DEPARTMENT OF MATHEMATICAL SCIENCES FACULTY OF SCIENCE UNIVERSITI TEKNOLOGI MALAYSIA SSCE 1793 DIFFERENTIAL EQUATIONS 1. 2. 3. Solve the following homogeneous equations. a. 2y 00 + 7y 0 − 4y = 0 b. 4y 00 − 4y 0 + y = 0 c. y 00 + y = 0 d. y 00 − 4y 0 + 7y = 0 Solve the given initial value problems. a. y 00 + y 0 = 0; y(0) = 2, y 0 (0) = 1 b. y 00 − 4y 0 + 3y = 0; y(0) = 1, y 0 (0) = 1/3 c. w00 − 4w0 + 2w = 0; w(0) = 0, w0 (0) = 1 d. y 00 − 2y 0 + y = 0; y(0) = 1, y 0 (0) = −2 e. 2y 00 − 2y 0 + y = 0; y(0) = −1, y 0 (0) = 0 Solve the following boundary value problems. a. y 00 − 10y 0 + 25y = 0; y(0) = 1, y(1) = 0 b. y + 4y = 0; y(0) = 0, y 0 (π) = 1 c. 2y 00 + y 0 − 6y = 0; y(0) = 0, y 0 (1) = 1 00 4. Solve the following nonhomogeneous equations using the method of undetermined coefficients. a. 2x0 + x = 3t2 + 10t b. y00 − y0 + 9y = 3 sin 3x c. y00 + y0 + y = 2 cos 2x − 3 sin 2x d. θ00 − 5θ0 + 6θ = rer e. θ00(t) − θ(t) = t sin t f. y00 − 2y0 + y = 8ex g. y00 − y = −11x + 1 h. y00 + 4y = sin 2θ − cos θ i. y00 + 2y0 + 2y = e −θ j. y00 − 3y = x2 − ex cos θ k. x00 − 4x0 + 4x = te2t 5. l. y00 − y = (5x + 1)e3x Solve the following initial value problems using the method of undetermined coefficients. a. y 0 − y = 1; 00 y(0) = 1 z(0) = 0, z 0 (0) = 0 c. y 00 + y 0 − 12y = ex + e2x − 1; y(0) = 1, y 0 (0) = 3 d. y 00 − y = sin θ − e2θ ; y(0) = 1, y 0 (0) = −1 b. z + z = 2e 6. TUTORIAL 2 −x ; Determine the form of a particular solution to the differential equations. a. y 00 − y = e2x + xe2x + x2 e2x b. y 00 + 5y 0 + 6y = sin x − cos 2x c. y 00 − 4y 0 + 5y = e5x + x sin 3x − cos 3x d. y 00 − 4y 0 + 4y = x2 e2x − e2x e. y 00 + y 0 − 6yy = e−3x + x cos 3x − sin 2x 2 7. Solve the following nonhomogeneous equations using the method of variation of parameters. a. y 00 + y = sec x b. y 00 + y = cos2 x c. y 00 − y = cosh x d. y 00 + y = sec x tan x 1 f. y 00 + 3y 0 + 2y = 1+ ex ex 00 0 h. y − 2y + y = 1 + x2 j. y 00 + y = 3 sec x − x2 + 1 e. y 00 + 4y = 2 tan x − ex g. y 00 + 3y 0 + 2y = sin ex i. y 00 + 2y 0 + y = e−x ln 2x k. 2y 00 − 2y 0 − 4y = 2e3t 8. l. y 00 + 4y = csc2 2x A vibrating string without damping can be modelled by the differential equation my 00 + ky = 0. a. If m = 10kg, k = 250kg/sec2 , y(0) = 0.3m and y 0 (0) = −0.1m/sec, find the equation of motion for this system. b. When the equation of motion is of the form displayed in (a), the motion is said to be oscillatory with frequency β/2π. Find the frequency of the oscillation for the spring system of part (a). 9. A vibrating string with damping can be modelled by the differential equation my 00 + by 0 + ky = 0. a. If m = 10kg, k = 250kg/sec2 , b = 60kg/sec, y(0) = 0.3m and y 0 (0) = −0.1m/sec, find the equation of motion for this system. b. Find the frequency of the oscillation. c. Compare the results of this problem to Question 8 and determine what effect the damping has on the frequency of oscillation. What other effects does it have on the solution? 10. The motion of a certain mass-spring system with damping is governed by y00(t) + 6y0(t) + 16y(t) = 0 y(0) = 1, y0(0) = 0. Find the equation of motion. 11. Determine the equation of motion for an undamped system at resonance governed by d2 y + 9y = 2 cos 3t dt2 y(0) = 1, y0(0) = 0. Sketch the solution. 12. An undamped system is governed by m where γ 6= ω = 13. q k m. d2 y + ky = F0 cos γt; dt2 y(0) = y0(0) = 0. Find the equation of motion of the system. Consider the vibrations of a mass-spring system when a periodic force is applied. The system is governed by the differential equation mx00 + bx0 + kx = F0 cos γt where F0 and γ are nonnegative constants, and 0 < b2 < 4mk. 3 a. Show that the general solution to the corresponding homogeneous equation is ! √ 4mk − b2 (−b/m)t xh (t) = Ae sin t+φ . 