The Common Ion Effect and Acid/Base Equilibria Additional Aspects of Acid/Base Equilibria So far, we have examined the equilibrium concentrations of ions in solutions containing a weak acid or weak base Now, we will consider solutions that contain a weak acid and a soluble salt of that acid Additional Aspects of Acid/Base Equilibria An example of a solution containing a weak acid and soluble salt is acetic acid and sodium acetate Sodium acetate is a soluble ionic compound and therefore, a strong electrolyte (dissociates completely): CH3 COONa aq → Na+ aq + CH3 COO− aq Acetic acid is a weak electrolyte that ionizes only partially, and is represented by a the dynamic equilibrium: CH3 COOH aq ↔ H + aq + CH3 COO− aq So, What is the Common-Ion Effect? If we add sodium acetate to a solution of acetic acid in water, the CH3COO- from CH3COONa causes the equilibrium concentrations of the substances in the acetic acid system to shift to the left, thereby decreasing the equilibrium concentration of H+ CH3COONa (s) CH3COOH (aq) Na+ (aq) + CH3COO- (aq) H+ (aq) + CH3COO- (aq) Common Ion In other words, whenever a weak electrolyte and a strong electrolyte containing a common ion are together in solution, the weak electrolyte ionizes less than it would if it were alone in solution We call this observation the common-ion effect A General Overview of the Common-Ion Effect The common-ion effect is generally defined as the shift in equilibrium caused by the addition of a compound having an ion in common with the dissolved substance The presence of a common ion suppresses the ionization of a weak acid or a weak base Real-Life Applications of the Common-Ion Effect The most important application of acid-base solutions containing a common ion is for buffering A buffered solution is one that resists a change in its pH when either hydroxide ions or protons are added This is because it contains both an acid to neutralize added OH- ions and a base to neutralize added H+ ions HUGE EXAMPLE OF A BUFFERED SOLUTION– Our blood! Blood can absorb the acids and bases produced in biologic reactions without changing its pH Vital because cells can survive only in a very narrow pH range! Buffering system in blood involves HCO3- and H2CO3 Composition of a Buffer Solution A buffer solution can consist of: A weak acid and its conjugate base (its salt) HF and NaF A weak base and its conjugate acid (its salt) NH3 and NH4Cl Ways to Make a Buffered Solution There are two ways to make a buffer: Mix a weak acid or weak base with a salt of that acid or base For example, the CH3 COOH/CH3 COO− buffer can be prepared by adding CH3 COONa to a solution of CH3 COOH Make the conjugate acid or base from a solution of a weak base or acid by the addition of a strong acid or base to neutralize about half of the weak acid or weak base For example, the CH3 COOH/CH3 COO− buffer can be prepared by adding some NaOH to the solution – enough to neutralize about half of CH3 COOH according to the reaction: CH3 COOH aq + OH − aq ↔ CH3 COO− aq + H2 O (l) Practice! #4 AND #6 ON PAGE pH and Buffer Solutions Because a buffer resists changes in pH, it is useful to calculate the initial pH of the solution So, how do we do this? Steps for Calculating pH of Buffer Solutions THINK – Which solutes are strong electrolytes and which are weak electrolytes? THINK – Major species in solution THINK – What is the important equilibrium reaction that is the source of H+ (therefore, controls pH)? WRITE – Equilibrium equation THINK – Do not know equilibrium conditions so use ICE table and Ka expression to solve for [H+] ([H3O+] ) 1. 2. 3. 4. 