3 1) The number of vertical asymptotes of y = -csc(x -

Math002
Director: Dr. Alshammari
Page: I
Code 0
EXAM I1
Term 122
3
1) The number of vertical asymptotes of y = -csc(x
- -)7-c
2
2
over the
37-c,
57-9 i s :
interval (- y
2) The graph of y
=
x-axis a t :
7-c
57-c
A) -and12
12
7-c
7-c
B) - and 8
8
7-c
57-c
C) - and 8
12
57-c and 77-c
D) 12
12
E)
77
and 12
8
71
-
71
cot(3x + -)
4
7-c
over the interval (- ,-)77-c intersects the
12 12
Math002
Director: Dr. Alshammari
EXAM1 I
Term 122
3) If 270 " < x < 360 " ,then
A) secx =
4 I- sin2x
1 - sin2x
B) secx = -
4 1 - sin2x
C) secx = -
JiT&
D) sec x =
/
1 - sin2x
1 -cos2x
41 - c0s2x
1 - cosx
E) sec x = 41 + sinz x
4) The range off (x) = 3 + 5sin2x - 12cos2x is :
Page: 2
Code 0
EXAM I1
Term 122
Math002
Director: Dr. Alshammari
is identical to :
tan x + cot x
5 ) tan
6) Which one of the following statements is TRUE ?
-
B) csc x
= 41 +
&d
C)
D) sin3x
=
=
cot2x
cos x is an identity.
sin x (1 + cos2X)
Page: 3
Code 0
Math002
Director: Dr. Alshammari
EXAM1 I
Term 122
Page: 4
Code 0
-- (G+\)c
c-1)
- 3-l~t'q
(q--\)cG+\)
-
D) - 2 + &
E) 4
3
s r c (3
+&
*
4 y - e .q
V
2
\ 3 c t q c d67
+
-
2
= zt 5-.
3 ,t in QIII and sin x = 5 ,x in QII ,then
8) If cos t = - 5
13
csc(x - t ) is equal to:
Math002
Director: Dr. Alshammari
A)- sin52"
B) - cos 52 "
C) sin 38 "
D) cos 152 "
E) - sin 38 "
EXAM1 I
Term 122
Page: 5
Code 0
Math002
Director: Dr. Alshammari
EXAM1 I
Term 122
Page: 6
Code 0
1 + arctan*
11) The exact value of cos (arcsin 3
L i n - - \ 1,(.L
3
CoS ( 4
--
C.1\
-
+
-+
'
+ac
CiJ
)=
+6
&h&z
\
-i;
- (lo)* " , ~ & & ' - ~ i n u\hbO
~
-- ' -Z T - 1.
y
3
X
Z
~ ~ '-)
57-c ) = 57-c
B) sin-' (sin 6
6
-1
C) tan-' x=
sinx )
(COSX
D) cos-'(cosx) = x
for -15 x 5 1
E) y = sin-' x is an even function.
tc,.
I
5
0
12) Which one of the following statements is TRUE ?
A) tan-'(tan- 4n ) = tan-'(tan [)
3
3
\-'
.TT.
4
97 - +a- T
y
Math002
Director: Dr. Alshammari
EXAM1 I
Term 122
Page: 7
Code 0
13) The sum of the solutions of the equation over the interval [0,2n)
2sim cosx + 2sim - cosx -1 =O is :
14) The number of solutions of the equation :
X
tan-=sim
2
, O r x < 2 r r is:
Math002
Director: Dr. Alshammari
1
A)3 +
T O s
Page: 8
Code 0
EXAM1 I
Term 122
43 sinx
+- 2
1 cos x +*
C) sinx
2
2
1
43 cos x + -sinx
D ) 3 + ~
2
E)3 - cosx
ccc . ( 3.9)
\\c'k
35;Z%
P - r e .f i d
'24
16) the system of equations represented by the adjacent graph is :
A) x - 3y = -3 and 3x + 2y = 6
&
B)3y-x = - 3 a n d 2 x + 2 y = 3
C ) x - 3 y = 3 and3x+2y=6
D ) x + 3 y = - 3 and 2 x + 2 y = 3
-
Math002
Director: Dr. Alshammari
EXAM1 I
Term 122
Page: 9
Code 0
17) The value of a for which the system of equations :
4x-y=9
-8x + 2y = -a
has infinite number of solutions is:
18) If the adjacent figure represents the graph of y = a cos(bx + c) over one
period where 0 < c 5 277 and a < 0 ,then 8a + b + c =
EXAM1 I
Term 122
~ath002
Director: Dr. Alshammari
Page: 10
Code 0
19) The graph of y = - 4 sin (2x - n ) is below x -axis on the interval :
20) from the adjacent figure 0 =
D) tan
-1
(-)2
X