www.sakshieducation.com MATRICES -3 EXERCISE – 3(h) A. Solve the following system of equations. i) By using Cramer’s rule and matrix inversion method when the coefficient matrix is non-singular. ii) Using Gauss-Jordan method. Also determine whether the system has a unique solution or infinite number of solutions or no solution and find solutions if exist. 1. 5x – 6y + 4z = 15 7x + 4y – 3z = 19 2x + y + 6z = 46 ∆ ∆ ∆ Hint : x = 1 , y = 2 , z = 3 ∆ ∆ ∆ Sol. i) Cramer’s rule : 5 −6 4 ∆= 7 2 −3 6 4 1 = 5(24 + 3) + 6(42 + 6) + 4(7 − 8) = 135 + 288 − 4 = 419 15 −6 4 ∆1 = 19 4 −3 46 1 6 = 15(24 + 3) + 6(114 + 138) + 4(19 − 184) = 405 + 1512 − 660 = 1917 − 660 = 1257 5 15 4 ∆ 2 = 7 19 −3 2 46 6 = 5(114 + 138) − 15(42 + 6) + 4(322 − 38) = 1260 − 720 + 1136 = 1676 5 −6 15 ∆3 = 7 2 4 1 19 46 = 5(184 − 19) + 6(322 − 38) + 15(7 − 8) = 825 + 1074 − 15 = 2529 − 15 = 2514 www.sakshieducation.com www.sakshieducation.com ∆1 1527 = =3 419 ∆ 1676 ∆ y= 2 = =4 ∆ 419 ∆ 2514 =6 z= 3 = ∆ 419 Solution is x = 3, y = 4, z = 6. x= ii) Matrix inversion method : AdjA Hint : A −1 = det A 5 −6 4 A = 7 4 −3 2 1 6 A1 = 4 −3 = 24 + 3 = 27 1 6 B1 = − C1 = 7 4 2 1 A2 = − B2 = 7 −3 = −(42 + 6) = −48 1 6 −6 4 1 5 4 2 6 C2 = − = 7 − 8 = −1 6 = −(−36 − 4) = 40 = 30 − 8 = 22 5 −6 = −(5 + 12) = −17 2 1 −6 4 = 18 − 16 = 2 4 −3 5 4 = −(−15 − 28) = 43 B3 = − 7 −3 5 −6 C3 = = 20 + 42 = 62 7 4 A3 = A1 A 2 Adj A = B1 B2 C1 C2 Det A = ∆ = 419 A3 27 40 2 B3 = −48 22 43 C3 −1 −17 62 www.sakshieducation.com www.sakshieducation.com 27 AdjA 1 A = = 48 DetA 419 −1 27 1 −1 x=A D= −48 419 −1 −1 40 2 22 43 −17 62 40 2 15 22 43 19 −17 62 46 +405 + 760 + 92 1 = −720 + 418 + 1978 419 −15 − 323 + 2852 1257 3 1 = 1676 = 4 419 2514 6 ∴ Solution is x = 3, y = 4, z = 6. iii) Gauss-Jordan method : 5 −6 4 15 Augmented matrix is A = 7 4 −3 19 2 1 6 46 R2 → 5R2 – 7R1, R3 → 5R3 – 2R1 15 5 −6 4 A ~ 0 62 −43 −10 0 17 22 200 R1 → 31R1 + 3R2, R3 → 62R3 – 17R2 −5 435 155 0 A ~ 0 62 −43 −10 0 2095 12570 0 1 R3 → R3 2095 155 0 −5 435 A ~ 0 62 −43 −10 0 0 1 6 R1 → R1 + 5R3, R2 → R2 + 43R3 155 0 0 465 A ~ 0 62 0 248 0 0 1 6 www.sakshieducation.com www.sakshieducation.com 1 1 R1 → R1 R2 → R2 155 62 1 0 0 3 A ~ 0 1 0 4 0 0 1 6 ∴ Unique solution exists. Solution is x = 3, y = 4, z = 6. 