Born Haber Cycles - James Mungall

Unit 4.1
Born Haber
Cycles
Born
Haber
Cycles
Watch a video tutorial on this at:
www.chemistry.jamesmungall.co.uk
unbonded gaseous ions
breaking bonds,
forming gases,
forming + and - ions
lattice energy
∆Η
metal + non-metal
ionic compound
Example: Sodium Bromide
Na+(g)
Br-(g)
breaking bonds,
forming gases,
forming + and - ions
lattice energy
Na(s) + 1/2 Br2(g)
∆Η
NaBr(s)
breaking down each of the stages
Na+(g)
Br-(g)
adding electron
to Br
ionising Na
Na(g)
Br(g)
atomising Na
Na(s)
lattice energy
+
atomising Br
1/
2
Br2(g)
∆Η
NaBr(s)
Example 1
Calculate the enthalpy change of the reaction Na(s) + 1/2Br2(g) ---> NaBr(s)
∆Η atomisation(Na) = +107 kJmol-1
∆Η atomisation(Br) = +97 kJmol-1
∆Η first ionisation energy(Na) = +496 kJmol-1
∆Η first electron affinity(Br) = -325 kJmol-1
∆Η lattice energy(NaBr) = -742 kJmol-1
Na+(g)
Br-(g)
ionising Na
adding electron
to Br
+496 kJmol-1
-325 kJmol-1
Na(g)
Br(g)
atomising Na
atomising Br
+107 kJmol-1
+97 kJmol-1
Na(s)
+
1/
2
Br2(g)
∆Η = 107 + 496 +97 -325 -742
= -367 kJmol-1
lattice energy
-742 kJmol-1
∆Η
NaBr(s)
Example 2
Mg2+ O2-
Which ions are present in MgO(s)?
Calculate the enthalpy change for the reaction Mg(s) + 1/2O2(g)
What kind of enthalpy change is this?
MgO(s)
standard enthalpy of formation of MgO
∆Ηatm(O) = +249 kJmol-1
∆Η atm(Mg) = +148 kJmol-1
∆Η 1st ionisation energy(Mg) = +738 kJmol-1
∆Η 2nd ionisation energy(Mg) = +1451 kJmol-1
∆Η 1st electron affinity(O) = - 141 kJmol-1
∆Η 2nd electron affinity(O) = + 798 kJmol-1
∆Η lattice energy(MgO) = -3791 kJmol-1
O2-(g)
Mg2+(g)
adding electrons
to O
ionising Mg
+738 kJmol-1
+1451 kJmol-1
- 141 kJmol-1
+ 798 kJmol-1
-3791 kJmol-1
Mg(g)
O(g)
atomising Mg
atomising O
+148 kJmol-1
+249 kJmol-1
Mg(s)
∆Η
=
lattice energy
+
1/
2O2(g)
∆Η
(148+1451+738) + (249+798-141) - 3791
=
2337 + 906 - 3791
=
-548 kJmol-1
The actual value for this reaction is -602 kJmol -1
This is because there is a degree of covalent bonding in
MgO. Therefore the bonds formed are slightly stronger
than those predicted by a purely ionic model.
MgO(s)
Example 3
Construct a Born-Haber cycle and use it to calculate the
first electron affinity of chlorine.
∆Η atm(Cl) = + 122 kJmol -1
∆Η atm(Mg) = +148 kJmol-1
∆Η 1st ionisation energy(Mg) = +738 kJmol-1
∆Η 2nd ionisation energy(Mg) = +1451 kJmol-1
∆Η lattice energy(MgCl ) = - 2526 kJmol-1
∆Η formation(MgCl ) = - 641 kJmol -1
2
2
2 Cl-(g)
Mg2+(g)
ionising Mg
adding electrons
to Cl
+738 kJmol-1
+1451 kJmol-1
UNKNOWN
- 2526 kJmol -1
Mg(g)
2 Cl(g)
atomising Mg
atomising Cl
+148 kJmol-1
Mg(s)
lattice energy
2x + 122 kJmol-1
+
Cl2(g)
formation
energy
- 641 kJmol-1
148 + 1451 + 738 + (2 x 122) + UNKNOWN - 2526 = - 641
2581 + UNKNOWN - 2526 = - 641
55 + UNKNOWN = -641
UNKNOWN = -641 - 55
= - 696
This is for 2 moles of Cl.
Therefore the 1st electron affinity of chlorine is
-696/2
= - 348 kJmol-1
MgCl2(s)