CEGEP CHAMPLAIN - ST. LAWRENCE 201-203-RE: Integral Calculus Patrice Camiré Problem Sheet #3 Riemann Sums, Area and the Definite Integral 1. Write the sum in expanded form. (a) 5 X √ 3i − 1 6 X (−1)i (b) i2 + 1 (c) i=0 i=1 4 X j 2 (d) n X 3k k=0 j=1 2. Write the sum using sigma notation. (a) 9 + 11 + 13 + 15 + 17 + 19 + 21 2 4 6 8 10 (b) − + − + − 3 5 7 9 11 (c) 1 − 4 + 9 − 16 + 25 − 36 + 49 sin(2) sin(3) sin(4) (d) sin(1) + √ + √ + √ 3 4 2 3 4 3. Write down the value of the following sums where n is a positive integer. (a) n X 1 (b) i=1 n X i (c) i=1 n X i2 (d) i=1 n X i3 i=1 4. Evaluate the following sums. (a) (b) (c) 100 X 1 (d) 30 X i2 (g) 15 X (3i2 − 5) (j) 14 X i=1 i=1 i=1 i=1 50 X 17 X 12 X 14 X 3 (e) i3 (h) i=1 i=1 i=1 25 X 20 X 23 X 7i (f) i=1 (2i − 3) i=1 (i) i=1 (−i3 + 2i + 3) (k) (i2 − 8i − 9) (i3 − 11i2 − 2) i=1 2 (4i − 9i − 2) (l) 11 X (i3 −8i2 −i+12) i=1 5. Sketch the region under the curve y = f (x) between x = a and x = b. Find its area by evaluating the limit of an appropriate Riemann sum. (a) y = 2x + 1 , a = 0 , b = 3 (f) y = −x2 + 4 , a = 0 , b = 2 (b) y = x + 3 , a = −1 , b = 1 (g) y = x2 + x + 1 , a = −1 , b = 2 (c) y = x2 , a = 0 , b = 2 (h) y = −x2 + x + 2 , a = −1 , b = 2 (d) y = x3 + 1 , a = 0 , b = 1 (i) y = −x3 + 2 , a = −1 , b = 1 (e) y = x2 + 2x + 1 , a = 0 , b = 3 (j) y = x3 + x2 , a = −1 , b = 1 6. Evaluate the following definite integrals using the definition as the limit of a Riemann sum. Z −6 Z (x − 1) dx (a) −7 Z 2 Z 3 0 (−2x + 5) dx Z 3 Z 3 4 (i) (3x2 − x − 3) dx −1 −3 −3 (x2 − 3x + 2) dx 0 (x − x ) dx (f) 4 (h) (2x + 1) dx −1 Z 0 (c) (2x2 + x − 1) dx 0 (e) 2 1 (g) (3x − 1) dx 0 0 Z Z 2 (d) (x + 8) dx (b) 1/2 Answers √ √ √ √ 2 + 5 + 8 + 11 + 14 1 1 1 1 1 1 (b) 1 − + − + − + 2 5 10 17 26 37 1. (a) 2. (a) √ 11 X 2i − 1 = i=5 (b) 5 X i=1 10 X 2i + 1 = i=4 6 X (c) 12 + 22 + 32 + 42 (d) 1 + 3 + 32 + 33 + · · · + 3n 7 X (c) (−1)i+1 i2 9 + 2i i=0 i=1 4 X sin(i) √ (d) i i i=1 2i (−1) 2i + 1 3. (a) n i (b) n(n + 1) 2 (c) n(n + 1)(2n + 1) 6 (d) n(n + 1) 2 2 4. (a) 100 (c) 2275 (e) 23409 (g) 3645 (i) 14766 (k) −168 (b) 150 (d) 9455 (f) 360 (h) −5892 (j) 49 (l) 374 5. (a) 12 (b) 6 6. (a) −15/2 (c) 8/3 (e) 21 (g) 15/2 (i) 4 (d) 5/4 (f) 16/3 (h) 9/2 (j) 2/3 (d) −3/8 (g) 1/6 (b) 20 (e) 1/2 (h) 16/3 (c) 30 (f) 63/4 (i) 85/2
© Copyright 2026 Paperzz