5.3 Sum and Difference Identities for Cosine 207 In Example 4, the values of cos s and sin t could also be found by using the Pythagorean identities. The problem could then be solved using the identity for cos(s + t) in the same way as shown in the example. NOT • •• E Example 5 Applying the Cosine Difference Identity to Voltage Common household electrical current is called alternating current because the current alternates direction within the wires. The voltage V ~ in a typical lIS-volt outlet can be expressed using the equation V = 163 sin wt, where w is the angular velocity (in radians per second) of the rotating generator at the electrical plant, and t is time measured in seconds. (Source: Bell, D., Fundamentals of Electric Circuits, Fourth Edition, Prentice-Hall, 1988.) e (a) It is essential for electrical generators to rotate at precisely 60 cycles per second so household appliances and computers will function properly. Determine w for these electrical generators. Since each cycle is 27T radians, at 60 cycles per second, w = 60(27T) = 1207T radians per second. (b) Graph Von the interval 0 ::5 t ::5 .05. V = 163 sin wt = 163 sin 120m. Because the amplitude is 163 here, we choose -200 ::5 V::5 200 for the range, as shown in Figure 10. o 1F---I----+.0...4----,L-....+--:t (e) For what value of qy will the graph of V = 163 cos(wt - qy) be the same as the graph of V = 163 sin wt? Since cos(x - 7T/2) = cos( 7T/2 - x) = sin x, choose qy = 7T/2. In the Chapter Test you will be asked to use the cosine difference identity to show that V = 163 sin wt and V = 163 cos(wt - 7T/2) are equivalent equations. I -200 ••• Figure 10 5.3 Exercises + B). How do they differ? How are they alike? ~ 1. Compare the formulas for cos(A - B) and cos(A ~ 2. What does the cofunction identity cos( 7T/2 - (J) = sin (J imply about the graphs of the cosine and sine functions? (Hint: First observe that cos(7T/2 - (J) is the same as cos((J - 7T/2).) Use the cosine sum and difference identities to find each exact value. (Do not use a calculator.) See Example 1. 3. cas 75° 5. cas 105° 4. cos( -15°) (Hint: 105° = 60° + 45°) 6. cos( -105°) (Hint: -105° = -60° + (-45°)) 77T 7. cas 12 9. cas 40° cas 50° - sin 40° sin 50° 27T 11. cos-cos5 ~ 7T 27T. - sin-sm10 5 7T 10 10. cos( -10°) cas 35° + sine-10°) sin 35° 77T 27T 77T 27T 12. cas - cas - - sin - sin 9 9 9 9 Use a graphing calculator to support your answer for each of the following. See Example 1. 13. Exercise 9 14. Exercise 10 208 Chapter 5 Write each function Trigonometric Identities value in terms of the cofunction of a complementary angle. See Example 2. 15. tan 87° 16. sin 15° 17. cos- 7r 12 27r 18. sin5 19. csc( -14° 24') 20. sin 142° 14' 57r 21. sin8 97r 22. cot10 23. see 146° 42' 24. tan 174° 3' 25. cot 176.9814° 26. sin 98.0142° Use the cofunction 27. cot- identities to fill in each blank with the appropriate 7r = 3 7r 6 _ 30. ___ 28. sin 2; = 72° = cot 18° Use the cofunction 31. cos 70° = ----___ + 35. see e = csc (~ + 200) + 25°) 43. cos(O° + e) Find cos(s + t) and cos(s - t). See Example 4. 44. cos(90° 50. cos s = -8/17 and cos t = -3/5, + as a single function 41. cos(180° - e) 45. cos(180° e) + 46. cos(270° e) + sin 60° sin 14° 56. cos 140° = cos 60° cos 80° - sin 60° sin 80° 27r 117r 7r 58. cos - = cos -- cos 3 12 4 60. cos 85° cos 40° = cot e 62. sin ( e - ;) = -sinx 65. cos 2x = cos" X + cos 2x - sin?x 64. secl-rr (Hint: cos 2x = cos(x - cos? X = cos? x + x).) (Hint: Use the result from Exercise 65.) x) = 117r tr sin 12 4 + sin -- + sin 85° sin 400 = v'2 = cos Verify that each equation is an identity. ~. 66. 1 e) 54. cos( -24°) = cos 16° - cos 40° 59. cos 70° cos 20° - sin 70° sin 20° = 0 x) + is true or false. 7r 7r .7r.7r = cos - cos - - sm - sm 12 4 12 4 + of e. See Example 3. 42. cos(270° - e) s and t in quadrant IV + 12°) 55. cos 74° = cos 60° cos 14° 63. cos(; + 20°) s and t in quadrant III Tell whether each statement e - ;) + 10°) and sin t = \16/8, s and t in quadrant I 53. cos 42°'= cos(30° 61. tan ( true. See Example 2. s in quadrant I and t in quadrant III 52. cos s = v'2/4 and sin t = -Vs/6, 3 66° s in quadrant II and t in quadrant IV 49. sin s = 3/5 and sin t = -12/13, -tt 33° = sin 57° and sin t = 3/5, sand t in quadrant II 48. sin s = 2/3 and sin t = -1/3, 57. cos - 32. tan 24° = ----___ to write each expression 40. cos(90° - e) Check 20° 1 38. cot(e - 10°) = tan(2e Use the identities for the cosine of a sum or a difference Concept 29. ___ 36. cos e = sin(3 e 39. cos(O° - e) 51. sin s = Vs/7 name. See Example 2. 34. sin e = cos(2e - 109) 2e) 37. sin(3e - 15°) = cos(e function ( _-; ) identities to find an angle e that makes each statement 33. tan e = cot(45° 47. cos s = -1/5 trigonometric -secx 2 e
© Copyright 2026 Paperzz