5. Note – there is an initial concentration of conjugate base in the ICE table! 1. Make assumption that [HA]int WRITE – pH = -log[H+] – x = [HA]eq = [HA]int if Ka << 1 Practice! #8 ON PAGE There’s an Even Easier Way to Calculate pH of a Buffer! The acid dissociation equilibrium expression can be rearranged to provide a useful equation when calculating pH: [ H ][ A ] [ HA] Ka [ H ] Ka [ HA] [A ] [ HA] log[ H ] log Ka log [A ] Derivation Continued… pH = pK a + log A− HA = pK a + log base acid This log form of the expression for Ka is called the Henderson-Hasselbach equation It is useful for calculating the pH of solutions when the ratio [HA]/[A-] is known AND Ka <<< 1 Practice! #9 ON PAGE Preparing a Buffer In the laboratory, it is useful to know the amounts of the acid and its conjugate base or weak base and conjugate acid needed to achieve a specific pH The most effective buffer occurs when the ratio of [A-] to [HA] or [B] to [BH+] is 1 If this ratio is 1, then according to the Henderson-Hasselbalch equation: pH = pKa Preparing a Buffer with a Certain pH Method #1 To do this: 1. THINK – Major species in buffer solution 2. THINK – What conjugate acid-base pair determines pH? 3. WRITE – Equilibrium equation between conjugate acid-base pair and water 4. WRITE – Equilibrium expression 5. WRITE – Obtain [H+] or [OH-] using given pH: [H+] = 10-pH or [OH-] = 10-pOH WRITE – Plug and chug using all known information into equilibrium expression and solve for unknown! 1. 1. Usually, this includes [HA] or [B] and Ka/Kb value Preparing a Buffer Solution with a Specific pH Method #2 Choose a weak acid whose pKa is close to the desired pH You can: Calculate [H+] from pH Substitute this value with Ka value of weak acid into the equation: [HA] + H = Ka [A− ] Choose the ratio [HA]/[A-] that is closest to 1 OR: Substitute pKa (-log Ka) and pH values into the HendersonHasselbach Equation This will give a ratio of [A-]/[HA] Then, convert ratio to molar quantities Practice! #14 ON PAGE So, Why are Buffers So Important? Buffers find many important applications in the laboratory and in medicine Many biological reactions occur at the optimal rates only when properly buffered Remember, buffered solutions resist pH change with addition of a STRONG acid or base The amount of acid or base that buffer can neutralize before the pH begins to change significantly is called the buffer capacity What Exactly Happens When a Strong Acid or Base is Added to a Buffer? For a weak acid buffer (pH < 7) Added strong acid (H+) reacts with conjugate base Added strong base (OH-) reacts with weak acid For a weak base buffer (pH > 7): Added strong acid (H+) reacts with weak base (B) Added strong base (OH-) reacts with conjugate acid (BH+) Buffer Action Acetic Acid/Acetate Buffer Buffer Action Buffer Response to Strong Acid Buffer Response to Strong Base Calculating How pH of a Buffer Responds to Addition of Strong Acids and Bases Solution #1 Do a “Before Reaction” – “Change” – “After Reaction” table using MOLES ONLY for stoichiometry calculations to determine new moles of buffer components Assume reaction with H+/OH- goes to completion Volume of solution changed with addition of SA/SB so calculate new concentrations by assuming volumes are additive Set-up an ICE table with new concentrations to determine equilibrium concentrations Calculate pH from [H+] using Ka expression Solution #2 Do a “Before Reaction” – “Change” – “After Reaction” table for stoichiometry calculations to determine new moles of buffer components Assume reaction with H+/OH- goes to completion Volume of solution changed with addition of SA/SB so calculate new concentrations by assuming