2. I. x+y+z=1 2x + 2y + 3z = 6 x + 4y + 9z = 3 i) Cramer’s rule 1 1 1 ∆= 2 2 3 1 4 9 = 1(18 − 12) − 1(18 − 3) + 1(8 − 2) = 6 − 15 + 6 = −3 1 1 1 ∆1 = 6 2 3 3 4 9 = 1(18 − 12) − 1(54 − 9) + 1(24 − 6) = 6 − 45 + 18 = −21 1 1 1 ∆2 = 2 6 3 1 3 9 = 1(54 − 9) − 1(18 − 3) + 1(6 − 6) = 45 − 15 = 30 1 1 1 ∆3 = 2 2 6 1 4 3 = 1(6 − 24) − 1(6 − 6) + 1(8 − 2) = −18 − 0 + 6 = −12 www.sakshieducation.com www.sakshieducation.com x= ∆1 −21 = =7 ∆ −3 y= ∆ 2 30 = = −10 ∆ −3 ∆3 −12 = =4 ∆ −3 Solution is x = 7, y = –10, z = 4. z= ii) Matrix inversion method : 1 1 1 x Let A = 2 2 3 , X = y and D = 1 4 9 z A1 = 2 3 4 9 B1 = − C1 = B2 = 1 4 2 3 2 3 2 2 = −(4 − 1) = −3 = 3− 2 =1 1 1 1 1 = −(9 − 4) = −5 = 9 −1 = 8 1 1 1 1 B3 = − C3 = 4 9 1 9 = −(18 − 3) = −15 = 8−2 = 6 1 1 1 1 C2 = − A3 = 1 9 1 4 A2 = − = 18 − 12 = 6 2 3 2 2 1 6 3 = −(3 − 2) = −1 = 2−2 = 0 A1 A 2 AdjA = B1 B2 C1 C2 DetA = ∆ = −3 A3 6 −5 1 B3 = −15 8 −1 C3 6 −3 0 www.sakshieducation.com www.sakshieducation.com A −1 6 −5 1 AdjA 1 = = − −15 8 −1 DetA 3 6 −3 0 6 −5 1 1 1 x = A −1D = −15 8 −1 6 3 6 −3 0 3 6 − 30 + 3 −21 7 1 1 = − −15 + 48 − 3 = − 30 = −10 3 3 6 − 18 + 0 −12 4 ∴ Solution is x = 7, y = –10, z = 4. iii) Gauss-Jordan method: 1 1 1 1 Augmented matrix is A = 2 2 3 6 1 4 9 3 R 2 → R 2 − 2R1 , R 3 → R 3 − R1 1 1 1 1 A ~ 0 0 1 4 0 3 8 2 R 3 → R 3 − 8R 2 , R1 → R1 − R 2 1 1 0 −3 A ~ 0 0 1 4 0 3 0 −30 1 R3 → R3 3 1 1 0 −3 A ~ 0 0 1 4 0 1 0 −10 Unique solution exists R1 → R1 − R 3 , R 2 ↔ R 3 1 0 0 7 A ~ 0 1 0 −10 0 0 1 4 ∴ Solution is x = 7, y = –10, z = 4. www.sakshieducation.com www.sakshieducation.com 3. x – y + 3z = 5 4x + 2y – z = 0 –x + 3y + z = 5 Sol. (i) Cramer’s rule : 1 −1 3 ∆= 4 −1 2 −1 3 1 = 1(2 + 3) + 1(4 − 1) + 3(12 + 2) = 5 + 3 + 42 = 50 5 −1 3 ∆1 = 0 2 −1 5 3 1 = 5(2 + 3) + 1(0 + 5) + 3(0 − 10) = 25 + 5 − 30 = 0 1 5 3 ∆2 = 4 0 −1 −1 5 1 = 1(0 + 5) − 5(4 − 1) + 3(20 − 0) = 5 − 15 + 60 = 50 1 ∆3 = 4 −1 −1 5 2 0 3 5 = 1(10 − 0) + 1(20 − 0) + 5(12 + 2) = 10 + 20 + 70 = 100 0 ∆ x= 1 = =0 ∆ 50 ∆ 50 =1 y= 2 = ∆ 50 ∆3 100 = =2 ∆ 50 ∴ Solution is x = 0, y = 1, z = 2/ z= www.sakshieducation.com www.sakshieducation.com ii) Matrix inversion method : 1 −1 3 Let A = 4 2 −1 , X = −1 3 1 A1 = 2 −1 3 B1 = − C1 = 4 −1 −1 1 2 −1 3 C3 = 3 = 1+ 