1 104 M (b) Ba2þ þ CrO42 x x 2 2þ Ksp ¼ ½Ba CrO4 ¼ ðxÞðxÞ ¼ x2 ¼ 8:5 1011 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi x ¼ 8:5 1011 ¼ 9:2 106 M 45. (a) PbSO4 BaCrO4 Ð 2:2 104 mol CaF2 78:08 g CaF2 ð0:100 LÞ ¼ 1:7 103 g CaF2 L mol (b) Ð 1:9 1010 mol FeðOHÞ3 106:9 FeðOHÞ3 ð0:100 LÞ ¼ 2:0 109 g FeðOHÞ3 L mol - 214 - E1C16 05/17/2010 16:48:7 Page 215 - Chapter 16 46. (a) (b) 1:1 104 PbSO4 303:3 g PbSO4 ð0:100 LÞ ¼ 3:3 103 g PbSO4 L mol 9:2 106 mol BaCrO4 253:3 g BaCrO4 ð0:100 LÞ ¼ 2:3 104 g BaCrO4 L mol 47. The molar concentrations of ions, after mixing, are calculated and these concentrations are substituted into the equilibrium expression. The value obtained is compared to the Ksp of the salt. If the value is greater than the Ksp, precipitation occurs. If the value is less than the Ksp, no precipitation occurs. 100: mL 0:010 M Na2 SO4 ! 100: mL 0:010 M SO42 100: mL 0:001 M PbðNO3 Þ2 ! 100: mL 0:001 M Pb2þ Volume after mixing ¼ 200: mL Concentrations after mixing : SO42 ¼ 0:0050 M Pb2þ ¼ 0:0005 M 2þ SO42 ¼ 5:0 103 5 104 ¼ 3 106 Pb Ksp ¼ 1:3 108 which is less than 3 106 , therefore, precipitation occurs. 48. The molar concentrations of ions, after mixing, are calculated and these concentrations are substituted into the equilibrium expression. The value obtained is compared to the Ksp of the salt. If the value is greater than the Ksp, precipitation occurs. If the value is less than the Ksp, no precipitation occurs. 50:0 mL 1:0 104 M AgNO3 ! 50:0 mL 1:0 104 M Agþ 100: mL 1:0 104 M NaCl ! 100: mL 1:0 104 M Cl Volume after mixing ¼ 150: mL Concentrations after mixing: 50:0 mL 4 þ 1:0 10 M Ag ¼ 3:3 105 M Agþ 150: mL 100: mL 4 1:0 10 M Cl ¼ 6:7 105 M Cl 150: mL ½Agþ ½Cl ¼ 3:3 105 6:7 105 ¼ 2:2 109 Ksp ¼ 1:7 1010 which is less than 2:2 109 , therefore, precipitation occurs. 49. The concentration of Br ¼ 0:10 M in 1.0 L of 0.10 M NaBr. Substitute this Br concentration in the Ksp expression and solve for the [Agþ] in equilibrium with 0:10 M Br . Ksp ¼ ½Agþ ½Br ¼ 5:2 1013 ½Agþ ¼ 5:2 1013 5:2 1013 ¼ ¼ 5:2 1012 M ½Br 0:10 5:2 1012 mol Agþ L 1 mol AgBr ð1:0 LÞ ¼ 5:2 1012 mol AgBr will dissolve 1 mol Agþ - 215 - E1C16 05/17/2010 16:48:8 Page 216 - Chapter 16 50. 