Question 4 (a) 2 log7 x + 3 = 2 log x 7 ⇒ 2 log7 x + 3 = ⇒ 2 log7 x 2(log7 x)2 + 3 log7 x − 2 = 0 ⇒ (2 log7 x − 1)(log7 x + 2) = 0 ⇒ log7 x = log7 x = or log7 x = −2 √ 1 ⇒ x = 71/2 = 7 2 log7 x = − 2 ⇒ x = 7 −2 = (b) 1 2 1 49 ! ! ! 1 1 1 1 + + =0 α β α β ! 1 α+β 2 + =0 x − αβ αβ Correct equation is: x 2 − ⇒ Student’s equation x2 ! 1 1 − + = 0 is correct IF: α+β αβ α+β 1 = αβ α+β ⇒ (α + β)2 = αβ ⇒ α 2 + αβ + β 2 = 0 [1] Using ‘completing the square’ method: 1 1 α 2 + αβ + β 2 = α 2 + αβ + β 2 + β 2 − β 2 4 4 !2 3 1 = α + β + β 2 > 0 for all α, β ∈ < 2 4 But from [ 1 ]: α 2 + αβ + β 2 = 0 ∴ There exist NO real values of α and β which will give the correct answer. 5 AM 27 / MAY 2014 / 1 Question 2 n1 −→ OA −→ OB Let −→ OC −→ OD C A Π1 B (a) = a = 4i + 2j + 3k = b = 9i + 2j + 2k = c = 6i − j + 2k = d = 5i − 3j + 14k Let n1 denote vector normal to plane Π1 . −→ −→ AB × AC = (b − a) × (c − a) = (5i − k) × (2i − 3j − k) i = 5 2 j 0 −3 k − 1 −1 = i(0 − 3) − j(−5 + 2) + k(−15 − 0) = −3i + 3j − 15k = −3(i − j + 5k) ∴ n1 = i − j + 5k Vector equation of plane Π1 containing points A, B and C is: . . . . ⇒ r.(i − j + 5k) = 4 − 2 + 15 ⇒ r.(i − j + 5k) = 17 or x − y + 5z = 17 r n1 = a n1 ⇒ r (i − j + 5k) = (4i + 2j + 3k) (i − j + 5k) (b) Ax + By + Cz + D Using d = √ : A2 + B2 + C 2 5(1) + (−3)(−1) + 14(5) − 17 d = √ 1 + 1 + 25 5 + 3 + 70 − 17 = √ 27 D(5, −3, 14) 61 √ 3 3 √ 61 3 = units 9 d = Π¹ : x – y + 5z – 17 = 0 17 AM 27 / MAY 2014 / 2 Question 6 ln 2 Z (b) Given: (e x + e − x )n dx 0 3 5 To prove: nIn = 4(n − 1)In−2 + 2 2 Proof: ! n−1 Using result in (a): ln 2 Z n (e x + e − x )n dx = 4(n − 1) ln 2 Z 0 (e x + e − x )n−2 dx 0 h i ln 2 + (e x − e − x )(e x + e − x )n−1 0 1 ⇒ nIn = 4(n − 1)In−2 + 2 − 2 ⇒ nIn = 4(n − 1)In−2 + (c) Volume generated = π 3 5 2 2 ln 2 Z y 2 dx 0 =π ln 2 Z (e x + e − x )4 dx 0 = πI4 Using reduction formula in (b) with: 3 5 8 2 !3 3 5 n = 2 −→ I2 = 2 × 1 × I0 + 4 2 !1 n = 4 −→ I4 = 1 × 3 × I2 + where I0 = ln 2 Z 0 2 dx = x ln 0 = ln 2 ∴ Volume generated = πI4 ! !# " 3 125 15 + = π 3 2 ln 2 + 8 8 8 = 49.145 cubic units AM 27 / MAY 2014 / 2 28 ! 1 2+ 2 ! n−1 ! n−1 Question 3 (a) a P2 = b P = 2 (P2 )T 0 c 0 a 2 = c ab + bc a b ⇒ a2 ab + bc 0 c2 0 a2 = c2 0 ab + bc c2 Equating corresponding elements: ab + bc = 0 ⇒ b(a + c) = 0 a+c = 0 ⇒ (b) (since bc , 0) ∴ |P| , 0 y = 2x has coordinates of the form (k , 2k) Any point on the line y = x has coordinates of the form (K , K) So, under transformation matrix P: k K a P = ⇒ 2k K b ⇒ 0 c k K = 2k K K = bk + 2ck K ak ak = K ⇒ (b + 2c)k = K ⇒ a = b + 2c From (a): c = −a ⇒ b = 3a ∴ a ∈ <, a , 0, b = 3a, c = − a AM 27 / SEP 2014 / 1 (inadmissible, since bc , 0) 0 = ac c = − c2 < 0 (c) b=0 a = −c ⇒ a |P| = b or 40
© Copyright 2026 Paperzz