3 = 4 1 −1 −1 3 −1 3 2 −1 B3 = − 1 3 4 −1 1 −1 4 = −(−1 − 9) = 10 1 −1 1 C2 = − A3 = 3 1 2 = −(4 − 1) = −3 = 12 + 2 = 14 −1 3 A2 = − B2 = = 2+3=5 1 4 x 5 y and D = 0 5 z = −(3 − 1) = −2 = 1 − 6 = −5 = −(−1 − 12) = 13 = 2+4 = 6 A1 A 2 A3 5 10 −5 ∴ AdjA = B1 B2 B3 = −3 4 13 C1 C2 C3 14 −2 6 det A = a1A1 + b1B1 + c1C1 = 1 ⋅ 5 − 1 ⋅ (−30 + 3 ⋅14 = 5 + 3 + 42 = 50 5 10 −5 AdjA 1 −1 A = = −3 4 13 det A 50 14 −2 6 www.sakshieducation.com www.sakshieducation.com 5 10 −5 5 1 X=A D= −3 4 13 0 50 14 −2 6 5 25 + 0 − 25 0 0 1 1 = −15 + 0 + 65 = 50 = 1 50 50 70 + 0 + 30 100 2 −1 ∴ Solution is x = 0, y = 1, z = 2. iii) Gauss Jordan method : 1 −1 3 5 Augmented matrix is 4 2 −1 0 −1 3 1 5 By R 2 → R 2 − 4R1 , R 3 → R 3 + R1 5 1 −1 3 A ~ 0 6 −13 −20 0 2 4 10 1 R3 → R3 2 5 1 −1 3 A ~ 0 6 −13 −20 0 1 2 5 R1 → R1 + R 3 , R 2 → R 2 − 6R 3 10 1 0 5 A ~ 0 0 −25 −50 0 1 2 5 −1 R2 → R2 25 1 0 5 10 A ~ 0 0 1 2 0 1 2 5 R1 → R1 − 5R 2 , R 3 → R 3 − 2R 2 1 0 0 0 A ~ 0 0 1 2 0 1 0 1 www.sakshieducation.com www.sakshieducation.com R 2 ↔ R3 1 0 0 0 A ~ 0 1 0 1 0 0 1 2 Unique solution ∴ Solution is x = 0, y = 1, z = 2. 4. 2x + 6y + 11 = 0 6x + 20y – 6z + 3 = 0 6y – 18z + 1 = 0 2 6 0 Sol. ∆ = 6 20 −6 0 6 −18 = 2(−360 + 36) − 6(−108 − 0) = −648 + 648 = 0 ∴ Cramer’s rule and matrix inversion method cannot be used. ∵ ∆ = 0 ii) Gauss Jordan method : 0 −11 2 6 Augmented matrix is 6 20 −6 −3 0 6 −18 −1 R 2 → R 2 − 3R1 2 6 0 −11 A ~ 0 2 −6 30 0 6 −18 −1 R 3 → R 3 − 3R 2 2 6 0 −11 A ~ 0 2 −6 30 0 0 0 −93 ρ(A) = 2, ρ(AB) = 3 ρ(A) ≠ ρ(AB) ∴ The given system of equations do not have a solution. www.sakshieducation.com www.sakshieducation.com 5. 2x – y + 3z = 9 x+y+z=6 x–y+z=2 Sol. i) Cramer’s rule : 2 −1 3 ∆= 1 1 1 1 −1 1 = 2(1 + 1) + 1(1 − 1) + 3(−1 − 1) = 4 + 0 − 6 = −2 9 −1 3 ∆1 = 6 1 1 2 −1 1 = 9(1 + 1) + 1(6 − 2) + 3(−6 − 2) = 18 + 4 − 24 = −2 2 9 3 ∆2 = 1 6 1 1 2 1 = 2(6 − 2) − 9(1 − 1) + 3(2 − 6) = 8 − 0 − 12 = −4 2 −1 9 ∆3 = 1 1 6 1 −1 2 = 2(2 + 6) + 1(2 − 6) + 9(−1 − 1) = 16 − 4 − 18 = −6 ∆ −2 ∆ −4 x= 1 = = 1, y = 2 = =2 ∆ −2 ∆ −2 ∆3 −6 = =3 ∆ −2 Solution is x = 1, y = 2, z = 3. z= www.sakshieducation.com www.sakshieducation.com ii) Matrix inversion method : 2 −1 3 Let A = 1 1 1 , X = 1 −1 1 1 1 = 1+1 = 2 A1 = −1 1 1 1 B1 = − 