Lesson 3: Fractions and Cancellation

Teaching and Learning of the
Nemeth Braille Code







Fraction and Fraction Indicators
Mixed Numbers
Complex Fractions
Spatial Arrangement for Fractions
Addition & Subtraction Involving Fractions
Arrangements containing Mixed Numbers
Cancellation
Fractions and Fraction
Indicators Review

Simple Fractions w/ the horizontal line


? _/ #
Mixed Numbers w/ the horizontal line


(th st NI) (this still NI)
Simple Fractions w/ the slanted line


? / #
# _? / _#
Mixed Numbers w/ the slanted line

# _? _/ _#
Examples

Simple Fractions w/ the horizontal line


Simple Fractions w/ the slanted line


?1_/3#
1
3
Mixed Numbers w/ the horizontal line


?1/3#
1
3
#4_?3/8_#
3
4
8
Mixed Numbers w/ the slanted line

#4_?3_/8_#
43
8
Mixed Numbers




Use the Numeric Indicator before the
whole part. #
Use dots 3-4-5 before the simple
fraction indicators on the fractional
part. _?
_#
No spaces.
2
1 #1_?2/3_#
Example
3
Complex Fraction



Use a dot 6 before the simple fraction
indicators. ,? ,/ ,#
If there is a mixed number in the
numerator or denominator, the numeric
indicator on the whole part is dropped
because of the spatial arrangement.
Never use numeric indicators inside of
fraction indicators.
Examples
8
4
5
2
7
,?8,/?4/5#,#
1
8
3
7
,??1/8#,/?3/7#,#
,??2/7#,/9,#
9
Spatial Arrangements for
Fractions


Use a numeric indicator before the
numerator and denominator if they are
numerical.
Use the simple fraction indicator with a
separation line (dots 2-5) the same
length as the longest expression above
or below it.
?333333#
Examples
3
4
#3
?33#
#4
56
2 8
#5+6
?3333#
#2*8
#2
?33#
9
#7
,?3333,#
#9
2
7
Addition and Subtraction
Involving Fractions





Put fractions in linear form.
Align fraction lines and fraction indicators.
Place numerators and denominators closest to
fraction lines.
Addition and subtraction symbols are placed
one cell to the left of the left most cell in the
problem.
Separation lines are still one extra cell to the
left and right of the cells in the problem.
Examples
1
4
13

100
1
12
6
1
5
6
2
1
17  17
6
3
? 1/4 #
+?13/100#
33333333333
12_?1/6_#
+ 5_?1/6_#
333333333333
17_?2/6_# .k #17_?1/3_#
Example Involving Finding
Common Denominators
5_?4/5 _# .k 5_?8/10_#
4
8
5 5
?9/10 # .k
?9/10 #
5
10
9
9

+4_?1/2
_#
.k
4_?5/10_#
10
10
1
5
3333333333333333333333333
 4 4
2
10
11_?2/10_#
2
1
11  11
10
5
.k #11_?1/5 _#
Cancellation Indicators

Begin cancellation with dots 2-4-6 (ow) and
end with dots 1-2-4-5-6 (er, termination
indicator). Put these around what is being
cancelled.
[
]
Examples
12
8
8
1
4
9 9
2
8
7
7
4  4
8
8
8 9 9 12
9002
3 6 9 3
8_?12/8_#
9_?1/2_# .k [9_? 4/8_#]
-4_?7/8_# .k 4_? 7/8_#
33333333333333333333333333
8 9 9 12
[9][0][0][ 2]
- 3 6 9
3
333333333333333
5 3 0
9
Assignment




p.16 all
p.17 do 2 in both sets of Practice Exercises
p.18 do the last one in both linear & spatial format.
5
10
23  23
Transcribe like p. 25
6
12
 10


7
7
 10
12
12
3
1
13  13
12
4
Transcribe 20
using
the
spatial
arrangement
and
then
4 25
simplify to 5 using cancellation indicators like p.21.
327
Solve and transcribe 154 using cancellation indicators
like p. 22.