0:10 mol MgBr2 L 2 mol Br 1 mol MgBr2 ¼ 0:20 mol Br ¼ 0:20 M Br in solution: L Substitute the Br concentration in the Ksp expression and solve for [Agþ] in equilibrium with 0.20 M Br . ½Agþ ¼ 5:2 1013 5:2 1013 ¼ ¼ 2:6 1012 M ½Br 0:20 2:6 1012 mol Agþ L 1 mol AgBr ð1:0 LÞ ¼ 2:6 1012 mol AgBr will dissolve 1 mol Agþ 51. HC2 H3 O2 fi Hþ þ C2 H3 O2 ½Hþ C2 H3 O2 Ka ¼ ¼ 1:8 105 ½HC2 H3 O2 ! ½ HC H O 2 3 2 ½Hþ ¼ Ka ½HC2 H3 O2 ¼ 0:20 M C2 H3 O2 0:20 5 þ ½H ¼ 1:8 10 ¼ 3:6 105 M 0:10 pH ¼ log 3:6 105 ¼ 4:44 52. HC2 H3 O2 fi Hþ þ C2 H3 O2 ½Hþ C2 H3 O2 Ka ¼ ¼ 1:8 105 ½HC2 H3 O2 ! ½ HC H O 2 3 2 ½Hþ ¼ Ka ½HC2 H3 O2 ¼ 0:20 M C2 H3 O2 0:20 ½Hþ ¼ 1:8 105 ¼ 1:8 105 M 0:20 pH ¼ log 1:8 105 ¼ 4:74 53. Initially; the solution of NaCl is neutral: pH ¼ log 1 107 ¼ 7:0 C2 H3 O2 ¼ 0:10 M C2 H3 O2 ¼ 0:20 M ½Hþ ¼ 1 107 Final Hþ ¼ 2:0 102 M pH ¼ log 2:0 102 ¼ 1:70 Change in pH ¼ 7:0 1:70 ¼ 5:3 units in the unbuffered solution - 216 - 05/17/2010 16:48:8 Page 217 - Chapter 16 - 54. Initially, ½Hþ ¼ 1:8 105 pH ¼ log 1:8 105 ¼ 4:74 Ka½HC2 H3 O2 ½Hþ ¼ C2 H3 O 2 Final ½Hþ ¼ 1:9 105 pH ¼ log 1:9 105 ¼ 4:72 Change in pH ¼ 4:74 4:72 ¼ 0:02 units in the buffered solution 55. The concentration of solid salt is not included in the Ksp equilibrium constant because the concentration of solid does not change. It is constant and part of the Ksp. 56. The energy diagram represents an exothermic reaction because the energy of the products is lower than the energy of the reactants. This means that energy was given off during the reaction. 57. Potential energy E1C16 Activation energy with catalyst Activation energy Energy absorbed Progress of reaction 58. H2 þ I2 fi 2 HI The reaction is a 1 to 1 mole ratio of hydrogen to iodine. The data given indicates that hydrogen is the limiting reactant. 2 mol HI ð2:10 mol H2 Þ ¼ 4:20 mol HI 1 mol H2 59. H2 þ I2 fi 2 HI (a) 2.00 mol H2 and 2.00 mol I2 will produce 4.00 mol HI assuming 100% yield. However, at 79% yield you get 4:00 mol HI 0:79 ¼ 3:16 mol HI (b) The addition of 0.27 mol I2 makes the iodine present in excess and the 2.00 mol H2 the limiting reactant. The yield increases to 85%. 2 mol HI ð2:00 mol H2 Þ ð0:85Þ ¼ 3:4 mol HI 1 mol H2 There will be 15% unreacted H2 and I2 plus the extra I2 added. ð0:15Þð2:0 mol H2 Þ ¼ 0:30 mol H2 present; also 0:30 mol I2 : In addition to the 0.30 mol of unreacted I2, will be the 0.27 mol I2 added. 