1 1 x y and D = z 9 6 2 =0 1 1 = −1 − 1 = −2 1 −1 −1 3 = −(−1 + 3) = −2 A2 = − −1 1 C1 = B2 = 2 3 1 1 2 1 −1 A3 = 1 C2 = − B3 = − C3 = = 2 − 3 = −1 −1 = −(−2 + 1) = 1 −1 3 = −1 − 3 = −4 1 2 3 1 1 = −(2 − 3) = 1 2 −1 = 2 +1 = 3 1 1 A1 A 2 A3 2 −2 −4 AdjA = B1 B2 B3 = 0 −1 1 C1 C2 C3 −2 1 3 DetA = a1A1 + b1B1 + c1C1 = 2(2) − 1 ⋅ 0 + 3(−2) = 4 − 6 = −2 2 −2 −4 AdjA 1 A −1 = = − 0 −1 1 DetA 2 −2 1 3 www.sakshieducation.com www.sakshieducation.com 2 −2 −4 9 1 X = A D = − 0 −1 1 6 2 −2 1 3 2 −1 18 − 12 − 8 −2 1 1 1 = − −6 + 2 = − −4 = 2 2 2 −18 + 6 + 6 −6 3 Solution is x = 1, y = 2, z = 3. iii) Gauss-Jordan method : 2 −1 3 9 Augmented matrix A = 1 1 1 6 1 −1 1 2 R1 → R1 − 2R 2 , R 3 → R 3 − R1 0 −3 1 −3 A ~ 1 1 1 6 0 −2 0 −4 0 −3 1 −3 1 R 3 → R 3 − gives A ~ 1 1 1 6 2 0 1 0 2 R1 → R1 + 3R 3 , R 2 → R 2 − R 3 0 0 1 3 A ~ 1 0 1 4 0 1 0 2 0 0 1 3 R 2 → R 2 − R1 gives A ~ 1 0 0 1 0 1 0 2 By R1 ↔ R 2 , R 2 ↔ R 2 − R 3 we get 1 0 0 1 A ~ 0 1 0 2 0 0 1 3 ∴ The given equations have a unique solution. Solution is x = 1, y = 2, z = 3. www.sakshieducation.com www.sakshieducation.com 6. 2x – y + 8z = 13 3x + 4y + 5z = 18 5x – 2y + 7z = 20 Sol. i) Cramer’s rule : 2 −1 8 ∆= 3 4 5 5 −2 7 = 2(28 + 10) + 1(21 − 25) + 8(−6 − 20) = 76 − 4 − 208 = −136 13 −1 8 ∆1 = 18 4 5 20 −2 7 = 13(28 + 10) + 1(126 − 100) + 8(−36 − 80) = 494 + 26 − 928 = −408 2 13 8 ∆ 2 = 3 18 5 2 20 7 = 2(126 − 100) − 13(21 − 25) + 8(60 − 90) = 52 + 52 − 240 = −136 2 −1 13 ∆3 = 3 4 18 5 −2 20 = 2(80 + 36) + 1(60 − 90) + 13(−6 − 20) = 232 − 30 − 338 = −136 ∆ −408 x= 1 = =3 ∆ −136 ∆ −136 y= 2 = =1 ∆ −136 ∆ −136 z= 3 = =1 ∆ −136 ∴ Solution is x = 3, y = 1, z = 1. www.sakshieducation.com www.sakshieducation.com ii) Matrix inversion method : 2 −1 8 x Let A = 3 4 5 , X = y and D = 5 −2 7 z A1 = 4 5 = 28 + 10 = 38 −2 7 3 5 = −(21 − 25) = 4 5 7 B1 = − C1 = 3 4 = −6 − 20 = −26 5 −2 A2 = − B2 = −1 8 = −(−7 + 16) = −9 −2 7 2 8 = (14 − 40) = −26 5 7 2 5 −1 A3 = 4 2 B3 = − 3 C2 = − C3 = 13 18 20 −1 = −(−4 + 5) = −1 −2 8 = −5 − 32 = −37 5 8 = −(10 − 24) = 14 5 2 −1 = 8 + 3 = 11 3 4 A1 A 2 A3 38 −9 −37 AdjA = B1 B2 B3 = 4 −26 14 C1 C2 C3 −26 1 11 Det A = a1A1 + b1B1 + c1C1 = 2 ⋅ 38 + (−1)4 + 8(−26) = 76 − 4 − 208 = −136 www.sakshieducation.com www.sakshieducation.com 