Unit 4.1 Born Haber Cycles Born Haber Cycles Watch a video tutorial on this at: www.chemistry.jamesmungall.co.uk unbonded gaseous ions breaking bonds, forming gases, forming + and - ions lattice energy ∆Η metal + non-metal ionic compound Example: Sodium Bromide Na+(g) Br-(g) breaking bonds, forming gases, forming + and - ions lattice energy Na(s) + 1/2 Br2(g) ∆Η NaBr(s) breaking down each of the stages Na+(g) Br-(g) adding electron to Br ionising Na Na(g) Br(g) atomising Na Na(s) lattice energy + atomising Br 1/ 2 Br2(g) ∆Η NaBr(s) Example 1 Calculate the enthalpy change of the reaction Na(s) + 1/2Br2(g) ---> NaBr(s) ∆Η atomisation(Na) = +107 kJmol-1 ∆Η atomisation(Br) = +97 kJmol-1 ∆Η first ionisation energy(Na) = +496 kJmol-1 ∆Η first electron affinity(Br) = -325 kJmol-1 ∆Η lattice energy(NaBr) = -742 kJmol-1 Na+(g) Br-(g) ionising Na adding electron to Br +496 kJmol-1 -325 kJmol-1 Na(g) Br(g) atomising Na atomising Br +107 kJmol-1 +97 kJmol-1 Na(s) + 1/ 2 Br2(g) ∆Η = 107 + 496 +97 -325 -742 = -367 kJmol-1 lattice energy -742 kJmol-1 ∆Η NaBr(s) Example 2 Mg2+ O2- Which ions are present in MgO(s)? Calculate the enthalpy change for the reaction Mg(s) + 1/2O2(g) What kind of enthalpy change is this? MgO(s) standard enthalpy of formation of MgO ∆Ηatm(O) = +249 kJmol-1 ∆Η atm(Mg) = +148 kJmol-1 ∆Η 1st ionisation energy(Mg) = +738 kJmol-1 ∆Η 2nd ionisation energy(Mg) = +1451 kJmol-1 ∆Η 1st electron affinity(O) = - 141 kJmol-1 ∆Η 2nd electron affinity(O) = + 798 kJmol-1 ∆Η lattice energy(MgO) = -3791 kJmol-1 O2-(g) Mg2+(g) adding electrons to O ionising Mg +738 kJmol-1 +1451 kJmol-1 - 141 kJmol-1 + 798 kJmol-1 -3791 kJmol-1 Mg(g) O(g) atomising Mg atomising O +148 kJmol-1 +249 kJmol-1 Mg(s) ∆Η = lattice energy + 1/ 2O2(g) ∆Η (148+1451+738) + (249+798-141) - 3791 = 2337 + 906 - 3791 = -548 kJmol-1 The actual value for this reaction is -602 kJmol -1 This is because there is a degree of covalent bonding in MgO. Therefore the bonds formed are slightly stronger than those predicted by a purely ionic model. MgO(s) Example 3 Construct a Born-Haber cycle and use it to calculate the first electron affinity of chlorine. ∆Η atm(Cl) = + 122 kJmol -1 ∆Η atm(Mg) = +148 kJmol-1 ∆Η 1st ionisation energy(Mg) = +738 kJmol-1 ∆Η 2nd ionisation energy(Mg) = +1451 kJmol-1 ∆Η lattice energy(MgCl ) = - 2526 kJmol-1 ∆Η formation(MgCl ) = - 641 kJmol -1 2 2 2 Cl-(g) Mg2+(g) ionising Mg adding electrons to Cl +738 kJmol-1 +1451 kJmol-1 UNKNOWN - 2526 kJmol -1 Mg(g) 2 Cl(g) atomising Mg atomising Cl +148 kJmol-1 Mg(s) lattice energy 2x + 122 kJmol-1 + Cl2(g) formation energy - 641 kJmol-1 148 + 1451 + 738 + (2 x 122) + UNKNOWN - 2526 = - 641 2581 + UNKNOWN - 2526 = - 641 55 + UNKNOWN = -641 UNKNOWN = -641 - 55 = - 696 This is for 2 moles of Cl. Therefore the 1st electron affinity of chlorine is -696/2 = - 348 kJmol-1 MgCl2(s)
© Copyright 2026 Paperzz