0:27 mol þ 0:30 mol ¼ 0:57 mol I2 present: - 217 - E1C16 05/17/2010 16:48:10 Page 218 - Chapter 16 - (c) K¼ ½HI2 ½H2 ½I2 The formation of 3.16 mol HI required the reaction of 1.58 mol I2 and 1.58 mol H2. At equilibrium, the concentrations are: 2:00 1:58 ¼ 0:42 mol H2 ¼ 0:42 mol I2 3:16 mol HI; 2 Keq ¼ ð3:16Þ ¼ 57 ð0:42Þð0:42Þ In the calculation of the equilibrium constant, the actual number of moles of reactants and products present at equilibrium can be used in the calculation in place of molar concentrations. This occurs because the reaction is gaseous and the liters of HI produced equals the sum of the liters of H2 and I2 reacting. In the equilibrium expression, the volumes will cancel. 60. H2 þ I2 fi 2 HI 1 mol ð64:0 g HIÞ ¼ 0:500 mol HI present 127:9 g 1 mol I2 ð0:500 mol HIÞ ¼ 0:250 mol I2 reacted 2 mol HI 1 mol H2 ð0:500 mol HIÞ ¼ 0:250 mol H2 reacted 2 mol HI 1 mol ð6:00 g H2 Þ ¼ 2:98 mol H2 initially present 2:016 g 1 mol ð2:00 g I2 Þ ¼ 0:788 mol I2 initially present 253:8 g At equilibrium, moles present are: 0:500 mol HI; 2:98 0:250 ¼ 2:73 mol H2 0:788 0:250 ¼ 0:538 mol I2 61. PCl3 ðgÞ þ Cl2 ðgÞ Ð PCl5 ðgÞ Keq ¼ ½PCl5 ½PCl3 ½Cl2 The concentrations are: 0:22 mol ¼ 0:011 M 20: L 0:10 mol PCl3 ¼ ¼ 0:0050 M 20: L 1:50 mol ¼ 0:075 M Cl2 ¼ 20: L 0:011 Keq ¼ ¼ 29 ð0:0050Þð0:075Þ PCl5 ¼ - 218 - E1C16 05/17/2010 16:48:10 Page 219 - Chapter 16 62. 100 C 30 C ¼ 70 C temperature increase. This increase is equal to seven 10 C increments. The reaction rate will be increased by 27 ¼ 128 times. 63. NHþ 4 fi 0:30 M NH3 þ Hþ y Keq ¼ 5:6 1010 y þ y ¼ ½H ¼ ½NH3 ½NH3 ½Hþ ½y½y ¼ ¼ 5:6 1010 ½0:30 NH4þ y2 ¼ 5:6 1010 ð0:30Þ ¼ 1:7 1010 y ¼ ½Hþ ¼ 1:3 105 pH ¼ log 1:3 105 ¼ 4:89 ðon acidic solutionÞ 64. pH of an acetic acid-acetate buffer HC2 H3 O2 fi Hþ þ C2 H3 O2 ½Hþ C2 H3 O2 ½Hþ ½0:20 ¼ 1:8 105 ¼ Ka ¼ 0:30 ½HC2 H3 O2 1:8 105 ð0:30Þ þ ¼ 2:7 105 H ¼ 0:20 pH ¼ log 2:7 105 ¼ 4:57 65. Concentration of Ba2+ in solution BaCl2 ðaqÞ þ Na2 CrO4 ðaqÞ Ð BaCrO4 ðsÞ þ NaClðaqÞ BaCrO4 Ð Ba2þ þ CrO42 Ksp ¼ 8:5 1011 Determine the moles of Ba2+ and CrO42 in solution 0:10 mol ð0:050 LÞ ¼ 0:0050 mol Ba2þ L 0:15 mol ð0:050 LÞ ¼ 0:0075 mol CrO42 L Excess CrO42 in solution ¼ 0:0025 mol 2:5 103 after 0.005 mol BaCrO4 precipitate. Concentration of CrO42 in solution (total volume ¼ 100 mL) 2:5 103 mol CrO42 ¼ 2:5 102 M CrO42 0:100 L Now using the Ksp, calculate the Ba2+ remaining in solution. ½Ba2þ CrO42 ¼ ½Ba2þ 2:5 102 ¼ 8:5 1011 ½Ba2þ ¼ 8:5 1011 ¼ 3:4 