38 −9 −37 AdjA 1 =− A = 4 −26 14 Det A 136 −26 1 11 38 −9 −37 13 1 −1 X=A D=− 4 −26 14 18 280 −26 1 11 20 −1 494 −162 −740 1 52 −468 +280 =− 136 −338 −18 +220 −408 3 1 =− −136 = 1 136 −136 1 Solution is x = 3, y = 1, z = 1. iii) Gauss Jordan method : 2 −1 Augmented matrix is A = 3 4 5 −2 R 2 → 2R 2 − 3R1 , R 3 → 2R 3 − 5R 2 8 13 5 18 7 20 we get 13 2 −1 8 A ~ 0 11 −14 −3 0 1 −26 −25 R1 → R1 + R 3 , R 2 → R 2 − 11R 3 , we get 2 0 −18 −12 A ~ 0 0 272 272 0 1 −26 −25 1 R2 → R2 we get 272 2 0 −18 −12 A ~ 0 0 1 1 0 1 −26 −25 R1 → R1 + 18R 2 , R 3 → R 3 + 26R 2 , we get www.sakshieducation.com www.sakshieducation.com 2 0 0 6 A ~ 0 0 1 1 0 1 0 1 1 0 0 3 1 R 2 ↔ R 3 , R1 we get A ~ 0 1 0 1 2 0 0 1 1 ∴ The given equations have a unique solution and solution is x = 3, y = 1, z = 1. 7. 2x – y + 3z = 8 –x + 2y + z = 4 3x + y – 4z = 0 Sol. i) Cramer’s rule : 2 −1 3 ∆ = −1 3 2 1 1 −4 = 2(−8 − 1) + 1(4 − 3) + 3(−1 − 6) = −18 + 1 − 21 = −38 8 −1 3 ∆1 = 4 0 2 1 1 −4 = 8(−8 − 1) + 1(−16 − 0) + 3(4 − 0) = −72 − 16 + 12 = −76 2 8 3 ∆ 2 = −1 4 1 3 0 −4 = 2(−16 − 0) − 8(4 − 3) + 3(−0 − 12) = −32 − 8 − 36 = −76 2 −1 8 ∆3 = −1 3 2 1 4 0 = 2(0 − 4) + 1(0 − 12) + 8(−1 − 6) = −8 − 12 − 56 = −76 www.sakshieducation.com www.sakshieducation.com ∆1 −76 = =2 ∆ −38 ∆ −76 =2 y= 2 = ∆ −38 ∆ −76 =2 z= 3 = ∆ −38 ∴ Solution is x = 2, y = 2, z = 2. x= ii) Matrix inversion method : 2 −1 3 Let A = −1 2 1 , X = 3 1 −4 A1 = 2 1 1 −4 B1 = − x y , D = z 8 4 0 = −8 − 1 = −9 −1 1 = −(4 − 3) = −1 3 −4 −1 2 = −1 − 6 = −7 3 1 −1 3 A2 = − = −(4 − 3) = −1 1 −4 C1 = B2 = 2 3 −4 C2 = − A3 = = −8 − 9 = −17 2 −1 = −(2 + 3) = −5 3 1 −1 3 = −1 − 6 = −7 2 1 B3 = − C3 = 3 2 3 = −(4 + 3) = −7 −1 2 −1 = 4 −1 = 3 −1 2 2 A1 A 2 A3 −9 −1 −7 AdjA = B1 B2 B3 = −1 −17 −7 C1 C2 C3 −7 −5 3 Det A = a1A1 + b1B1 + c1C1 = 2(−9) − 1(−1) + 3(−7) = −18 + 1 − 21 = −38 www.sakshieducation.com www.sakshieducation.com −9 −1 −7 AdjA 1 = − −1 −17 −7 A = DetA 38 −7 −5 3 −9 −1 −7 8 1 −1 X = A D = − −1 −17 −7 4 38 −7 −5 3 0 −1 −72 − 4 −76 2 1 1 = − −8 − 68 = − −76 = 2 38 38 −56 − 20 −76 2 Solution is x = 2, y = 2, z = 2. iii) Gauss Jordan method : 2 −1 3 8 Augmented matrix is A = −1 2 1 4 3 1 −4 0 R1 → R1 + 2R2, R3 → R3 + 3R2, we get 0 3 5 16 A ~ −1 2 1 4 0 7 −1 12 R 2 → 