2m b. Show that the general solution to the nonhomogeneous problem is given by ! √ 4mk − b2 F0 (−b/m)t x(t) = Ae sin t+φ + p sin(γt + θ). 2m (k − mγ 2 )2 + b2 γ 2 14. RLC Series Circuit. In the study of an electrical circuit consisting of a resistor, capacitor, inductor, and an electromotive force, we are led to an initial value problem of the form q dI + RI + = E(t) dt C q(0) = q0 , I(0) = I0 . L (1) where L is the inductance in henrys, R is the resistance in ohms, C is the capacitance in farads, E(t) is the electromotive force in volts, q(t) is the charge in coulombs on the capacitor dq is the current in amperes. at time t, and I = dt Find the current at time t if the charge on the capacitor is initially zero, the initial current is 0, L = 10henrys, R = 20ohms, C = 6260−1 farads and E(t) = 100volts. Hint: Differentiate both sides of the differential equation to obtain a homogeneous linear second order equation for I(t). Then use equation (1) to determine dI dt at t = 0. 15. An RLC series circuit has an elctromotive force given by E(t) = sin 100t volts, a resistor of 0.02 ohms, an inductor of 0.001 henrys, and a capacitor of 2 farads. If the initial current and the initial charge on the capacitor are both zero, determine the current in the circuit for t > 0. 4 SOLUTIONS TO TUTORIAL 2 1. a. y = c1 ex/2 + c2 e−4x . b. y = (c1 + c2 x)ex/2 . √ √ d. y = e2x (c1 cos 2 3x + c2 sin 2 3x). c. y = c1 cos x + c2 sin x. 2. a. y = 3 − e−x . √ √ 1 c. y = √ e(2+ 2)x − e(2− 2)x . 2 2 x x e. y = ex/2 (sin − cos ). 2 2 4 x 1 3x e − e . 3 3 d. y = (1 − 3x)ex . b. y = 1 3. a. y = e5x − xe5x . b. y = sin 2x. 2 e2x − e−3x 2 3x/2 2 −2x c. y = −3/2 . d. y = e − e . 7 7 3e + 2e−2 t t 4. a. y = c1 cos √ + c2 sin √ + 3t2 + 10t − 12. 2 √ 2 ! √ 35 35 x/2 x + c2 sin x + cos 3x. b. y = e c1 cos 2 2 √ √ ! 3 3 −x/2 x + c2 sin x + sin 2x. c. y = e c1 cos 2 2 3 1 d. θ = c1 e2r + c2 e3r + er + rer . 4 2 1 1 −t t e. θ = c1 e + c2 e − t sin t − t cos t. 2 2 f. y = (c1 + c2 x)ex + 4x2 ex . g. y = c1 ex + c2 e−x + 11x − 1. 1 1 h. y = c1 cos 2θ + c2 sin 2θ − θ cos 2θ − cos θ. 4 3 i. y = e−θ (c1 cos θ + c2 sin θ) + θe−θ cos θ. √ j. y = c1 e 3x √ + c2 e− 3x 1 2 1 − x2 − + ex . 3 5 2 1 k. y = (c1 + c2 t)e2t + t3 e2t . 6 5 11 3x x −x l. y = c1 e + c2 e + x− e . 8 32 5. a. y = ex − 1. 1 −4x 7 3x 1 1 1 c. y = e + e − ex − e2x + . 60 6 10 6 12 b. y = − cos x + sin x + e−x . 7 θ 3 −θ 1 1 d. y = e + e − sin θ − e2θ . 12 4 2 3 6. a. yp = (Ax2 + Bx + C)e2x b. yp = A cos x + B sin x + C cos 2x + D sin 2x. c. yp = Ae5x + (Bx + C)(D cos 3x + E sin 3x). d. yp = x2 (Ax2 + Bx + C)e2x . e. yp = Axe−3x + (Bx + C)(D sin 3x + E cos 3x) + F sin 2x + G cos 2x. 5 7. a. y = c1 cos x + c2 sin x + x sin x + cos x ln | cos x|. 1 1 b. y = c1 cos x + c2 sin x + − cos 2x. 2 6 1 1 c. y = c1 ex + c2 e−x + xex − xe−x . 4 4 d. y = c1 cos x + c2 sin x + x cos x + sin x ln | sec x|. ex 1 − cos 2x ln | sec 2x + tan 2x|. 5 2 f. y = c1 e−x + c2 e−2x + (e−x + e−2x ) ln(1 + ex ). e. y = c1 cos 2x + c2 sin 2x − g. y = c1 e2x + c2 e−x − e−2x sin e2x . 1 h. y = c1 ex + c2 xex − [ex ln(x2 + 1) + xex tan−1 x]. 2 1 3 −x −x i. y = c1 e + c2 xe + x2 e−x ln 2x − x2 e−x . 2 4 j. y = c1 cos x + c2 sin x − x2 + 3 + 3x sin x + 3 cos x ln | cos x|. 1 k. y = c1 e2t + c2 e−t + e3t . 4 1 l. y = c1 cos 2x + c2 sin 2x + (cos 2x ln | csc 2x + cot 2x| − 1). 4 8. a. y = 0.3 cos 5t − 0.02 sin 5t. b. 0.8Hz 9. a. y = e−3t (0.3 cos 4t + 0.2 sin 4t). b. 5/2π. c. Exponential factor (damping factor) √ √ 3 10. y = e−3x cos 7x + √ sin 7x . 7 1 11. y = cos 3t + t sin t. 2 −F0 F0 12. y = cos ωt + sin γt. m(ω 2 − γ 2 ) m(ω 2 − γ 2 ) 2 −t e sin 25t. 5 105 95 20 95 cos 20t − sin 20t − cos 100t + sin 100t. 15. I = e−10t 9.425 18.85 9.425 9.425 14. I =
© Copyright 2026 Paperzz