Name _____________________________________ Date ________________________ LESSON 1.6 Practice B Solve the equation 1. x2 = 36 2. x2 + 121 = 0 3. x2 + 9 = 4 4. x2 = 2 x2 + 4 5. 3 x2 + 40 = x2 56 6. 11x2 = x2 1 7. (x 3)2 = 12 8. 2(x 1)2 = 36 9. 4(x 2)2 + 320 = 0 Write the expression as a complex number in standard form. 10. (1 + i) + (3 + i) 11. (4 3i) + (2 + 6i) 12. (4 i) (4 + 5i) 13. (5 3i) + (3 6i) 14. 3i(4 + 2i) 15. 2i(3 i) 16. (2 + i)(4 + 2i) 17. (5 2i)(1 3i) 18. (3 + i)(7 3i) 19. 2i(1 + i)(2 + 3i) 20. (2 i)2 21. (5 + 3i)(5 3i) 5 22. 3 2i 23. 2 i 3 4i 24. 1 2i 2 i 25. 3 (3 2i ) 2 4i Find the absolute value of the complex number. 26. 3 4i 27. 1 i 3 5 2i 2 28. Plot the numbers in a complex plane. 29. 3i 30. 2 + 2i 31. 2 3i Using the properties of exponents, write the complex number in standard form. 32. 2 + i2 33. 3 + i3 34. 5 i4 35. 2 i5 36. 1 + i4 37. 1 + i8 38. 1 + i12 39. 1 + i16 40. Pattern Recognition Using the information from Exercises 3639, write a general statement about the value of in where n is a positive factor of 4. Use this statement to write 2 + i207 in standard form. Answer Key Lesson 1.6 Practice Level B 1. ± 6i 2. ± 11i 3. i 5 4. ± 2i 5. 2 i 6 6. 1 i 4 7. 3 2 i 3 8. 1 3 i 2 2 4i 5 9. 10. 4 + 2i 11. 6 +3i 12. – 8 – 6i 13. 2 – 9i 14. – 6 + 12i 15. – 2 – 6i 16. 6 + 8i 17. – 1 – 17i 18. –24 + 2i 19. 10 + 2i 20. 3 – 4i 21. 34 22. 23. 24. 15 13 10 2 11 25 25 2 2 25. i 13 i 2 2 1 3 27 10 26. 5 27. 2 28. 13 29. 30. 31. 32. 1 33. 3 – i 3 7 5 i i 34. 4 35. 2 – i 36. 2 37. 2 38. 2 39. 2 40. If the exponent of i is a factor of 4 the expression can be reduced to 1. To simplify i raised to any natural number, factor out the multiples of 4 in the exponent and simplify the remaining expression; 2 i 207 2 i 204 i 3 2 i 3 2 i
© Copyright 2026 Paperzz