Math002 Director: Dr. Alshammari Page: I Code 0 EXAM I1 Term 122 3 1) The number of vertical asymptotes of y = -csc(x - -)7-c 2 2 over the 37-c, 57-9 i s : interval (- y 2) The graph of y = x-axis a t : 7-c 57-c A) -and12 12 7-c 7-c B) - and 8 8 7-c 57-c C) - and 8 12 57-c and 77-c D) 12 12 E) 77 and 12 8 71 - 71 cot(3x + -) 4 7-c over the interval (- ,-)77-c intersects the 12 12 Math002 Director: Dr. Alshammari EXAM1 I Term 122 3) If 270 " < x < 360 " ,then A) secx = 4 I- sin2x 1 - sin2x B) secx = - 4 1 - sin2x C) secx = - JiT& D) sec x = / 1 - sin2x 1 -cos2x 41 - c0s2x 1 - cosx E) sec x = 41 + sinz x 4) The range off (x) = 3 + 5sin2x - 12cos2x is : Page: 2 Code 0 EXAM I1 Term 122 Math002 Director: Dr. Alshammari is identical to : tan x + cot x 5 ) tan 6) Which one of the following statements is TRUE ? - B) csc x = 41 + &d C) D) sin3x = = cot2x cos x is an identity. sin x (1 + cos2X) Page: 3 Code 0 Math002 Director: Dr. Alshammari EXAM1 I Term 122 Page: 4 Code 0 -- (G+\)c c-1) - 3-l~t'q (q--\)cG+\) - D) - 2 + & E) 4 3 s r c (3 +& * 4 y - e .q V 2 \ 3 c t q c d67 + - 2 = zt 5-. 3 ,t in QIII and sin x = 5 ,x in QII ,then 8) If cos t = - 5 13 csc(x - t ) is equal to: Math002 Director: Dr. Alshammari A)- sin52" B) - cos 52 " C) sin 38 " D) cos 152 " E) - sin 38 " EXAM1 I Term 122 Page: 5 Code 0 Math002 Director: Dr. Alshammari EXAM1 I Term 122 Page: 6 Code 0 1 + arctan* 11) The exact value of cos (arcsin 3 L i n - - \ 1,(.L 3 CoS ( 4 -- C.1\ - + -+ ' +ac CiJ )= +6 &h&z \ -i; - (lo)* " , ~ & & ' - ~ i n u\hbO ~ -- ' -Z T - 1. y 3 X Z ~ ~ '-) 57-c ) = 57-c B) sin-' (sin 6 6 -1 C) tan-' x= sinx ) (COSX D) cos-'(cosx) = x for -15 x 5 1 E) y = sin-' x is an even function. tc,. I 5 0 12) Which one of the following statements is TRUE ? A) tan-'(tan- 4n ) = tan-'(tan [) 3 3 \-' .TT. 4 97 - +a- T y Math002 Director: Dr. Alshammari EXAM1 I Term 122 Page: 7 Code 0 13) The sum of the solutions of the equation over the interval [0,2n) 2sim cosx + 2sim - cosx -1 =O is : 14) The number of solutions of the equation : X tan-=sim 2 , O r x < 2 r r is: Math002 Director: Dr. Alshammari 1 A)3 + T O s Page: 8 Code 0 EXAM1 I Term 122 43 sinx +- 2 1 cos x +* C) sinx 2 2 1 43 cos x + -sinx D ) 3 + ~ 2 E)3 - cosx ccc . ( 3.9) \\c'k 35;Z% P - r e .f i d '24 16) the system of equations represented by the adjacent graph is : A) x - 3y = -3 and 3x + 2y = 6 & B)3y-x = - 3 a n d 2 x + 2 y = 3 C ) x - 3 y = 3 and3x+2y=6 D ) x + 3 y = - 3 and 2 x + 2 y = 3 - Math002 Director: Dr. Alshammari EXAM1 I Term 122 Page: 9 Code 0 17) The value of a for which the system of equations : 4x-y=9 -8x + 2y = -a has infinite number of solutions is: 18) If the adjacent figure represents the graph of y = a cos(bx + c) over one period where 0 < c 5 277 and a < 0 ,then 8a + b + c = EXAM1 I Term 122 ~ath002 Director: Dr. Alshammari Page: 10 Code 0 19) The graph of y = - 4 sin (2x - n ) is below x -axis on the interval : 20) from the adjacent figure 0 = D) tan -1 (-)2 X
© Copyright 2025 Paperzz