volumes are additive Use Henderson-Hasselbach equation to solve for pH Steps to Calculate the pH of a Buffer After Addition of Strong Acid or Base Buffer Tutorial How to Do Buffer Calculations Practice! #13 ON PAGE Making a Buffer Calculations You want to prepare 500.0 mL of a buffer with a pH = 10.00, with both the acid and conjugate base having molarities between 0.10 M to 1.00 M. You may choose from any of the acids listed below: Name acetic acid tartaric acid citric acid malonic acid carbonic acid phosphoric acid ammonium Formula HC2H3O2 H2C4H4O6 H3C6H5O7 H2C3H2O4 H2CO3 H3PO4 NH41+ Ka1 1.8 x 10-5 1.0 x 10-3 7.4 x 10-4 1.5 x 10-3 4.3 x 10-7 7.5 x 10-3 5.6 x 10-10 Ka2 4.6 x 10-5 1.7 x 10-5 2.0 x 10-6 5.6 x 10-11 6.2 x 10-8 Ka3 4.0 x 10-7 4.2 x 10-13 You must select an acid with a Ka value close to 10- assigned pH. The only two options are ammonium or the hydrogen carbonate ions. 2 + + H NH H CO 3 3 -10 -11 K a = 5.6 x 10 = K a2 = 5.6 x 10 = + 1NH4 HCO3 Making a Buffer Calculations K a = 5.6 x 10 -10 = + H NH3 NH4 5.6 x 10 -10 NH3 = -10 10 NH4 + + 5.6 x 10 -10 NH3 = + + H NH 4 5.6 NH 3 = + 1 NH 4 0.56 NH3 Divide both [ ] by 10..... = + 0.1 NH4 0.1 mol NH + 53.5 g NH Cl 4 4 x g NH 4 Cl = 500 mL = 2.68 g NH 4 Cl + 1000 mL 1 mol NH 4 0.56 mol NH 3 1000 mL conc NH 3 x mL conc NH 3 = 500 mL buffer 1000 mL buff 14.8 mol NH 3 =18.9 mL 14.8 M NH3 Making a Buffer Calculations Place ~250 mL of distilled water in a 500 mL volumetric flask. Add 2.68 g NH4Cl and dissolve. Then mix in 18.9 mL of 14.8 M NH3. Fill with distilled water to the 500 mL mark on the flask. If there is no concentrated NH3 available, the NH3 can be produced by neutralizing additional NH4Cl with 1.00 M NaOH. 0.56 mol NH 3 1 mol NH 4 Cl 58.5 g NH 4 Cl x g NH 4 Cl = 500 mL buffer 1000 mL buff 1 mol NH 3 1 mol NH 4 Cl =16.38 g NH 4 Cl 0.56 mol NH 3 1 mol NaOH 1000 mL NaOH x mL NaOH = 500 mL buffer 1000 mL buff 1 mol NH 3 1.00 mol NaOH = 280. mL NaOH Dissolve 19.06 g NH4Cl (2.68 g + 16.38 g) in 280. mL of 1.00 M NaOH. Then dilute with distilled water and fill to the 500 mL mark on the flask. Making a Buffer Calculations Place ~250 mL of distilled water in a 500 mL volumetric flask. Add 2.68 g NH4Cl and dissolve. Then mix in 18.9 mL of 14.8 M NH3. Fill with distilled water to the 500 mL mark on the flask. If there is no NH4Cl available, the NH4+ can be produced by neutralizing additional NH3 with 1.00 M HCl. 0.10 mol NH 1 mol NH 1000 mL NH 4 3 3 x mL NH 3 = 500 mL buffer 1000 mL buff 1 mol NH 4 14.8 mol NH 3 = 3.38 mL NH 3 0.10 mol NH 1 mol HCl 1000 mL HCl 4 x mL HCl = 500 mL buffer 1000 mL buff 1 mol NH 4 1.00 mol HCl = 50.0 mL HCl Place ~250 mL distilled water in volumetric flask. Add 50.0 mL of 1.00 M HCl and mix. Then add 22.3 mL of concentrated NH3 (18.9 mL + 3.4 mL). Mix and fill with distilled water to the 500 mL mark on the flask. Making a Buffer Calculations K a2 = 5.6 x 10 -11 -11 = H + CO 3 1- HCO3 CO 3 2 2 5.6 x 10 = -10 110 HCO 3 5.6 x 10 + H -11 CO 3 = HCO CO 3 2 13 2 0.56 = 11 HCO 3 CO 3 2- 0.100 Multiply both [ ] by 0.179..... = 0.179 HCO 31 Prepare 500. mL of the buffer that has [CO32] = 0.100 M and [HCO31-] = 0.179 M. Making a Buffer Calculations Prepare 500. mL of the buffer that has [CO32] = 0.100 M and [HCO31-] = 0.179 M. 0.100 mol CO 2- 106 g Na CO 3 2 3 x g Na 2CO 3 = 500 mL 2- 1000 mL 1 mol CO 3 = 5.30 g Na 2CO 3 0.179 mol HCO 1- 84.0 g NaHCO 3 3 x g NaHCO 3 = 500 mL 1- 1000 mL 1 mol HCO 3 = 7.52 g NaHCO 3 Place ~250 mL distilled water in a 500 mL volumetric flask. Add 5.30 g Na2CO3 and 7.52 g NaHCO3 and dissolve. Fill with distilled water to the 500 mL mark on the flask.
© Copyright 2026 Paperzz