3R 2 − 2R1 , R 3 → 3R 3 − 7R1 , we have 16 0 3 5 A ~ −3 0 −7 −20 0 0 −38 −76 1 R 3 → R 3 − , we get 38 0 3 5 16 A ~ −3 0 −7 −20 0 0 1 2 R1 → R1 − 5R 2 , R 2 → R 2 + 7R 3 , we get 0 3 0 6 A ~ −3 0 0 −6 0 0 1 2 1 1 R1 → R1 , R 2 → R 2 − , R1 → R 2 we get 3 3 www.sakshieducation.com www.sakshieducation.com 1 0 0 2 A ~ 0 1 0 2 0 0 1 2 ∴ The given equations have a unique solution and solution is x = 2, y = 2, z = 2. 8. Solve x + y + z = 9 2x + 5y + 7z = 52 2x + y – z = 0 Sol. i) Cramer’s rule : 1 1 1 ∆ = 2 5 −7 2 1 −1 = 1(−5 − 7) − 1(−2 − 14) + 1(2 − 10) = −12 + 16 − 8 = −4 9 1 1 ∆1 = 52 5 7 0 1 −1 = 9(−5 − 7) − 1(−52 − 0) + 1(52 − 0) = −108 + 52 + 52 = −4 1 9 1 ∆ 2 = 2 52 7 2 0 −1 = 1(−52 − 0) − 9(−2 − 14) + 1(0 − 104) = −52 + 144 − 104 = −20 1 1 9 ∆3 = 2 5 52 2 1 0 = 1(0 − 52) − 1(0 − 104) + 9(2 − 10) = −52 + 104 − 72 = −20 ∆ −4 x= 1 = =1 ∆ −4 ∆ −12 y= 2 = =3 ∆ −4 ∆ −20 =5 z= 3 = ∆ −4 Solution is x = 1, y = 3, z = 5 www.sakshieducation.com www.sakshieducation.com ii) Matrix inversion method : 1 1 1 x Let A = 2 5 7 , X = y , D = 2 1 −1 z A1 = 5 7 = −5 − 7 = −12 1 −1 B1 = − C1 = 2 7 = −(−2 − 14) = 16 2 −1 2 5 = 2 − 10 = −8 2 1 A2 = − B2 = 9 52 0 1 1 = −(−1 − 1) = 2 1 −1 1 1 = −1 − 2 = −3 2 −1 1 1 = −(1 − 2) = 1 2 1 1 1 = 7−5 = 2 A3 = 5 7 C2 = − B3 = − C3 = 1 1 = −(7 − 2) = −5 2 7 1 1 = 5−2 = 3 2 5 A1 A 2 A3 −12 2 2 AdjA = B1 B2 B3 = 16 −3 −5 C1 C2 C3 −8 1 3 Det A = a1A1 + b1B1 + c1C1 = 1(−12) + 1(16) + 1(−8) = −12 + 16 − 8 = −4 −12 +2 2 AdjA 1 −1 A = = − 16 −3 −5 DetA 4 −8 1 3 www.sakshieducation.com www.sakshieducation.com −12 +2 2 9 1 X = A D = − 16 −3 −5 52 4 −8 1 3 0 −108 + 104 −4 1 1 1 = − 144 − 156 = − −12 = 3 4 4 −72 + 52 −20 5 −1 ∴ Solution is x = 1, y = 3, z = 5. iii) Gauss Jordan method : 1 1 1 9 Augmented matrix A = 2 5 7 52 2 1 −1 0 R 2 → R 2 − 2R1 , R 3 → R 3 − R 2 9 1 1 1 A ~ 0 3 5 34 0 −4 −8 −52 R1 → 3R1 − R 2 , R 3 → 3R 3 + 4R 2 3 0 −2 −7 A ~ 0 3 5 34 0 0 −4 −20 1 R 3 → R 3 − , we obtain 4 3 0 −2 −7 A ~ 0 3 5 34 0 0 1 5 R1 → R1 + 2R 3 , R 2 → R 2 − 5R 3 , we get 3 0 0 3 A ~ 0 3 0 9 0 0 1 5 1 1 R1 → R1 , R 2 → R 2 we have 3 3 1 0 0 1 A ~ 0 1 0 3 0 0 1 5 ∴ The given equations have a unique solution and solution is x = 1, y = 3, z = 5. www.sakshieducation.com
© Copyright 2026 Paperzz