109 mol=L 2:5 102 - 219 - E1C16 05/17/2010 16:48:12 Page 220 - Chapter 16 66. Hypochlorous acid HOCl fi Equilibrium concentrations: Hþ þ OCl ½Hþ ¼ ½OCl ¼ 5:9 105 M ½HOCl ¼ 0:1 5:9 105 ¼ 0:10 M neglecting 5:9 105 5:9 105 5:9 105 ½Hþ ½OCl ¼ 3:5 108 ¼ Ka ¼ 0:10 ½HOCl Propanoic acid HC3 H5 O2 fi Hþ þ C3 H5 O2 Equilibrium concentrations: ½Hþ ¼ C3 H5 O2 ¼ 1:4 103 M ½HC3 H5 O2 ¼ 0:15 1:4 103 ¼ 0:15 M neglecting 1:4 103 ½Hþ C3 H5 O2 1:4 103 1:4 103 ¼ 1:3 105 Ka ¼ ¼ 0:15 ½HC3 H5 O2 Hydrocyanic acid HCN Ð Hþ þ CN Equilibrium concentrations: ½Hþ ¼ ½CN ¼ 8:9 106 M ½HCN ¼ 0:20 8:9 106 ¼ 0:20 M neglecting 8:9 106 2 8:9 106 ½Hþ ½CN Ka ¼ ¼ ¼ 4:0 1010 ½HCN 0:20 67. Let y ¼ M CaF2 dissolved Ca2þ þ 2 F CaF2 ðsÞ fi y 2y y ¼ molar solubility (a) Ksp ¼ ½Ca2þ ½F 2 ¼ ðyÞð2yÞ2 ¼ 4y3 ¼ 3:9 1011 rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 11 3 3:9 10 y¼ ¼ 2:1 104 M ðCaF2 dissolvedÞ 4 2:1 104 mol CaF2 1 mol Ca2þ ¼ 2:1 104 M Ca2þ L 1 mol CaF2 2:1 104 mol CaF2 2 mol F ¼ 4:2 104 M F L 1 mol CaF2 (b) 2:1 104 mol CaF2 78:08 g ¼ 8:2 103 g CaF2 ð0:500 LÞ mol L 68. The molar concentrations of ions, after mixing, are calculated and these concentrations are substituted into the equilibrium expression. The value obtained is compared to the Ksp of the salt. If the value is greater than the Ksp, precipitation occurs. If the value is less than the Ksp, no precipitation occurs. - 220 - E1C16 05/17/2010 16:48:13 Page 221 - Chapter 16 (a) 100: mL 0:010 M Na2 SO4 ! 100: mL 0:010 M SO42 100: mL 0:001 M PbðNO3 Þ2 ! 100: mL 0:001 M Pb2þ Volume after mixing ¼ 200. mL Concentrations after mixing : SO42 ¼ 0:0050 M Pb2þ ¼ 0:0005 M 2þ Pb SO42 ¼ 5:0 103 5 104 ¼ 3 106 Ksp ¼ 1:3 108 which is less than 3 106 , therefore, precipitation occurs. (b) 50:0 mL 1:0 104 M AgNO3 ! 50:0 mL 1:0 104 M Agþ 100: mL 1:0 104 M NaCl ! 100: mL 1:0 104 M Cl Volume after mixing ¼ 150. mL Concentrations after mixing: 50:0 mL 4 ¼ 3:3 105 M Agþ 1:0 10 150: mL 100: mL 4 1:0 10 ¼ 6:7 105 M Cl 150: mL ½Agþ ½Cl ¼ 3:3 105 6:7 105 ¼ 2:2 109 Ksp ¼ 1:7 1010 which is less than 2:2 109 , therefore, precipitation occurs. (c) Convert g Ca(NO3)2 to g Ca2+ 1:0 g CaðNO3 Þ2 1 mol 1 mol Ca2þ ¼ 0:041 M Ca2þ 164:1 g 1 mol CaðNO2 Þ2 0:150 L 250 mL 0:01 M NaOH ! 250 mL 0:01 M OH Final volume ¼ 4.0 102mL Concentration after mixing: 150 mL 2þ ð0:041 M Ca Þ ¼ 0:015 M Ca2þ 4:0 102 mL 250 mL ð0:01 M OH Þ ¼ 0:0063 M OH 4:0 102 mL ½Ca2þ ½OH 2 ¼ ð0:015Þð0:0063Þ2 ¼ 6:0 107 Ksp ¼ 1:3 106 which is greater than 6:7 107 , therefore, no precipitation occurs. 69. With a known Ba2þ concentration, the SO42 concentration can be calculated using the Ksp value. BaSO4 ðsÞ fi Ba2þ þ SO42 Ksp ¼ ½Ba2þ SO42 ¼ 1:5 109 Ba2þ ¼ 0:050 M Ksp 1:5 109 ¼ ¼ 3:0 108 M SO42 in solution (a) SO42 ¼ ½Ba2þ 0:050 M SO42 ¼ M BaSO4 in solution 3:0 108 mol BaSO4 233:4 g (b) ð0:100 LÞ mol L ¼ 7:0 107 g BaSO4 remain in solution - 221 - E1C16 05/17/2010 16:48:14 Page 222 - Chapter 16 70. If Pb2þ ½Cl 2 exceeds the Ksp , precipitation will occur. Ksp ¼ Pb2þ ½Cl 2 ¼ 2:0 105 0:050 M PbðNO3 Þ2 ! 0:050 M Pb2þ 0:010 M NaCl ! 0:010 M Cl ð0:050Þð0:010Þ2 ¼ 5:0 106 2þ 2 Pb ½Cl is smaller than the Ksp value. Therefore, no precipitate of PbCl2 will form. 71. ½Ba2þ SO2 ½Sr2 SO42 ¼ 3:5 107 ¼ 1:5 109 4 Both cations are present in equal concentrations ð0:10 M Þ. Therefore, as SO42 is added, the Ksp of BaSO4 will be exceeded before that of SrSO4 . BaSO4 precipitates first. 72. 2 SO2 ðgÞ þ O2 ðgÞ fi 2 Keq ¼ ½SO3 ½SO2 2 ½O2 ¼ 2 SO3 ðgÞ ð11:0Þ2 ¼ 1:1 104 2 3 ð4:20Þ 0:60 10 1 mol 73. ð0:048 g BaF2 Þ ¼ 2:7 104 mol BaF2 175:3 g 2:7 104 mol ¼ 1:8 102 M BaF2 dissolved 0:015 L 2 F 1:8 102 2 1:8 102 ðmolar concentrationÞ 2 Ksp ¼ ½Ba2þ ½F 2 ¼ 1:8 102 3:6 102 ¼ 2:3 105 BaF2 ðsÞ fi Ba2þ 74. N2 þ 3 H2 fi þ 2 NH3 2 Keq ¼ 4:0 ¼ ½NH3 ½N2 ½H2 3 ¼ 4:0 y2 3 ð2:0Þð2:0Þ y ¼ 8:0 M ¼ ½NH3 Let y ¼ ½NH3 y2 ¼ 64 y¼ pffiffiffiffiffi 64 75. Total volume of mixture ¼ 40:0 mL ð0:0400 LÞ Ksp ¼ ½Sr2þ SO42 ¼ 7:6 107 3 1:0 10 M ð0:0250 LÞ ½Sr2þ ¼ ¼ 6:3 104 M 0:0400 L 2 2:0 103 M ð0:0150 LÞ ¼ 7:5 104 M ¼ SO4 0:0400 L ½Sr2þ SO42 ¼ 6:3 104 7:5 104 ¼ 4:7 107 4:7 107 < 7:6 107 no precipitation should occur: - 222 - E1C16 05/27/2010 17:26:35 Page 223 - Chapter 16 76. First change g Hg2 I2 ! mol Hg2 I2 3:04 107 g Hg2 I2 1 mol ¼ 4:64 1010 M Hg2 I2 L 655:0 g Hg2 I2 fi þ Hg22þ ðmolar solubilityÞ 2 I 4:64 1010 M 2 4:64 1010 M 2 Ksp ¼ Hg22þ ½I 2 ¼ 4:64 1010 9:28 1010 ¼ 4:00 1028 77. 3 O2 ðgÞ þ heat Ð 2 O3 ðgÞ Three ways to increase ozone (a) increase heat (b) increase amount of O2 (c) increase pressure (d) remove O3 as it is made H2 OðgÞ 78. H2 Oðl Þ fi Conditions on the second day (a) the temperature could have been cooler (b) the humidity in the air could have been higher (c) the air pressure could have been greater 79. COðgÞ þ H2 OðgÞ Ð CO2 ðgÞ þ H2 ðgÞ (c) is the correct answer Keq ¼ ½CO2 ½H2 ¼1 ½CO½H2 O With equal concentrations of products and reactants, the Keq value will equal 1. 80. (a) Keq ¼ (b) Keq ¼ 81. ½O3 2 (c) Keq ¼ ½CO2 ðgÞ ½O2 3 ½H2 Oðl Þ ½H2 OðgÞ ½Hþ (d) Keq ¼ 2 Bi3þ ½H2 S3 6 2A þ B fi 1:0 M 1:0 M 1:0 2ð0:30Þ 1:0 0:30 0:4 M 0:7 M ½C 0:30 Keq ¼ ¼ ¼3 ½A2 ½B ð0:4Þ2 ð0:7Þ C 0 0:30 0:30 M Initial conditions Equilibrium concentrations 82. Since the second reaction is the reverse of the first, the Keq value of the second reaction will be the reciprocal of the Keq value of the first reaction. ½I2 ½Cl2 ¼ 2:2 103 ðfirst reactionÞ Keq ¼ ½ICl2 Keq ¼ ½ICl2 ½I2 ½Cl2 Keq ¼ 1 ¼ 450 2:2 103 - 223 - E1C16 05/17/2010 16:48:16 Page 224 - Chapter 16 83. HNO2 ðaqÞ Ð Hþ ðaqÞ þ NO2 ðaqÞ OH reacts with Hþ and equilibrium shifts to the right. (c) After an initial increase, ½OH will be neutralized and equilibrium shifts to the right. ½Hþ will be reduced (reacts with OH ). Equilibrium shifts to the right. NO2 increases as equilibrium shifts to the right. (d) ½HNO2 decreases and equilibrium shifts to the right. (a) (b) 84. CaSO4 ðsÞ fi Ca2þ ðaqÞ þ SO42 ðaqÞ Ksp ¼ ½Ca2þ SO42 ¼ 2:0 104 Let x ¼ moles CaSO4 that dissolve per L ¼ ½Ca2þ ¼ SO42 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ðxÞðxÞ ¼ 2:0 104 x ¼ 2:0 104 x ¼ 0:014 M CaSO4 M ! moles ! grams 0:014 mol CaSO4 136:2 g ¼ 1:1 g CaSO4 ð0:600 LÞ mol L 85. PbF2 ðsÞ fi Pb2þ þ 2 F change g PbF2 ! mol PbF2 0:098 g PbF2 1 mol ¼ 1:0 103 mol=L ¼ 1:0 103 M PbF2 245:2 g 0:400 L Ksp ¼ Pb2þ ðF Þ2 2 Pb ¼ 1:0 103 ; ½F ¼ 2 1:0 103 ¼ 2:0 103 2 Ksp ¼ 1:0 103 2:0 103 ¼ 4:0 109 86. Treat this is an equilibrium where W ¼ whole nuts, S ¼ shell halves, and K ¼ kernels Ð 2S þ K W 144 0 0 amount before creacking 144 x 2x x 144 x þ 2x þ x ¼ 194 total pieces 144 þ 2x ¼ 194; 2x ¼ 50 x ¼ 25 kernels; 50 shell halves; 2 Keq ¼ x ¼ number of kernels after creacking 119 whole nuts left 2 ð2xÞ ðxÞ ð50Þ ð25Þ ¼ ¼ 5:3 102 144 x 119 - 224 - E1C16 05/17/2010 16:48:16 Page 225 - Chapter 16 87. SO2 ðgÞ 0:50 M þ NO2 ðgÞ 0:50 M Ð SO3 ðgÞ þ NOðgÞ 0 0 0:50 x 0:50 x x ½SO3 ½NO x2 ¼ Keq ¼ ¼ 81 ½SO2 ½NO2 ð0:50 xÞ2 x Take the square root of both sides x ¼ 9:0 x ¼ 0:45 M 0:50 x ½SO3 ¼ ½NO ¼ 0:45 M ½SO2 ¼ ½NO2 ¼ 0:05 M - 225 - Initial conditions Equilibrium concentrations
© Copyright 2026 Paperzz